PIPS® Detector Instruction Sheet #### Introduction PIPS" detectors come in four standard series as well as special and custom design types. The standard series are Partially Depleted (PD), Fully Depleted (FD), Alpha (A), and CAM (Continuous Air Monitor). PIPS" detectors have an ion implanted entrance window of about 500 A thickness. The CAM PIPS" have additional layers of aluminium and varnish and a total entrance window thickness of about 1,5 microns equivalent silicon. Detector specifications as well as test data are provided overleaf or on a separate sheet. #### Handling and Storage The PIPS® detector should be handled with care. The implanted face contact is very thin as it must be in order to achieve high efficiency and good resolution for alpha particles. Do not touch the surface with anything that might cause scratches or abrasion. Use the plastic cover when installing detectors in, or removing them from, alpha spectrometers. Store PIPS® detectors in their original plastic containers if they are removed from service. #### Checkout and Operation Before installing or operating a PIPS* detector, set the bias supply for the correct polarity as indicated on the test data sheet. When first operating a PIPS* detector in an Alpha Spectrometer, it is a good idea to evacuate the chamber for 10 to 15 minutes before applying bias. This will remove excess surface moisture if the detector has been exposed to high humidity in transit or storage. Adjust the bias voltage to the recommended value. It is recommended to wait 30 seconds to stabilise the detector. At this time you can choose one or more of several methods to confirm proper detector operation: #### 1. Measure Leakage Current This is easy using Canberra 7401 or Alpha Analyst. Remember that leakage current doubles for about 5°C rise in temperature and take this into account when you compare your measurement to that of the factory. #### 2. Measure Pulser Line Width Pulser line width should be about 5 keV (FWHM) narrower than Alpha Resolution except for CAM detectors, which have a thicker window. Pulser line width and beta resolution are synonymous. For beta detectors an adjustable calibrated pulser can be used to determine the noise level which is approximately 3 times the pulser line width (FWHM). ### 3. Measure Alpha Resolution The ultimate test of system performance, this test must be performed using a good quality alpha source. Alpha sources do not emit monoenergetic alphas but have an intrinsic line width (due to scatter) that contributes to system resolution. Poor quality sources will not give good resolution and may lead to detector contamination. Alpha PIPS* detectors are deliberately not tested with an alpha source to avoid risk of contamination and background cannot be guaranteed after exposure to an alpha source. Alpha resolution measurements should be made with a detector source spacing equal to 1,5 to 2 times the detector diameter and under good vacuum (\leq 100 microns HG or 10 Pa). #### Cleaning The PIPS® detector can be cleaned to remove oil film, fingerprints or dust particles on the surface. Some recoil contamination can be removed by cleaning as well, but recoil particles are often imbedded in the surface and cannot be entirely removed. Canberra Alpha Spectrometers can be equipped to reduce recoil contamination. Consult Canberra for more information on this subject. To clean standard PIPS** detectors first blow dry air or N_2 gas on the surface to remove particles that might cause scratches in the subsequent cleaning step. Then use a cotton ball dampened with a mos quality isopropyl alcohol; Do not use methyl alcohol. Avoid excess wetting of the detector assembly, but repeat the cleaning treatment with fresh cotton balls to eliminate traces of contamination. Blow dry with dry air or N_2 gas and put under vacuum for 15 minutes or heat to 50°C for an hour to remove residual moisture before applying bias. Note: cleaning is generally not effective in curing problems of leakage current, radiation damage or excess (condensing) water vapour. Neither will it repair physical damage to the junction(s). Suspect detectors should be checked carefully for physical damage to the surface(s) before other actions are taken. #### Warranty #### Terms Unless otherwise specified, PIPS® detectors are warranted against defects in materials and workmanship for one year from the date of shipment. U.S. domestic customers should contact the Customer Service Department at techsupport@canberra.com or 1-800-255-6370 to report problem(s) and to receive a Return Authorized Number (RAN) for any units to be returned. All other customers should contact their local Canberra distributor. Detectors should be returned to the factory freight prepaid and will be returned to the customer freight prepaid. #### Limitations This is the only warranty provided by Canberra; there are no other warranties, expressed or implied. All warranties of merchantability and fitness for an intended purpose are excluded. Canberra shall have no liability for any special, indirect or consequential damages caused by failure of any PIPS® detector. #### Exclusions This warranty does not cover detectors which have been modified without Canberra's written permissions or which have been subjected to unusual physical or electrical stress as determined by Canberra's service personnel. This warranty does not cover damage due to high radiation doses from photon, neutrons, or charged particles. Detectors contaminated by radioactive materials cannot be returned for service or replacement. Canberra is not responsible for damage sustained in shipment. Examine detectors carefully when you receive them for evidence of damage caused in shipment. If damage is found notify the carrier and Canberra or your local distributor immediately. Keep all packaging materials and documents for use in claiming damages. Canberra Industries Inc., 800 Research Parkway, Meriden, CT 06450, U.S.A., Tel. (203)238-2351, Fax (203)235-1347, http://www.canberra.com/Canberra Semiconductor N.V., Lammerdries-Oost 25, 2250 Olen, Belgium, Tel. (32-14)22 19 75, Fax (32-14)22 19 91, E-mail: csnv@canberra.com/ # DETECTOR SPECIFICATIONS PERFORMANCE DATA CERTIFICATE OF CONFORMITY | | PARTIALL | Y DEPLETE | D PIPS I | DETE | CTOR | | | | | |---|--|-----------------|---------------------------------------|------|------|---|------------------|------------------|-----| | Lo | Serial number : Lot number : Internal order number : | | 98344
2058.200E.193.24
SOR 8380 | | | | | | | | SPECIFICATIONS | | | | | | | | | | | N | Model | BKPD | 50 | | 11 | - | 500 | AM | | | | alpha resolution | | | | | | | | Suf | | PERFORMANCE | pletion depth (| μm) | | | | | | | | | | | <u>μ</u> m) | + 130 | | | | Volts | S | 7 | | PERFORMANCE | ge | | + 130
10 | | | | Volts
nA | 5 | | | PERFORMANCE Recommended bias voltage | ge | | | | | | nA | s
(FWHM) | | | PERFORMANCE Recommended bias voltage Leakage current (at 20° C | ge | | 10 | | | | nA
keV | | | | PERFORMANCE Recommended bias voltage Leakage current (at 20° C) Electronic resolution | ge | | 10
5,6 | | | | nA
keV | (FWHM)
(FWHM) | | | Recommended bias voltage Leakage current (at 20° C) Electronic resolution Alpha resolution | ge | | 10
5,6
10,9 | | | | nA
keV
keV | (FWHM)
(FWHM) | | | PERFORMANCE Recommended bias voltage Leakage current (at 20° C Electronic resolution Alpha resolution Full depletion bias voltage | ge | | 10
5,6
10,9
+ 110 | | | | nA
keV
keV | (FWHM)
(FWHM) | | Standard tests are performed following IEEE Standard Test Procedures for Semiconductors Charged Particle Detectors IEEE Std 300-1988. Date: 05 june 12 Alpha resolution is given for 241 Am, 5486 keV alphas, using standard Canberra electronics and 0.5 μ s shaping time constant. Electronic resolution is approximated by pulser line width (FWHM) or RMS voltmeter. CANBERRA Industries, 800 Research Parkway, Meriden, CT 06450, USA Tel. (203) 238-2351; Fax. (203) 235-1347; http://www.canberra.com CANBERRA Semiconductor N.V.,Lammerdries 25, 2250 Olen, Belgium TEL. (32-14) 221975; Fax. (32-14) 221991; E-mail: csnv@canberra.com Tested by: SDAME001/G Approved by: 1/1 # DETECTOR SPECIFICATIONS PERFORMANCE DATA CERTIFICATE OF CONFORMITY | - AKIIA | LLY DEPLETED | PIPS I | DETE | CTOR | ? | | | |--|--------------|----------------------------|-------------------------|---------|---|-----|------------------| | Serial number
Lot number
Internal orc | | | 9834
8.200E
SOR 8 | .193.23 | | | | | SPECIFICATIONS | | | | | | | | | Model | BKPD | 50 | - | 11 | - | 500 | AM | | Active area (mm²)
Warranted alpha reso
Nominal depletion de | | | | | | | | | PERFORMANCE | | | | | | | | | PERFORMANCE Recommended bias voltage Leakage current (at 20° C) Electronic resolution Alpha resolution | | + 130
10
5,5
11,0 | | | | | (FWHM)
(FWHM) | Standard tests are performed following IEEE Standard Test Procedures for Semiconductors Charged Particle Detectors IEEE Std 300-1988. Particle Detectors IEEE Std 300-1988. Alpha resolution is given for 241 Am, 5486 keV alphas, using standard Canberra electronics and 0.5 μ s shaping time constant. Electronic resolution is approximated by pulser line width (FWHM) or RMS voltmeter. CANBERRA Industries, 800 Research Parkway, Meriden, CT 06450, USA Tel. (203) 238-2351; Fax. (203) 235-1347; http://www.canberra.com CANBERRA Semiconductor N.V.,Lammerdries 25, 2250 Olen, Belgium TEL. (32-14) 221975; Fax. (32-14) 221991; E-mail: csnv@canberra.com SDAME001/G 1/1