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The question of a possible finite neutrino mass is one of the most investigated and

controversial topics in particle physics and cosmology. The most promising direct ex-

periments for determining the neutrino mass are based on the study of the β-decay of

molecular tritium. The mass of the neutrino is deduced by analysing the shape of the

continuous energy spectrum of the electrons emitted in the β-decay.

In this thesis, the molecular physics issues facing these experiments are investigated.

Theoretical final state probability distributions of the daughter molecule are calculated

to satisfy the higher resolution requirements and increased sensitivity of the future ex-

periments.

Transition probabilities to the six lowest electronically bound states of 3HeT+ are

calculated. Rotational excitation of the daughter molecule is considered and probabilities

obtained for the β-decay of T2 in the first four rotational states. Isotope contamination

from DT and HT molecules is also investigated, and the probability distributions for

3HeD+ and 3HeH+ are calculated. The sensitivity of the initial temperature, ortho:para

ratio and isotopic composition of the source is considered. Estimates of the error in the

value of the neutrino mass deduced from fitting theoretical spectra, due to uncertainties

in temperature, ortho:para ratio of T2 and percentage of DT molecules, are obtained.

The R-matrix method is used to treat the electronic continuum of 3HeT+. Reso-

nances converging to the first eight excited target states are obtained, and the transition

probabilities to these resonances and background continuum are calculated.

Endpoint effects due to the decay of other possible species in the source – T−, T,

T+, T+
2 , T+

3 and T+
5 – are also investigated.

It is hoped that this data will be used as part of the forthcoming KATRIN experi-

ment.
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Chapter1
Introduction

1.1 Neutrinos - A brief history

In the Standard Model of particle physics, there are 12 fundamental particles that make

up the basis of matter, 6 quarks and 6 leptons (see figure 1.1). Neutrinos form part

of the fundamental group of leptons, and according to the Standard Model they have

zero charge, zero mass and spin 1
2 (i.e. they are fermions). Neutrinos do not interact

with the strong or electromagnetic forces, they are only affected by the weak force. This

means that they can pass through great distances of matter without being affected by

it, making them extremely difficult to detect. There are three known types/flavours of

neutrinos; the electron neutrino, the muon neutrino and the tau neutrino. Each neutrino

is related to one of the charged leptons (the electron, the muon and the tau) after which

it is named.

The first indirect evidence for the existence of the neutrino came in 1914 when James

Chadwick reported that the energy spectrum of electrons emitted in the β-decay of a

nucleus was continuous. This was very surprising at the time since, as the neutrino was

not yet known to exist, the final state was believed to consist of just two bodies, the

daughter ion and the electron, therefore giving a discrete spectrum for the electron en-

ergy. In order to retain the conservation of energy and momentum in β-decay, Wolfgang

Pauli in 1930 postulated the existence of a third neutral, and as yet undetected, particle

that is ‘created’ in the decay which carries away the remaining energy and momentum.

In 1934 Enrico Fermi developed his theory of weak interaction decay, including Pauli’s

hypothetical particle, which explained many experimentally observed results [2]. As the

neutrino was very difficult to detect, it was not until two decades later that it was first

11



1.1 Neutrinos - A brief history

Figure 1.1: The fundamental matter particles of the Standard Model. Also shown are the force

carrier particles. Image taken from the web-pages of the Stanford Linear Accelerator Center at

Stanford University [1]

detected. In 1956 Clyde Cowan and Frederick Reines performed an experiment to de-

tect neutrinos by placing a detector consisting of 400 l of water nearby a nuclear power

plant [3]. They detected the neutrons produced from the interaction of the incoming

neutrinos from the reactor with the protons in the water. It was later determined that

the neutrino detected was an electron anti-neutrino. This was the first direct detection

of neutrinos, a result which led them to receive the Nobel prize in 1995. In 1962 Leon

Lederman, Melvin Schwartz and Jack Steinberger discovered that neutrinos produced

in association with muons behaved differently to those produced in association with

electrons, showing that there exists more than one type of neutrino [4]. The possible

existence of a third type of neutrino was not suggested until 1978, when the tau particle

was discovered. In 2000, the first observation of tau neutrino interactions was reported

by the DONUT collaboration at Fermilab [5].

There are still many unknown properties of the neutrino which form some of the

experimental goals in particle physics today: how many types of neutrino are there?, is

the neutrino identical to its anti-particle? and as recent evidence has shown, do neutrinos

have mass? and if so, what is it?

12



1.2 The neutrino mass problem - Implications of a non-zero neutrino rest
mass

1.2 The neutrino mass problem - Implications of a non-

zero neutrino rest mass

The determination of the rest masses of neutrinos is one of the most intriguing tasks in

particle physics today. The existence of a non-zero neutrino mass has some fundamental

implications in particle physics, cosmology and astrophysics.

According to the Standard Model (SM) of particle physics neutrinos are massless.

Fermion masses in general are one of the major mysteries of the SM. There exist several

theories beyond the SM in which neutrinos naturally acquire mass. Measurements of

neutrino mass could be used to exclude some of these theories and determine the scale of

new physics. They may also help to answer questions on what the mass scale hierarchy

for neutrinos is and whether neutrinos are Majorana (identical to their anti-particles) or

Dirac particles.

In cosmology and astrophysics, neutrinos play an important role in many scenarios

including the formation of light nuclei during the Big Bang nucleosynthesis and the

end of a heavy star (supernovae explosions). Massive neutrinos have been suggested as a

possible contributor to the non-visible (dark) matter in the Universe. Many cosmological

models depend on the relative contributions of the cold dark matter (CDM) and neutrino

hot dark matter (νHDM) to the total content. The amount of νHDM could help us

understand the role of neutrinos in the formation of large scale structures.

1.3 Neutrino mixing

The following discussion on neutrino mixing is based on the review by Kayser [6].

Experimental investigations of neutrino oscillations have provided compelling evi-

dence for non-zero neutrino masses. These experiments are summarised in the next

section and references given. Observations show that while travelling from the source

to the detector, a neutrino flavour eigenstate, e.g. a muon neutrino, can transform into

another flavour eigenstate, e.g. an electron neutrino. The existence of these neutrino

oscillations requires a non-trivial mixing between the neutrino flavour eigenstates (νe,

νµ, ντ ) and the corresponding mass eigenstates (ν1, ν2, ν3) via a unitary mixing matrix

U . They also require that the mass eigenvalues (m1,m2,m3) differ from each other and

hence must be non-zero.

The flavour states |να〉 are expressed as linear combinations of the three neutrino

13



1.4 Neutrino oscillation experiments - Evidence for massive neutrinos

mass eigenstates |νi〉:

|να〉 =
3

∑

i=1

U∗

αi|νi〉. (1.1)

The Uαi are the elements of the unitary mixing matrix, which is referred to as the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. For Dirac neutrinos the matrix is

given by:

U =











c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13e+iδ c12c23 − s12s23s13e+iδ s23c13

s12s23 − c12c23s13e+iδ −c12s23 − s12c23s13e+iδ c23c13











, (1.2)

where cij = cosθij and sij = sinθij. θij are the mixing angles and δ is a CP violating

phase. For Majorana neutrinos two more phases enter the mixing matrix as:

U → U ×











eiα1/2 0 0

0 eiα2/2 0

0 0 1











. (1.3)

The matrix therefore has six (four) parameters, three angles and three (one) phases for

Majorana (Dirac) neutrinos. In addition there are the three neutrino masses. Equations

(1.1)-(1.3) assume the existence of only three neutrinos. If more neutrinos exist, the

matrix U would contain more elements and parameters.

1.4 Neutrino oscillation experiments - Evidence for mas-

sive neutrinos

Neutrino oscillations do not depend on the absolute masses of the neutrinos but on the

differences of the masses. Results from the experiments have constrained some of the

parameters of the mixing matrix. The data from these experiments has been used to

obtain values for the three mixing angles θ12, θ23 and θ13 and also for two mass squared

differences, ∆m2
21 and ∆m2

31, but they do not give any information on the phases, see the

recent review by Fogli et al. [7]. In this section several neutrino oscillation experiments

are discussed. The experiments are divided into four categories depending on the origin

of the neutrinos; atmospheric, solar, reactor and accelerator. For more detail on the

phenomenology of neutrino oscillations and recent experimental results, the reader is

referred to the review article by Gonzalez-Garcia and Maltoni [8].
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1.4 Neutrino oscillation experiments - Evidence for massive neutrinos

1.4.1 Atmospheric neutrinos

Atmospheric neutrinos are produced isotropically by the interaction of cosmic ray pro-

tons with atoms in the upper atmosphere (∼ 15 km above the surface of the Earth),

generating pions and kaons that then decay giving electron and muon neutrinos:

π+ → µ+νµ, (1.4a)

µ+ → e+νµνe. (1.4b)

The expected ratio of muon to electron neutrinos is 2:1. Neutrino oscillations can be

investigated by detecting variations of this ratio as a function of the neutrino energy and

distance travelled. Atmospheric neutrinos have been observed in several underground

experiments using different techniques.

In 1998 the Super-Kamiokande experiment reported the first model independent

evidence of νµ oscillations [9] at the Neutrino ’98 conference. Super-Kamiokande is

a water Cerenkov detector, which detects the Cerenkov light emitted by the charged

leptons that are produced when a neutrino interacts inside the detector. The light

is detected by an array of photomultipliers on the detector wall. The detector can

distinguish between muon neutrinos and electron neutrinos as they produce different

shape rings of light, muon neutrinos produce sharp rings while electron neutrinos produce

blurred rings. Super-Kamiokande detected a smaller ratio of νµ events to νe events than

expected. They also observed that the deficit of νµ depended on the zenith angle, the

deficit being larger for neutrinos coming from the bottom of the detector than those from

above. This suggested the deficit increased with the distance travelled by the neutrinos

as the neutrinos from below would have had to travel through the Earth (an extra ∼

13000 km) to reach the detector. This was not seen for the νe. The evidence suggested

that the deficit was due to νµ → ντ oscillations.

The results from Super-Kamiokande have also been confirmed by two other experi-

ments Soudan-2 [10] and MACRO [11] which use iron calorimeter detectors.

1.4.2 Solar neutrinos

Electron neutrinos are produced in the thermonuclear reactions in the Sun. The number

of neutrinos that are produced are obtained from detailed knowledge of the nuclear

physics in the Sun and its evolution. Over the last few decades, the solar models have

been steadily refined. The most updated version of the Standard Solar Model (SSM) is
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the one developed by Bahcall and Serenelli [12].

In 1968, Ray Davis Jr announced the first detection of solar (electron) neutrinos [13].

The Homestake experiment used a detector consisting of ∼ 615 tons of liquid chlorine,

which detects the neutrinos by counting the 37Ar atoms created in the reaction:

νe + 37Cl → e− + 37Ar. (1.5)

The experiment reported observing less than half the expected amount of neutrinos [14],

giving rise to the ‘solar neutrino problem’.

In the early 1990’s two more radiochemical experiments SAGE [15] and GALLEX

[16] (which was later succeeded by GNO [17]) reported detecting neutrino fluxes less than

the expected value. Both experiments used gallium as a target to detect the neutrinos

via:

νe + 71Ga → e− + 71Ge. (1.6)

As the radiochemical experiments are only sensitive to electron neutrinos, they can-

not explain the transitions of the νe’s into other neutrinos. The Sudbury Neutrino

Observatory (SNO) was designed to give model independent evidence for the deficit.

The SNO is a water Cerenkov detector that is sensitive to all neutrino flavours, not just

νe. SNO reported evidence for the presence of νµ and ντ in the solar neutrino flux on

Earth [18–20], suggesting the flavour transition of νe into νµ and/or ντ .

1.4.3 Reactor neutrinos

Neutrino oscillations are also investigated using the electron anti-neutrino beams from

nuclear reactors. These experiments search for the disappearance of ν̄e, which have

energies of about 3 MeV.

The short baseline experiment CHOOZ [21], which is located about 1 km from a

French power station, found no deficit in the flux of the electron neutrinos. The exper-

iment Palo Verde [22] also did not detect any disappearance of ν̄e. Both experiments

detect electron anti-neutrinos by observing the inverse β-decay process:

ν̄e + p → n + e+. (1.7)

KamLAND is a long baseline experiment (∼ 180 km) situated in Japan, that works

on the same detection principle as CHOOZ and Palo Verde. In 2003, they published

their first results and reported a deficit in the number of ν̄e events observed compared

to those expected [23], supporting the solar neutrino data.
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Several new reactor experiments have been proposed, including Double CHOOZ [24]

which will commence running in 2009.

1.4.4 Accelerator neutrinos

In accelerators proton beams are generated which are accelerated and scattered off a fixed

target. The interaction produces charged pions in hadronic showers, which then decay

into muons and muon neutrinos. The muons also decay giving electron neutrinos and

muon neutrinos. These neutrino beams, which are similar to the atmospheric neutrinos,

can be used to test the atmospheric oscillation signal.

The first of these experiments is the K2K which shoots a neutrino beam 250 km

from the KEK proton synchrotron to the Super-Kamiokande detector. MINOS is a new

experiment that is currently running. It has a baseline of 730 km from Fermilab to

the Soudan mine. Both of these long-baseline experiments show clear evidence of νµ

disappearance [25–27].

Two future experiments will investigate νµ → νe oscillations. T2K (Tokai-to Kamioka)

[28] will direct a νµ beam to Super-Kamiokande with a baseline of ∼ 295 km. NOνA

[29] will use the MINOS neutrino beam and a far 30 kT liquid scintillator detector with

a baseline of ∼ 800 km.

1.5 Mixing parameters and neutrino mass hierarchy

Fogli et al. [30] performed a global analysis of all the available oscillation data and

gives best-fit values for the oscillation parameters, which are listed in table 1.1. The

parameters ∆m2
21 and θ12 are determined from the combination of data from the solar

and KamLAND reactor experiments. The parameters |∆m2
31| and θ23 are obtained from

atmospheric, accelerator and CHOOZ data.

The data from the experiments allows for three possible mass schemes: normal hi-

erarchy, inverted hierarchy and quasi-degenerate neutrinos. The normal hierarchy

has m1 & m2 & m3. In this case ∆m2
31 is positive. The inverted hierarchy has

m1 ' m2 ( m3, and ∆m2
31 ' ∆m2

32. In this case ∆m2
31 is negative. Both of these

schemes are shown in figure 1.2. In the degenerate scheme m1 ' m2 ' m3 (
√

∆m2
31.
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1.5 Mixing parameters and neutrino mass hierarchy

Table 1.1: Best fit (at 2σ) for the oscillation parameters obtained in the global analysis of Fogli

et al. [30].

Parameter Best fit

∆m2
21 7.92(1±0.09)x10−5

sin2θ12 0.314(1+0.18
−0.15)

|∆m2
31| 2.6(1+0.14

−0.15)x10−3

sin2θ23 0.45(1+0.35
−0.20)

sin2θ13 0.8+2.3
−0.8x10−2

Figure 1.2: The normal and inverted hierarchy mass schemes for the neutrino masses.

1.5.1 Sterile neutrinos

Unlike the K2K and MINOS experiments, the short-baseline (∼ 30 m) experiment LSND

investigated ν̄µ → ν̄e transitions by searching for the appearance of ν̄e. They reported

an excess in ν̄e suggesting ∆m2 = 0.2 − 10 eV2/c4 and a neutrino mass > 0.4 eV/c2

[31]. In the three neutrino model, this result is incompatible with the solar, atmospheric

and accelerator results, indicating the existence of at least one sterile neutrino. However

this result still requires confirmation. The KARMEN experiment, which is very similar

to LSND, did not find any oscillation [32] thus not confirming the LSND result. The

MiniBooNE experiment was designed specifically to test the LSND result and is currently

running at Fermilab [33].
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1.6 Absolute mass searches

Figure 1.3: Feynmann diagram for the neutrinoless double beta decay process. Image taken from

the web-pages of the NEMO experiment [34]

1.6 Absolute mass searches

Neutrino oscillation experiments have shown us that neutrinos are massive and have

provided us with very important information on the differences in the masses squared.

However they are insensitive to the absolute masses of the neutrinos. In this section I

discuss three of the main methods used to give upper limits for the neutrino mass.

1.6.1 Neutrinoless double beta decay

Neutrinoless double beta decay (0νββ) is a very sensitive means of obtaining an absolute

value of a neutrino mass. The process, which is forbidden by the Standard Model due

to the non-conservation of the total lepton number (∆L = 2), is of the type [34]:

(A,Z) → (A,Z + 2) + e− + e− (1.8)

Two neutrons in the nucleus are simultaneously converted into protons, emitting two

electrons but not emitting any anti-neutrinos. The decay can progress via the exchange

of a massive Majorana neutrino between the two W − bosons, as shown in figure 1.3. The

neutrino must be Majorana as the anti-neutrino ν̄e emitted at the first vertex must be

absorbed immediately as a neutrino νe at the second vertex, implying that the neutrino

is identical to its anti-neutrino, hence Majorana.
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1.6 Absolute mass searches

The exchange of a neutrino is not the only possible mechanism that can induce

0νββ. In models beyond the Standard Model, there can be other interactions/particles

that also violate the lepton number conservation and can cause 0νββ [35]. Therefore a

positive 0νββ signal does not necessarily mean that a direct measurement of a Majorana

neutrino mass has been made. If neutrino exchange is the inducing mechanism then the

0νββ decay rate is proportional to the effective Majorana mass [36]:

mee =

∣

∣

∣

∣

∣

∑

i

|Uei|2eiαimi

∣

∣

∣

∣

∣

, (1.9)

which depends on the CP violating phases as well as the masses and mixing parameters.

There are several experiments that have studied/are currently studying 0νββ, using

different ββ unstable nuclei such as 76Ge, 100Mo, 82Se, 130Te, 136Xe, 116Cd etc (a detailed

discussion of the experiments to date can be found in [35] and the references therein).

The detection of a signal requires the observation of a single significant peak in the

energy spectrum as the total energy of the two emitted electrons is well defined.

The Heidelberg-Moscow experiment in Gran Sasso searched for 0νββ of 76Ge. They

first reported no evidence of a 0νββ signal leading to an upper limit of mee < 0.35 eV/c2

[37]. A sub-group of Heidelberg-Moscow later claimed evidence of a signal at a 2.2σ or

3.1σ level, resulting in mee = 0.11−0.56 eV/c2 with a best fit value of mee = 0.39 eV/c2

[38]. After further analysis they claimed detection at 4σ, resulting in mee = 0.2 − 0.6

eV/c2 [39].

The result from Heidelberg-Moscow attracted criticism [40, 41]. A similar experiment

IGEX, also using 76Ge, did not detect any signal giving an upper limit of mee < 0.33 −

1.35 eV/c2 [42]. Apart from Heidelberg-Moscow no other experiments have reported

positive signals.

Two currently running experiments are NEMO3 and Cuoricino. NEMO3 uses two

different nuclei 100Mo and 82Se. In 2005 they published their first results where no signal

was observed giving upper limits of mee < 0.7 − 2.8 eV/c2 (100Mo) and mee < 1.7 − 4.9

eV/c2 (82Se) [43]. Cuoricino looks for the double beta decay of 130Te. The latest results

give an upper bound of mee < 0.2 − 1.1 eV/c2 [44]. A new experiment, Cuore, is also

planned [44].

To determine mee from the data requires the theoretical calculation of the nuclear

matrix elements (NME’s) of the 0νββ. The NME’s are model-dependent and difficult

to calculate. Different approaches give different results, which result in large systematic

uncertainty in the value of mee deduced from the data [35].
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1.6 Absolute mass searches

1.6.2 Cosmological constraints

Neutrinos contribute to the total energy density of the Universe and therefore play a

large role in large scale structure formation, leaving key signatures in several cosmological

observables. Cosmological data can give (model-dependent) information on the sum of

the neutrino masses
∑

i mi, but not on individual masses or mixing, independently of

whether neutrinos are Majorana or Dirac. The most relevant data comes from the studies

of:

• Cosmic Microwave Background (CMB). Data consists of measurements of

density fluctuations in the CMB. The most precise determination of these anisotropies,

at present, come from the WMAP experiment [45–47].

• Large Scale Structures (LSS). The effect of neutrino masses on LSS can be

studied by observing the distribution of galaxies, which traces the matter density of

the Universe. At present there is data from two large projects: the Sloan Digital

Sky Survey (SDSS) [48, 49] which will reach completion soon with data from 1

million galaxies, and the 2 degree Field Galaxy Redshift Survey (2dFGRS) [50, 51]

that obtained results from 220,000 galaxies.

• Lyman-α forests. Corresponds to the Lyman-α absorption lines in the spectra

of distant quasars due to intergalactic hydrogen clouds that lie in the line of sight.

The distribution of these clouds is used to obtain important clues about structure

formation.

For more detail see the review articles by Hannestad [52] and Lesgourgues and Pastor

[53].

Data from the recent WMAP 3-year analysis alone places an upper bound on the

sum of the neutrino masses at 1.8 eV/c2 [45]. By the addition of other data such as LSS

surveys and supernova measurements, the bounds can be improved [52, 53]. Including

the Lyman-α data strengthens the bounds significantly, however due to the systematic

uncertainties in the Lyman-α data, its robustness is still a subject of discussion [53]. Due

to the different sets of data available, authors have used different combinations of the

data and obtained different upper bounds. The lowest upper bound at present is that

obtained by Seljak, Slosar and McDonald [54]. Combining data from CMB measurements

(including the new WMAP 3-year analysis), LSS analysis, Lyman-α constraints and

supernovae data they obtain the upper bound:
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1.7 Tritium β-decay experiments

∑

mν < 0.17 eV/c2 (95% C.L.).

For recent limits obtained from different combinations of data the reader is referred

to the following sources [30, 45, 52, 53, 55] and the references therein.

1.6.3 Kinematical/direct measurements

Investigations that are based solely on kinematic arguments provide the most direct

measurements of the neutrino mass. They make use of the principle of conservation of

energy and momentum and the relativistic energy momentum relation E2 = p2c2+m2c4.

They are also independent of the nature, Majorana or Dirac, of the neutrino. Kinematic

experiments are based on the detection of the energies and/or momenta of the charged

decay products that are produced in weak decays.

The ALEPH experiment at the Large Electron Positron (LEP) collider at CERN

investigated the mass of the tau neutrino by analysis of the processes:

τ− → 2π− + π+ + ντ (1.10a)

τ− → 3π− + 2π+ + ντ (1.10b)

τ− → 3π− + 2π+ + π0 + ντ . (1.10c)

They reported an upper limit for the mass of [56]:

mντ < 18.2 MeV/c2 (95% C.L.).

The mass of the muon neutrino was measured by Assamagan et al. [57] by analysis

of the process:

π+ → µ+ + νµ (1.11)

where they obtained an upper limit of:

mνµ < 0.17 MeV/c2 (90% C.L.).

Several experiments have investigated the mass of the electron neutrino, the most

sensitive of which are from the analysis of the β-decay of tritium. These experiments

and upper limits for the mass are discussed in the next section.

1.7 Tritium β-decay experiments

These experiments are based on the study of the energy spectrum of the electrons pro-

duced in the β-decay of tritium:

3H → 3He+ + e− + ν̄e (1.12)
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with the energy released in the decay being shared between the daughter ion, the electron

and the neutrino. The idea is to detect the energies of the electrons created in the decay,

and deduce the mass of the electron anti-neutrino, mνe , by analysing the electron energy

(beta) spectrum. As the intensity of β electrons near the endpoint is very weak and

their detection is hampered by background noise, an exact value for the experimental

endpoint energy, the maximum β electron energy, is difficult to obtain. Instead mν e

must be obtained by analysing the shape of the β spectrum close to the endpoint.

The electron energy spectrum is given by [58, 59]:

dN

dE
= C×F (Z,E)p(E+mec

2)(W0−E)
√

(W0 − E)2 − m2
νe

c4H(W0−E−mνec
2), (1.13)

where E is the electron energy, N is the number of electrons with energies between E

and E + dE emitted per unit time, W0 is the maximum kinetic energy of the electron if

the neutrino mass were zero, me is the electron rest mass, p is the electron momentum,

F (Z,E) is the Fermi function describing the Coulombic interaction of the final particles

and H is the Heavyside step function. mνe is the effective electron anti-neutrino mass

given by:

m2
νe

=
∑

i

|Uei|2m2
i . (1.14)

For more theoretical detail see chapter 3.

A non-zero neutrino mass causes a distortion in the spectrum that is only statistically

significant in the region close to the endpoint (see figure 1.4), hence only a narrow region

close to the endpoint is analysed by the experiments. For this reason it is preferable to

use a β-emitter with a low endpoint energy. The fraction of β-decays falling in the last

1 eV is ∼ 2×10−13 therefore experiments with high sensitivity require high luminosity

and high energy resolution.

The neutrino mass (and endpoint energy) is determined by a fit procedure where the

deviation of a theoretical spectrum from the experimental one is minimised by varying

the fit parameters mνe and W0, as well as experimental free parameters (e.g. back-

ground).

Tritium is the most suitable atom because:

• it has the second lowest endpoint (∼ 18.6 keV) of all the β unstable isotopes,

• it has relatively short life-time (t 1
2

= 12.3 y),
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Figure 1.4: The electron energy spectrum of tritium β-decay. E0 is the maximum kinetic energy

of the electron if the neutrino mass were zero (i.e. W0 in equation 1.13). Image taken from the

KATRIN homepage [60]

• T and 3He+ have simple electronic shell configurations therefore corrections due to

atomic/molecular excitations and scattering can be calculated in a straight forward

way.

Different experiments have used tritium atoms embedded in various molecules/ en-

vironments. However it later became evident that as the daughter ion can be left in an

excited state, it is crucial to include the final state distribution in the analysis. Therefore

recent experiments have used molecular tritium, T2, as the final state distribution can

be calculated with reasonable accuracy.

1.7.1 Summary of early experiments

In this section I shall give a summary of the early tritium β-decay experiments. For a

more complete description of the experimental techniques, the reader is referred to the

reviews by Holzschuh [59], and Robertson and Knapp [58].

The first measurements of the β spectrum of tritium were performed by Curran et

al. in 1948 [61–63] and Hanna and Pontecorvo in 1949 [64] using proportional counters.

Both observed upper limits of the neutrino mass of 1 keV/c2. The use of high resolution

spectrometers was introduced in the 1950’s in the experiments by Langer and Moffat

[65] and Hamilton et al. [66]. Both groups reported upper limits of 250 eV/c2, although

their calculated endpoints differed significantly (by ∼ 1.5 keV). After a quiet period in
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this field, two experiments performed in 1969 by Salgo and Staub [67] and Daris and St.

Pierre [68] reduced the upper limit further to 200 eV/c2 and 75 eV/c2 respectively. In

1972 Bergkvist placed the upper limit for the neutrino mass at 55 eV/c2 [69, 70] .

The work by Bergkvist is considered a landmark in the field of tritium β-decay

experiments, not only because of the experimental improvements, but he recognised

that the final decay product He+ can be left in an excited state, and the effect of this

final state distribution must be taken into account in order to make further improvements

on the neutrino mass.

In 1976 the ITEP group in Moscow reported the result of their first measurement,

mνe < 35 eV/c2 [71]. Four years later they announced that they had found evidence for a

finite neutrino mass of 34.3 eV/c2 [72]. This surprising result was soon met with criticism.

Simpson [73] and Bergkvist [74, 75] found that the resolution function of the spectrometer

had not been well understood by the ITEP group, resulting in an overestimation of the

measured neutrino mass. The ITEP group made several improvements, however in 1985

and 1987 they reported similar results [76, 77]. The finite results from ITEP and the

surrounding controversy provided a strong motivation for new experiments and in the

following years much interest was stimulated. The Zurich group reported upper limits

of mνe < 18 eV/c2 (1986) [78] and mνe < 11 eV/c2 (1992) [79] . From 1987-1991 the

group at INS in Tokyo published results of mνe < 32 eV/c2 [80], mνe < 29 eV/c2 [81]

and mνe < 13 eV/c2 [82]. The group at the Los Alamos National Laboratory was the

first group to attempt using gaseous molecular tritium as a source. In 1987 and 1991

they reported upper limits for the neutrino mass of < 27 eV/c2 [83] and < 9.3 eV/c2

[84] respectively. In 1995 the group at Lawrence Livermore reduced this limit further to

< 3.9 eV/c2 [85]. The results of these experiments are summarised in table 1.2.

In the early 1990’s two groups at Mainz and Troitsk also began running β-decay

experiments, using molecular tritium. The results from these two experiments are shown

in table 1.3. These two experiments are discussed below in more detail.

1.7.2 Unphysical results

In the 50 years since the first measurement was made by Curran et al. the tritium

β-decay experiments became more sophisticated. However, as the upper limit for the

electron anti-neutrino mass decreased, a more disturbing trend in the experimental data

became apparent. The analysis of the β spectra returned negative (unphysical) values for
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Table 1.2: Summary of tritium β-decay experiments. The masses are in units of eV/c2. Uncer-

tainties are statistical and systematical respectively.

Authors/Group Year m2
νe

mνe Ref.

Curran et al. 1948 <1000 [61–63]

Hanna and Pontecorvo 1949 <1000 [64]

Langer and Moffat 1952 <250 [65]

Hamilton et al. 1953 <250 [66]

Salgo and Staub 1969 <200 [67]

Daris and St. Pierre 1969 <75 [68]

Bergkvist 1972 <55 [69, 70]

ITEP 1976 <35 [71]

ITEP 1980 =34.3±4 [72]

ITEP 1985 1215±130 =34.8±1.9 [76]

Zurich 1986 -11±63±204 <18 [78]

ITEP 1987 970±50±160 =30.3± [77]

Los Alamos 1987 -57±453±118 <27 [83]

INS Tokyo 1987 <32 [80]

INS Tokyo 1988 <29 [81]

INS Tokyo 1991 -65±85±65 <13 [82]

Los Alamos 1991 -147±68±41 <9.3 [84]

Zurich 1992 -24±48±61 <11 [79]

Lawrence Livermore 1995 -130±20±15 <3.9 [85]

the fit parameter m2
νe

, see column 3 in tables 1.2 and 1.3. When extracting a quantity

that is very close to zero from experimental data using a fit procedure, experimental

uncertainties can lead to negative values being obtained, with error bars extending into

the positive region. In the earlier experiments the negative values could be explained by

the large uncertainties. However, as the resolution of the experiments improved, and the

error bars reduced, these statistical uncertainties could no longer explain the negative

values. It became evident that this negative mass squared problem must be due to some

systematic error in the experiments or in the theory. Several possibilities were suggested:

1. The fit had to be extended into the negative m2
νe

region. As this extension is

arbitrary, due to the region being unphysical, different groups used different forms.
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Table 1.3: Summary of the results from the Mainz and Troitsk experiments. The masses are in

units of eV/c2. Uncertainties are statistical and systematical respectively.

Group Year m2
νe

mνe Ref.

Mainz 1993 -39±34±15 <7.2 [86]

Mainz 1994 -22±17±14 <5.6 [87]

Troitsk 1994 -22±4.8 <4.35 [88]

Troitsk 1994-1998 -1.9±3.4±2.2 <2.5 [89]

Mainz 1998 -3.7±5.3±2.1 <2.8 [90]

Troitsk Comb.(1994-1999) -1.0±3.0±2.1 <2.5 [91]

Mainz Comb.(1998-1999) -1.6±2.5±2.1 <2.2 [92]

Jonsell and Monkhorst [93] investigated the effect of various extensions on the value

of the obtained neutrino mass.

2. The size of the energy interval below the endpoint used in the fit. It was found

that as the data range extended further below the endpoint, the fit became worse

and m2
νe

became more negative [86].

3. Experimental errors. Possible sources are: source inhomogeneities, energy losses

from inelastic scattering of the electrons, backscattering etc.

4. Inaccuracy in the theoretical final state distribution.

1.7.3 The Mainz and Troitsk experiments

The two most recent neutrino mass experiments to be performed were the Mainz exper-

iment [90] that ran from 1991 to 2001 and the Troitsk experiment [89] that ran from

1994 to 2001. Both experiments used similar integrating MAC-E-Filter (Magnetic Adia-

batic Collimation combined with an Electrostatic Filter) type spectrometers to perform

the energy analysis of the β electrons. This new type of spectrometer was first pro-

posed by Beamson et al. [94] in 1980, and redeveloped independently by Lobashev et al.

[95, 96] and Picard et al. [97] specifically for the search of the electron neutrino mass

in the Troitsk and Mainz experiments respectively. The advantage of using this type of

spectrometer is the combination of high luminosity with high energy resolution, both of

which are essential for providing the high sensitivity required to measure the neutrino

mass from the β spectrum endpoint region.
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Figure 1.5: Principle of the MAC-E-Filter. Image taken from the KATRIN homepage [60]

Figure 1.5 shows the principle of the MAC-E-Filter. Two superconducting solenoids

produce a magnetic field that guides the β electrons, coming from the tritium source,

into the spectrometer in a cyclotronic motion around the magnetic field lines. On the

way to the centre of the spectrometer the magnetic field drops several orders of magni-

tude, transforming the cyclotron energy of the electrons into longitudinal motion. The

β electrons are thus transformed into a beam of electrons moving through the spectrom-

eter parallel to the magnetic field lines. Cylindrical electrodes produce an electrostatic

potential against the beam of electrons. Electrons with enough energy to pass the elec-

trostatic barrier are re-accelerated and collimated onto the detector. Those that do not

have enough energy are reflected. The spectrometer therefore acts as an integrating

high-energy pass filter. The recorded spectrum obtained by the experiments is therefore

an integral β-decay spectrum.

The main difference between the two experiments is the nature of their tritium

sources. The Mainz experiment used a thin film of molecular tritium frozen onto a
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cold graphite substrate, while the Troitsk experiment used a windowless gaseous molec-

ular tritium source (WGTS). The WGTS approach was first pioneered in the Los Alamos

experiment [84]. It is based on the principle of the adiabatic transport of electrons in a

strong longitudinal magnetic field and the circulation of the tritium gas at low pressure

by means of a differential pumping system. The use of the WGTS over the frozen source

has several advantages including guaranteed homogeneity over the cross section of the

source and almost total suppression of backscattering [98]. It also means that theoretical

calculations of the final state distribution of free T2 molecules can be used in the analysis

of the β spectrum.

Both the Mainz and Troitsk experiments initially reported negative m2
νe

from the

analysis of their early runs. Each group analysed the systematic effects and made im-

provements to their experimental set-ups and m2
νe

fitting procedures.

Mainz results

The Mainz data of 1991 and 1994 observed a trend towards negative values of m2
νe

for

larger fit intervals [86, 87]. An upgrade of the Mainz experiment between 1995 and 1997

improved the set-up considerably [87]. The signal to background ratio was improved

by a factor of ten and the statistical quality of the data by long term measurements

was much improved [90]. Figure 1.6 shows the endpoint region of the Mainz 1994, 1998

and 1999 data. The main systematic uncertainties were connected to the physics and

properties of the quench-condensed tritium source. They originated from the dewetting

of the tritium film, inelastic scatterings of electrons within the film, and the self-charging

of the film. These uncertainties were investigated in detail [87, 99, 100] and significantly

reduced.

By reducing these uncertainties and the lowering and stabilisation of the background

rate, the Mainz runs of 1998-2001 reported values of m2
νe

compatible with zero [102].

Combining the data from 1998, 1999 and 2001 (in an analysis where only the last 70

eV of the β spectrum below the endpoint is used) gives [102]:

m2
νe

= -0.6 ± 2.2 ± 2.1 eV2/c4

corresponding to an upper limit for the neutrino mass of:

mνe < 2.3 eV/c2 (95% C.L.).
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Figure 1.6: Mainz fit results. Image from the Mainz web-page [101]

Troitsk results

From its first measurements in 1994, the Troitsk group observed the existence of excess

count rate in the experimental energy spectrum located a few eV below the endpoint [88].

As the MAC-E-Filter is used as an integrating spectrometer, this excess in the count rate

corresponds to a narrow line in the differential β spectrum, carrying a fraction of about

10−10 of the total intensity. From 1998, the Troitsk group reported that the position of

the line oscillates between 5 eV and 15 eV below the endpoint with a frequency of half

a year [89]. Only one data set at Mainz showed evidence of a similar bump, but this

was before the background was stabilised and reduced [90]. The origin of the anomaly

is still unknown, however parallel measurements at Troitsk and Mainz indicate that the

‘Troitsk anomaly’ is an experimental artifact [103]. The size of the anomaly was reduced

when experimental upgrades to lower the background rate were performed at Troitsk.

Fitting a standard β spectrum to the data resulted in large negative values of m2
νe

in

the range -10 to -20 eV2/c4 being obtained. However by taking the bump into account

with the addition of a mono-energetic line, with variable amplitude and position, to the

theoretical spectrum (and after correcting for the trapping of electrons in the tritium

source) resulted in values of m2
νe

compatible with zero, thus eliminating the negative-
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value problem [103].

Combining the results of 1994-1999 and 2001 gives [103]:

m2
νe

= -2.3 ± 2.5 ± 2.0 eV2/c4

corresponding to an upper limit for the neutrino mass of:

mνe < 2.05 eV/c2 (95% C.L.).

Due to design limitations, both experiments have reached their sensitivity limits,

therefore new data from the experiments will not improve the upper limit on mν e signif-

icantly. To measure an electron neutrino mass in the sub-eV region requires a new next

generation experiment with much higher sensitivity. The main requirements for a new

experiment are [98, 104]:

- High energy resolution. To reach a sensitivity in the sub-eV range, an energy

resolution of ∆E ∼ 1 eV is necessary.

- High signal rate in the endpoint region. The energy interval of the region of interest

below the endpoint is proportional to the mass of the neutrino. Also the count rate

decreases significantly as you get closer to the endpoint. Therefore a higher signal rate

is required for smaller neutrino masses.

- Low background rate in the endpoint region. To probe the sub-eV mass range a

low background count rate of the order of 10−2 counts/sec or less is required.

1.7.4 KATRIN

The Karlsruhe Tritium Neutrino (KATRIN) experiment is a next generation tritium

β-decay experiment currently under construction at the Forschungszentrum Karlsuhe

(FZK) in Germany. The KATRIN collaboration includes nearly the complete world-

wide expertise on tritium β-decay experiments. The main requirements for a sub-eV

experiment mentioned in the previous section form the basis of the design of the exper-

iment which combines the best features of the Mainz and Troitsk experiment, namely

the WGTS and MAC-E-Filter, but on a much larger scale. The FZK was chosen as

the location for the experiment due to its ability to meet the extensive experimental de-

mands, in particular its close proximity to the Tritium Labor Karlsruhe (TLK), which is

the only European scientific laboratory certified to handle and process the total tritium

inventory of the experiment.
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Figure 1.7: Design of the KATRIN experiment, showing the five major components of the design.

Image taken from the KATRIN homepage [60]

The KATRIN experiment [104, 105] anticipates a sensitivity on the neutrino mass of

mνe < 0.2 eV/c2 (90% C.L.), a factor of ten higher sensitivity compared to the Mainz

and Troitsk experiments. This number corresonds to the upper limit of the neutrino

mass if no signal is observed. In the case of a positive signal, a neutrino mass of mν e <

0.35 eV/c2 could be detected with 5σ significance. This will allow KATRIN to probe the

quasi-degenerate scenario for neutrino mass. The combination of the result obtained by

KATRIN with other laboratory (neutrino oscillation and 0νββ decay) and cosmological

data will improve our estimate of the neutrino mass and answer many open problems in

this field.

The KATRIN experiment aims to deduce the mass of the neutrino by analysing the

last 30 eV of the β spectrum below the endpoint. However other parameters such as the

background noise will be obtained, and tests performed, by considering a much larger

energy interval.

The design of the KATRIN experiment is shown in figure 1.7. It consists of a linear

configuration approximately 70 m long with about 40 superconducting solenoids that will

guide the β electrons from the source to the detector. The experiment can be divided

into five sections which are briefly described below. For more technical information the

reader is referred to the KATRIN Letter of Intent [104] and the KATRIN Design Report

[98].

• Windowless gaseous tritium source (WGTS). The WGTS consists of a cylin-

drical tube that is 10 m long and 90 mm in diameter. This is much larger than

the Troitsk design as the total β-luminosity is proportional to the cross sectional

area of the source tube. The tritium gas will be injected at the centre of the tube
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and diffuse over the length of the tube. The column density of the source will be

fixed at a value of 5x1017 molecules/cm2. The decay probability of a single tritium

molecule in the source is about 10−9. The WGTS will deliver a total of about 1011

β-decays per second. With these values the count rate is increased by two orders

of magnitude with respect to the Troitsk experiment. The tritium gas will have

an isotopic purity of > 95% (atomic composition), with the main contamination

coming from deuterium atoms, and an isotopic stability of better than 1%. The

source will be at a working temperature of around 30 K, which must be stabilised

to a precision of 1% to avoid tritium density changes in the source. Laser Ra-

man spectroscopy will be used to provide a real-time quantitative analysis of the

composition of the gas mixture, in particular to monitor the contribution from the

hydrogen isotopomers DT and HT.

• Transport section. The electron transport system guides the β electrons adia-

batically from the source to the spectrometer, while also eliminating any tritium

flow. The spectrometer must be kept free of tritium for background and safety

reasons. This section consists of two parts: a differential pumping section (DPS)

that reduces the tritium flow at the front and rear ends of the WGTS tube, and

a cryogenic pumping section (CPS) that eliminates any remaining tritium flow by

trapping the tritium onto a liquid helium cold surface.

• Pre-spectrometer. A MAC-E-Filter type pre-spectrometer is located between

the tritium source and the main spectrometer, acting as an energy pre-filter in order

to reduce the background in the main spectrometer. The smaller pre-spectrometer

will work at a fixed retarding potential approximately a few hundred eV below the

β spectrum endpoint, filtering out all the lower energy electrons that carry no in-

formation on the neutrino mass. Only electrons with energies close to the endpoint

will be allowed through to the main spectrometer. The pre-spectrometer will have

a diameter of 1.2 m and a length of 3.5 m, comparable to the spectrometers used

at Mainz and Troitsk.

• Main spectrometer. The main spectrometer is much larger than those used at

Mainz and Troitsk, having a diameter of 10 m and a length of approximately 22 m.

It will mainly work in the standard integrating MAC-E-Filter mode of operation

as described above. It will scan the tritium energy spectrum close to the endpoint

33



1.8 Objectives of this work

with an energy resolution of about 1 eV, a factor of four better than the Mainz

and Troitsk designs. The spectrometer will also perform short term measurements

in the differential time-of-flight (MAC-E-TOF) mode, to investigate systematic

uncertainties, such as inelastic scattering of the β electrons in the source, with a

higher precision than can be achieved in the integral mode. In this mode it will

also be able to search for non-SM physics and investigate the ‘Troitsk anomaly’

more clearly.

• Detector. The detector is a multi-pixel silicon semi-conducting detector with

ultra-high energy resolution and a very thin entrance window. This design is

significantly advanced in energy and spatial resolution over the rather simple de-

tectors used at Mainz and Troitsk. It requires simultaneously a high efficiency for

electron detection and a low sensitivity to the environmental gamma- and X-ray

background. It also requires a good energy resolution in order to suppress back-

ground events, a good position resolution to map the source profile, and a good

time resolution (for the MAC-E-TOF mode).

1.8 Objectives of this work

The aim of this work is to investigate the molecular physics issues facing the KATRIN

experiment and perform a new calculation of the molecular final state distribution (FSD)

to accommodate the higher resolution requirements and increased sensitivity of the ex-

periment. The main objectives are:

• To calculate the FSD of the six lowest-lying electronic states of 3HeT+ resulting

from the β-decay of T2. This is the part of the FSD which is required for an

analysis of only the last 30 eV of the β spectrum.

• To account for isotopic contamination of the source by explicitly calculating the

FSD’s of the six lowest-lying electronic states of 3HeD+ and 3HeH+ resulting from

the β-decays of DT and HT respectively.

• To consider the effect of rotational excitation of the parent molecule on the FSD,

due to the source in the KATRIN experiment being at a temperature of 30 K, by

explicitly calculating separate FSD’s of the six lowest-lying electronic states of the

daughter molecule resulting from the β-decay of rotationally excited T2.
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• To consider the sensitivity of the initial temperature, ortho:para ratio of T2 and

isotopic contamination of the source by obtaining estimates of the error in the value

of the neutrino mass deduced from fitting theoretical spectra, due to uncertainties

in the temperature, ortho:para ratio and amount of DT molecules in the source.

• To treat the electronic continuum of 3HeT+ by using the R-matrix method to

consider e− - 3HeT2+ scattering and perform a geometry dependent calculation of

the resonance states of 3HeT+.

• To calculate the FSD of the electronic continuum of 3HeT+, accounting for the nu-

clear motion effects of the resonance states, and search for the missing probability

of the previous FSD [106], which has been associated to this region.

• To investigate endpoint effects due to the decay of other possible tritium containing

species in the source.
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Chapter2
Theoretical background I - Molecular

excitations in the β-decay process

2.1 The physics of β-decay

By 1934, Fermi had developed a successful theory of β-decay [2] that included the ex-

istence of the neutrino proposed by Pauli. As the decay of a neutron into a proton

requires the creation of the two particles, the β electron and neutrino, Fermi treated the

decay using a similar method to that describing the process of electromagnetic radiation,

where a photon is emitted. According to Fermi’s theory, by treating the decay-causing

interaction as a weak perturbation, the transition rate is given by:

λ =
2π

!
|Vfi|2ρ(Ef ), (2.1)

where ρ(Ef ) is the density of final states. The matrix element Vfi is given by:

Vfi =

∫

Φ∗

fV Φi dv, (2.2)

where Φf and Φi are the final and initial quantum states, and V is the weak interaction

operator causing the decay.

At the time, the exact nature of the weak interaction was unknown. It was not until

25 years later, with the help of experimental results, that the mathematical form was

established.

Equation (2.1) is the familiar expression known as Fermi’s Golden Rule, and is a

general result for the transition rate from one energy eigenstate of a quantum system

into a continuum of energy eigenstates, due to a perturbation.

36



2.2 The β spectrum and the effect of a non-zero neutrino mass on the
endpoint

2.2 The β spectrum and the effect of a non-zero neutrino

mass on the endpoint

When a nucleus in an atom undergoes β-decay, it is possible that the daughter atom

will be left in an electronically excited or ionised state. The different possible energy

sharings between the emitted electron and the daughter ion result in a distortion of the

β spectrum compared with that for the decay of a bare nucleus. The situation becomes

more complicated when the decaying nucleus is part of a molecule as the molecule can

also be vibrationally and rotationally excited. This rovibrational excitation can occur

as a result of the recoil momentum given to the decaying nucleus, which depends on the

momentum of both the emitted neutrino and β electron.

Several papers have investigated the theoretical treatment of the problem of molec-

ular excitation in β-decay using time dependent perturbation theory (i.e. using Fermi’s

Golden Rule), and have derived expressions for the β spectrum and probability of molec-

ular excitation.

In 1956, Cantwell considered the general case of a polyatomic molecule [107]. He

also treated the special case of a diatomic molecule in more detail by using the Born-

Oppenheimer approximation (see section 3.2) to give simple vibrational and rotational

wavefunctions. Szalewicz et al. [108] also give a detailed derivation of the β spectrum

for the decay of an isolated T2 molecule. Both Cantwell and Szalewicz et al. perform

a zeroth order (sudden approximation) treatment of the matrix elements, neglecting

the Coulombic interactions between the β electron and the remaining molecular system.

However as the interaction between the β electron and the decaying nucleus can be

taken into account in a comparatively simple manner [109], they include this in the

zeroth order treatment. Williams and Koonin show that the error in the transition

probabilities introduced by the sudden approximation for atomic tritium is 0.17% for

transitions to the 1s and 2s states of He+ and ≤ 0.01% for transitions to the higher

excited states [110]. Kolos et al. [111] claim that the error should be of the same order

for T2. Saenz and Froelich give a detailed derivation of the β spectrum in a beyond

sudden approximation treatment of the β-decay [109]. They derive explicit formulas for

the matrix elements occurring in the perturbational treatment up to the pure first order

correction term.

The intensity of β electrons I(Ekin
β ), with kinetic energy Ekin

β and momentum pβ,
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within the sudden approximation, is given by [108], [102]:

I(Ekin
β ) = AF (Z, pβ)pβ(Ekin

β + mec
2)

×
∑

fj

[Pf (W0 − E
3HeT+

f − Ekin
β )H(W0 − E

3HeT+

f − Ekin
β − mνjc

2)

× |Uej|2[(W0 − E
3HeT+

f − Ekin
β )2 − m2

νj
c4]1/2], (2.3)

where

W0 = mT2 + ET2
0 − m3HeT+ − E

3HeT+

0 − mec
2 − Erec (2.4)

is the maximum kinetic energy of the β electron if the neutrino mass were zero. mT2 ,

m3HeT+ and me are the masses of the parent molecule, daughter molecule and electron

respectively, ET2
0 and E

3HeT+

0 are the ground state energies of the molecules and Erec

is the recoil energy transferred to the centre of mass motion of the molecular system.

E
3HeT+

f is the energy of the final molecular state f of 3HeT+ relative to its ground state

energy E
3HeT+

0 and Pf is the probability that the 3HeT+ ion will be left in final state f

after the β-decay and is given by [109]:

Pf =

∣

∣

∣

∣

∫

Ψ
3HeT+

f

∗

eiK.RΨT2
i dτ

∣

∣

∣

∣

2

. (2.5)

Ψ
3HeT+

f and ΨT2
i are the wavefunctions describing the quantum states of the daughter

and parent molecule respectively and are functions of relative coordinates only. The

exponential eiK.R arises from the recoil from the β electron on the decaying nucleus,

where

K = −
pβmT

(mT + mHe + 2me)!
, (2.6)

and R is the internuclear vector. It was stated previously that the recoil momentum

given to the decaying nucleus depends on the momentum of the β electron and neutrino.

However, close to the endpoint the momentum of the neutrino is several orders of mag-

nitude smaller than that of the electron and so can be neglected. Also, it has been found

[112] that Pf is quite insensitive to changes of Eβ of the order of 100 eV. The derivation

of K is given by Szalewicz et al [108]. An estimate of the effect of the approximation

when using R is given by Saenz et al [109].

In equation (2.3) F (Z, pβ) is the Fermi function for an electron moving with the

momentum pβ in the field of a nucleus with the charge Z. This term accounts for the

Coulombic interaction between the β electron and the decaying nucleus. H is the Heav-

iside step function ensuring the intensity is real. The constant A is given by:

A =
1

2π3!4c5
|Tweak|2, (2.7)
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where |T weak|2 is the squared weak transition matrix element for the β-decay summed

over the final nucleonic states of the 3He nucleus and integrated over the directions of the

β electron. If the transition probability is integrated over all directions of the neutrino

then, in the case of allowed decays, the term |T weak|2 is constant.

We note here that for comparison with the β spectrum obtained by the experiment,

one must perform a sum/integration over any observables that are not resolved by the

experiment. Therefore to obtain equations (2.3) and (2.5), integration over the directions

and energies of the neutrino and integration over the directions of the β electron has

been performed.

As described in chapter 1, the existence of neutrino oscillations requires a non-trivial

mixing between the neutrino flavour eigenstates (νe, νµ, ντ ) produced in weak interac-

tions and the corresponding mass eigenstates (ν1, ν2, ν3) via a unitary mixing matrix U .

It also requires that the mass eigenvalues (m1,m2,m3) differ from each other and hence

must be non-zero. For a quasi-degenerate model of the neutrino masses (m1 ≈ m2 ≈

m3) we can parameterise the analysis of the β spectrum by [102]:

m2
νe

=
3

∑

j=1

|Uej |2m2
νj

, (2.8)

where mνe is the effective electron anti-neutrino mass. However, for a hierarchical or-

dering of the neutrino masses (m1 & m2 & m3), the three mass eigenstates and also the

mixing angles and CP phases that characterise the mixings must be taking into account,

resulting in several more independent fit parameters [102].

The effects of mixing result in the following modifications of the β spectrum [98]:

• the β spectrum will have an experimental endpoint energy E = W0 −m1c2 (where

m1 is the lightest mass eigenstate),

• the appearance of kinks at energies E i ≈ W0 − mic2 (where the magnitude of the

kinks are determined by |Uei|2).

The mass of the neutrino is obtained by fitting the experimental data to theoretical

spectra given by equation (2.3). Pf and E
3HeT+

f are obtained from theory while A, W0

and m2
νe

(as well as the background rate) are free parameters.
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2.3 The final state probability distribution

Different final quantum states of the 3HeT+ ion give rise to separate branches of the β

spectrum, each with a different endpoint energy. For the measured β spectrum, a sum

over all final states is performed (with appropriate probabilities) as in equation (2.3).

A very accurate knowledge of the final state probability distribution (FSPD), including

nuclear motion effects, is crucial in the determination of the neutrino mass from the β

spectrum, as the accuracy of the neutrino mass is limited by the accuracy of the FSPD.

The effect of different levels of accuracy of the FSPD on the β spectrum is shown by

Fackler et al [113]. This is one of the reasons why T2 is the source of choice. It is one of

the simplest tritium containing compounds and for both T2 and 3HeT+ high accuracy

quantum chemical computations can be performed and reliable energies and probabilities

calculated.

The calculation of the FSPD can be split into two parts:

1. The FSPD of the bound electronic states of 3HeT+ and,

2. The FSPD of the electronic continuum of 3HeT+.

Part 1 can be split further to consider separately:

1. The FSPD of the bound rovibrational states and,

2. The FSPD of the rovibrational continuum.

In this section the equations needed to calculate the final state probability distribu-

tion are derived. As seen from equation (2.5), the final state probability distribution

depends on the initial state of the T2 molecule. Separate expressions are derived for the

decay of a T2 molecule in the first four rotational states of the vibrational and electronic

ground state. As the temperature of the KATRIN experiment is expected to be around

30 K this is sufficient.

2.3.1 Bound rovibrational states

If the sudden approximation is assumed, the probability of finding the daughter ion in

a final state f following the β-decay of the parent molecule in an initial state i, is given

by equation (2.5). Invoking the Born-Oppenheimer approximation for Ψi and Ψf :

Ψi = ψi
ni

(r1, r2;R)R−1f i
niviJi

(R)YJiMi(θ, φ), (2.9a)

Ψf = ψf
n(r1, r2;R)R−1f f

nvJ(R)YJM (θ, φ). (2.9b)
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where ψn are the clamped-nuclei electronic wavefunctions, fnvJ are the radial vibrational

wavefunctions, YJM are the spherical harmonics, r1 and r2 denote the spatial positions

of the electrons, (R, θ, φ) are the spherical coordinates of R, and n, v, J and M are the

electronic, vibrational, rotational and azimuthal quantum numbers, equation (2.5) then

becomes:

PnvJM =

∣

∣

∣

∣

∫

Sn(R)R−2f f
nvJ

∗

(R)YJM
∗(θ, φ)eiK.Rf i

niviJi
(R)YJiMi(θ, φ) dR

∣

∣

∣

∣

2

. (2.10)

Sn(R) is the overlap integral providing the R dependent probability amplitude of tran-

sition to the nth electronic state of the daughter system, and is given by:

Sn(R) =

∫

ψf
n
∗

(r1, r2;R)ψi
ni

(r1, r2;R) dr1 dr2. (2.11)

It is noted that the square of the overlap integral, S2
n(R), gives the R dependent proba-

bility of finding the daughter molecule in the electronic state ψf
n, following the β-decay

of the parent molecule in the state ψi
ni

.

Using the standard partial wave expansion for eiK.R [114]:

eiK.R = 4π
∞
∑

l=0

+l
∑

m=−l

iljl(KR)Y ∗

lm(θK , φK)Ylm(θ, φ), (2.12)

where jl(KR) is the spherical Bessel function and (K, θK , φK) are the spherical compo-

nents of K, and

dR = R2 dΩR dR, (2.13)

the integration is reduced to:

PnvJM (K) = (4π)2

∣

∣

∣

∣

∣

∑

lm

Y ∗

lm(θK , φK)

∫

Sn(R)f f
nvJ

∗

(R)f i
niviJi

(R)jl(KR) dR

×
∫

Y ∗

JM (θ, φ)Ylm(θ, φ)YJiMi(θ, φ) dΩR

∣

∣

∣

∣

2

, (2.14)

Averaging over initial Mi, summing over final M and averaging over final directions

K gives:

PnvJ (K) =
4π

(2Ji + 1)

∑

MMi

∫

∑

lml′m′

Y ∗

lm(θK , φK)Yl′m′(θK , φK) dΩK

×
∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
niviJi

(R)jl(KR) dR

∣

∣

∣

∣

2

×
∣

∣

∣

∣

∫

YJM
∗(θ, φ)Ylm(θ, φ)YJiMi(θ, φ) dΩR

∣

∣

∣

∣

2

. (2.15)
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Since,
∫

Y ∗

lm(θK , φK)Yl′m′(θK , φK)dΩK = δll′δmm′ , (2.16)

one has:

PnvJ (K) =
4π

(2Ji + 1)

∑

MmMi

∣

∣

∣

∣

∫

YJM
∗(θ, φ)Ylm(θ, φ)YJiMi(θ, φ)dΩR

∣

∣

∣

∣

2

×
∑

l

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
niviJi

(R)jl(KR)dR

∣

∣

∣

∣

2

. (2.17)

The integration over three spherical harmonics can be represented in terms of matrix

elements:
∫

YJM
∗(θ, φ)Ylm(θ, φ)YJiMi(θ, φ)dΩR = 〈JM | Ylm | JiMi〉. (2.18)

The Wigner-Eckart Theorem for the factorisation of the matrix elements of tensor

operators is:

〈j′m′ | T(kq) | jm〉 = (−1)j′−m′





j′ k j

−m′ q m



 〈j′‖Tk‖j〉 (2.19)

where T(kq) is a tensor operator of rank k and q = −k,−k +1, ..., k−1, k. The theorem

states that the dependence of the matrix element 〈j ′m′ | T(kq) | jm〉 on the projection

quantum numbers is entirely contained in the Wigner 3j-symbol. 〈j ′‖Tk‖j〉 are the

reduced matrix elements and are independent of the magnetic quantum numbers m, m ′

and q. The total transition probability (summed over magnetic quantum numbers) is

therefore:

∑

m′qm

∣

∣〈j′m′ | T(kq) | jm〉
∣

∣

2
=

∣

∣〈j′‖Tk‖j〉
∣

∣

2 ∑

m′qm





j′ k j

−m′ q m





2

=
∣

∣〈j′‖Tk‖j〉
∣

∣

2
. (2.20)

The orthogonality property of 3j-symbols has been used, and is given by:

∑

αβ





a b c

α β γ









a b c′

α β γ′



 =
1

(2c + 1)
δcc′δγγ′δ(abc), (2.21)

where δ(abc) = 1 if a, b, c satisfy the triangular condition:

|a − b| ≤ c ≤ |a + b| (2.22)

and is zero otherwise.
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2.3 The final state probability distribution

Therefore one gets:

∑

MmMi

∣

∣

∣

∣

∫

YJM
∗(θ, φ)Ylm(θ, φ)YJiMi(θ, φ)dΩR

∣

∣

∣

∣

2

= |〈J‖Yl‖Ji〉|2 . (2.23)

The reduced matrix elements of spherical harmonics are given by:

〈j′‖Yk‖j〉 = (−1)j′
[

(2j′ + 1)(2k + 1)(2j + 1)

4π

]
1
2





j′ k j

0 0 0



 , (2.24)

hence:

|〈J‖Yl‖Ji〉|2 =
(2J + 1)(2l + 1)(2Ji + 1)

4π





J l Ji

0 0 0





2

. (2.25)

A 3j-symbol with m1 = m2 = m3 = 0 can be computed using the general formula:





j1 j2 j3

0 0 0



 =

[

(J − 2j1)!(J − 2j2)!(J − 2j3)!

(J + 1)!

]
1
2 J

2 !

(J
2 − j1)!(

J
2 − j2)!(

J
2 − j3)!

,

(2.26)

where

J = j1 + j2 + j3. (2.27)

J must be even otherwise the 3j-symbol = 0.

The angular momentum algebra (equations (2.18)-(2.26)) has been obtained from

[115, 116].

To obtain a final equation for the probability, one needs to evaluate equation (2.17)

by first evaluating the equations (2.25) and (2.26) for different values of Ji. The final

equations for Ji = 0 and 1, have been given previously in reference [117]. Below, the

equations for Ji = 0 and 1 are given, and the equations for Ji = 2 and 3 are also derived.

For Ji = 0

From the triangular condition and the fact that a+b+c must be even, l = J . Therefore:

|〈J‖Yl‖Ji〉|2 = |〈J‖YJ‖0〉|2 δl,J =
(2J + 1)(2J + 1)

4π





J J 0

0 0 0





2

δl,J ,

=
2J + 1

4π
δl,J . (2.28)

Substituting this back into equation (2.17) gives (as given in [117]):

PnvJ (K) = (2J + 1)

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi0(R)jJ(KR)dR

∣

∣

∣

∣

2

. (2.29)
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2.3 The final state probability distribution

For Ji = 1

Here l = J ± 1.

|〈J‖Yl‖Ji〉|2 = |〈J‖YJ+1‖1〉|2 δl,J+1 + |〈J‖YJ−1‖1〉|2 δl,J−1,

=
3

4π
[(J + 1)δl,J+1 + Jδl,J−1] . (2.30)

Therefore (as stated in [117]):

PnvJ (K) = (J + 1)

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi1(R)jJ+1(KR)dR

∣

∣

∣

∣

2

+ J

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi1(R)jJ−1(KR)dR

∣

∣

∣

∣

2

. (2.31)

For Ji = 2

We have l = J ± 2 and l = J .

|〈J‖Yl‖Ji〉|2 = |〈J‖YJ+2‖2〉|2 δl,J+2 + |〈J‖YJ‖2〉|2 δl,J + |〈J‖YJ−2‖2〉|2 δl,J−2,

=
5

4π

[

3

2

(J + 2)(J + 1)

(2J + 3)
δl,J+2 +

(J + 1)J(2J + 1)

(2J + 3)(2J − 1)
δl,J +

3

2

J(J − 1)

(2J − 1)
δl,J−2

]

.

(2.32)

Therefore:

PnvJ (K) =
3

2

(J + 2)(J + 1)

(2J + 3)

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi2(R)jJ+2(KR)dR

∣

∣

∣

∣

2

+
(J + 1)J(2J + 1)

(2J + 3)(2J − 1)

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi2(R)jJ (KR)dR

∣

∣

∣

∣

2

+
3

2

J(J − 1)

(2J − 1)

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi2(R)jJ−2(KR)dR

∣

∣

∣

∣

2

. (2.33)

For Ji = 3

l = J ± 3 and l = J ± 1.

|〈J‖Yl‖Ji〉|2 = |〈J‖YJ+3‖3〉|2 δl,J+3 + |〈J‖YJ+1‖3〉|2 δl,J+1

+ |〈J‖YJ−1‖3〉|2 δl,J−1 + |〈J‖YJ−3‖3〉|2 δl,J−3,

=
7

4π

[

5

2

(J + 3)(J + 2)(J + 1)

(2J + 5)(2J + 3)
δl,J+3 +

3

2

(J + 2)(J + 1)J

(2J + 5)(2J − 1)
δl,J−1

+
3

2

(J + 1)J(J − 1)

(2J + 3)(2J − 3)
δl,J−1 +

5

2

J(J − 1)(J − 2)

(2J − 1)(2J − 3)
δl,J−3

]

. (2.34)
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2.3 The final state probability distribution

Therefore:

PnvJ (K) =
5

2

(J + 3)(J + 2)(J + 1)

(2J + 5)(2J + 3)

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi3(R)jJ+3(KR)dR

∣

∣

∣

∣

2

+
3

2

(J + 2)(J + 1)J

(2J + 5)(2J − 1)

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi3(R)jJ+1(KR)dR

∣

∣

∣

∣

2

+
3

2

(J + 1)J(J − 1)

(2J + 3)(2J − 3)

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi3(R)jJ−1(KR)dR

∣

∣

∣

∣

2

+
5

2

(J(J − 1)(J − 2)

(2J − 1)(2J − 3)

∣

∣

∣

∣

∫

Sn(R)f f
nvJ

∗

(R)f i
nivi3(R)jJ−3(KR)dR

∣

∣

∣

∣

2

. (2.35)

2.3.2 The rovibrational (nuclear motion) continuum and predissocia-

tive resonance states

Jeziorski et al. [112] showed that for transitions to the nuclear motion continuum,

equation (2.5) is valid if the left hand side is interpreted as the probability per unit

energy, Ef , and if the final states are normalized such that:

∫

Ψ∗

fΨf ′ dR = δ(Ef − Ef ′). (2.36)

The bound radial functions, f f
nvJ(R) in equations (2.9b, 2.10, 2.29, 2.31, 2.33, 2.35)

are replaced by energy normalised radial functions of the continuous spectrum, f f
nJ(R|E).

For the β-decay of a T2 molecule in the Ji = 0 state the analog of equation (2.29) is

therefore given by [112]:

PnJ(E) = (2J + 1)

∣

∣

∣

∣

∫

∞

0
Sn(R)jJ (KR)f f

nJ(R|E)f i
100(R) dR

∣

∣

∣

∣

2

, (2.37)

where PnJ (E) is the probability per unit energy that the 3HeT+ molecule dissociates

via the nth electronic state and that the dissociation products are in a state with energy

E and angular momentum J .

2.3.3 Sum rules

Wolniewicz [118] gives a useful sum rule for the total probability to all rovibrational states

of a given electronic state n, Pn. By summing equation (2.5) over all rovibrational states

belonging to electronic state n gives [118]:

Pn =
∑

v,J,mJ

∣

∣

∣

∣

∫

Ψ
3HeT+

f

∗

eiK.RΨT2
i dτ

∣

∣

∣

∣

2

=

∫

∞

0
S2

n(R)[f i
100(R)]2 dR. (2.38)
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2.3 The final state probability distribution

A derivation of equation (2.38) is given in reference [109].

Jeziorski et al. [112] give an analogous equation for the (energy-unresolved) proba-

bility that the daughter system ends up in its nth electronic state rotationally excited to

an angular momentum J , PnJ :

PnJ = (2J + 1)

∫

∞

0
S2

n(R)j2
J (KR)[f i

100(R)]2 dR. (2.39)

These sum rules provide a useful check of results as they are computed without

solving the radial Schrödinger equation of the daughter molecule.
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Chapter3
Theoretical background II -

Approximations and programs

3.1 Sudden approximation

Suppose that there is a sudden perturbation at time t = 0 that causes the Hamiltonian

H describing a system to instantaneously change from H0 to H1, where H0 and H1 are

both independent of time. Up until t = 0, the time-independent Schrödinger equation

is:

H0ψk = E(0)
k ψk, (3.1)

where E(0)
k and ψk are the eigenvalues and eigenfunctions of H0 respectively. The eigen-

functions ψk are assumed to be orthonormal and form a complete set. The general

solution of the time-dependent Schrödinger equation:

i!
∂Ψ

∂t
= HΨ, (3.2)

is then given by:

Ψ(t) =
∑

k

akψke
−iE

(0)
k

t

! , (3.3)

where the summation is over the complete set of eigenfunctions {ψk} and ak are time-

independent coefficients. Assuming that Ψ is normalised to unity, the coefficients ak are

the probability amplitudes of finding the system in the state ψk.

After t = 0 the time-independent Schrödinger equation is:

H1φn = E(1)
n φn. (3.4)
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3.1 Sudden approximation

where E(1)
n and φn are the eigenvalues and eigenfunctions of H1 respectively. The general

solution of the time-dependent Schrödinger equation is now:

Ψ(t) =
∑

n

cnφne
−iE

(1)
n t

! , (3.5)

where the summation is over the complete set of eigenfunctions {φn} and cn are the

time-independent coefficients.

As equation (3.2) is of first order in time, Ψ(t) must be a continuous function of

t and must remain continuous when the Hamiltonian suddenly changes. Therefore at

t = 0 we have:
∑

k

akψk =
∑

n

cnφn, (3.6)

and the coefficients cn are thus given by:

cn =
∑

k

ak〈φn | ψk〉. (3.7)

Equation (3.7) is exact for cases where the Hamiltonian changes instantaneously, however

in practise this change happens over a finite time interval.

Suppose now that the Hamiltonian H describing the system changes during an inter-

val of time τ . For t < 0 we assume H = H0 and the general solution for the wavefunction

is given by equation (3.3). For t > τ we assume H = H1 and the general solution for

the wavefunction is given by equation (3.5). During the intermediate period 0 < t < τ

it is assumed that the Hamiltonian is Hi, which is also time-independent, and thus the

time-independent Schrödinger equation is:

Hiχl = E(i)
l χl, (3.8)

and the general solution of the time-dependent Schrödinger equation is:

Ψ(t) =
∑

l

blχle
−iE

(i)
l

t

! . (3.9)

From the continuity of the wavefunction at t = 0 we have:

∑

k

akψk =
∑

l

blχl (3.10)

and thus:

bl =
∑

k

ak〈χl | ψk〉. (3.11)
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3.2 Born-Oppenheimer approximation

Similarly at t = τ we have:

∑

l

blχle
−iE

(i)
l

τ

! =
∑

n

cnφne
−iE

(1)
n τ

! (3.12)

and thus:

cn =
∑

k

∑

l

ak〈φn | χl〉〈χl | ψk〉e
i(E

(1)
n −E

(i)
l

)τ

! , (3.13)

where equation (3.11) has been used for bl.

If the change of the Hamiltonian were instantaneous (i.e. τ = 0) then by using the

closure relation for χl, equation (3.13) reduces to the form (3.7) as expected. When

τ -= 0, by comparing equations (3.13) and (3.7) we see that the difference between them

lies in the fact that the exponential term differs from unity.

If τ is small in comparison to the quantities !/|E (1)
n − E(i)

l |, i.e. if:

(E(1)
n − E(i)

l )τ

!
& 1, (3.14)

then the change of the wavefunction during the time τ is small and one may in first ap-

proximation set τ = 0 and equation (3.7) can be used. This is the sudden approximation.

The sudden approximation is used to treat cases where a perturbation (or disturbance)

of a system occurs very rapidly compared to the natural period of the system. The

non-trivial part in the application of this approximation is deciding whether the change

of the Hamiltonian is rapid enough by estimating the time it takes for the change and

the periods of motion associated with the system.

As discussed in chapter 2, this approximation has been applied in the study of molec-

ular excitations in β-decay [107, 108] and its validity investigated [109, 110]. Close to the

endpoint, the β electrons are emitted from the nucleus with high energy and therefore

with high speeds. The time it takes for the β electron to leave the atom/molecule is

much shorter than the periods of the remaining electrons. Therefore the β electron can

hardly influence the motion of the remaining slow molecular ion.

3.2 Born-Oppenheimer approximation

Consider a molecular system composed of N electrons of mass m and charge −e, and

L nuclei of mass MA and charge ZAe (A = 1, ..., L). In the LAB frame, which has a

spaced fixed z-axis, the electrons have vector positions ri (i = 1, ...,N) and the nuclei

have vector positions RA. The non-relativistic time independent Schrödinger equation
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3.2 Born-Oppenheimer approximation

for the system is written:

HΨ({RA}, {ri}) = EΨ({RA}, {ri}), (3.15)

where H is the Hamiltonian operator given by:

H = −
N

∑

i=1

!2

2m
∇2

i −
L

∑

A=1

!2

2MA
∇2

A + V ({RA}, {ri}), (3.16)

Ψ({RA}, {ri}) is the molecular wavefunction describing the system and E is the total

energy of the system. The first and second terms in equation (3.16) are the operators for

the kinetic energy of the electrons and nuclei respectively. The potential V ({RA}, {ri})

contains all the Coulombic terms:

V ({RA}, {ri}) =
N

∑

i=1

N
∑

j>i

e2

|rj − ri|
+

L
∑

A=1

L
∑

B>A

ZAZBe2

|RB −RA|
−

N
∑

i=1

L
∑

A=1

ZAe2

|RA − ri|
, (3.17)

where the first term is the electron-electron repulsion, the second term is the nuclear-

nuclear repulsion and the third term is the electron-nuclear attraction.

This Hamiltonian is not analytically soluble even for the most simplest molecular

system, H+
2 (N = 1, L = 2). However it is possible to simplify the problem by taking

into account the fact that the electrons are much lighter than the nuclei, i.e. m & M ,

and therefore move much faster. To a good approximation the electrons are assumed

to relax instantaneously to a change in the nuclear geometry and can be considered

as moving in the field of fixed nuclei. The two sets of particles can then be studied

separately. This is known as the Born-Oppenheimer approximation [119].

In this approximation the total wavefunction is separable:

Ψ({RA}) = Ψelec({ri}; {RA})Ψnucl({RA}), (3.18)

where Ψelec({ri}; {RA}) is the electronic wavefunction which describes the motion of the

electrons and Ψnucl({RA}) is the nuclear wavefunction.

The electronic wavefunctions, Ψelec, which depends explicitly on the electron coordi-

nates but only parametrically on the nuclear coordinates, are solutions of the electronic

Schrödinger equation:

HelecΨelec = EelecΨelec, (3.19)

where Helec is the electronic Hamiltonian:

Helec = −
N

∑

i=1

!2

2m
∇2

i + V ({RA}, {ri}). (3.20)
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3.3 The Hartree-Fock approximation and configuration interaction

The energies Eelec also depend parametrically on the nuclear coordinates. If the elec-

tronic problem is solved, it is then possible to solve for the motion of the nuclei. The

energies Eelec({RA}) provide a potential for nuclear motion. These potentials only have

meaning within the Born-Oppenheimer approximation. Within the approximation, the

nuclei move on the potential energy surface, and the nuclear motion includes the vibra-

tional, rotational and translational motion of the molecule. The nuclear wavefunctions

are solutions of the nuclear Schrödinger equation:

HnuclΨnucl = EtotalΨnucl, (3.21)

where the Hamiltonian is given by:

Hnucl = −
L

∑

A=1

!2

2MA
∇2

A + Eelec({RA}), (3.22)

and Etotal is the Born-Oppenheimer approximation to the total energy E of equation

(3.15). Thus, Etotal includes electronic, vibrational, rotational and translational energy.

3.3 The Hartree-Fock approximation and configuration in-

teraction

The Coulombic electron-electron repulsion term makes the electronic Hamiltonian for

many-electron systems very difficult to solve. The Hartree-Fock approximation replaces

the many-electron problem by a one-electron problem with averaged electron-electron

repulsions. The electron is assumed to move in the field of the nuclei and the averaged

field of the remaining (N -1) electrons.

An electron is not only described by its vector position r, but also by its spin coor-

dinate w. The wavefunction of an electron that describes both its spatial distribution

and its spin is called a spin orbital and is written as:

Φ(x) = ψ(r)χ(w) (3.23)

where ψ(r) is a spatial orbital and χ(w) is a spin function.

The simplest antisymmetric wavefunction that can be used to describe the ground

state of an N -electron system is expressed as the Slater determinant (where electron-
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3.3 The Hartree-Fock approximation and configuration interaction

electron interactions are neglected):

Ψ0(x1,x2, ...,xN ) = (N !)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Φi(x1) Φj(x1) · · · Φk(x1)

Φi(x2) Φj(x2) · · · Φk(x2)
...

...
...

Φi(xN ) Φj(xN ) · · · Φk(xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.24)

where the N electrons occupy N spin orbitals without specifying which electron is in

which orbital. According to the variational principle, for a time independent Hamilto-

nian, any trial wavefunction will have an energy expectation value that is greater than

or equal to the true energy. Therefore the best wavefunction of the form of equation

(3.24) is found by minimising the energy expectation value:

E0 =< Ψ0|H|Ψ0 >, (3.25)

where H is the full electronic Hamiltonian, subject to the condition that the spin orbitals

are orthonormal.

By minimising E0 with respect to the choice of spin orbitals, one can derive the

Hartree-Fock equation:

f(i)Φ(xi) = εΦ(xi), (3.26)

to determine the optimal spin orbitals, where the Fock operator, f(i), is an effective

one-electron operator given by:

f(i) = h(i) + GHF(i). (3.27)

h(i) is the core Hamiltonian for electron i which represents the kinetic energy of the

electron and its Coulombic attraction with the nuclei, and GHF(i) is the Hartree-Fock

potential which is the averaged potential experienced by electron i due to the other

(N -1) electrons.

As GHF(i) depends on the spin orbitals of the other electrons, the non-linear equation

(3.26) must be solved iteratively until the solutions are self-consistent, hence this iterative

procedure is called the self-consistent field (SCF) method. This is performed by using

an initial guess of the spin orbital set to determine the Fock operator, then solving the

Hartree-Fock equation to obtain a new set of spin orbitals, and repeating the procedure

until convergence is reached.

The Slater determinant describing the ground state of the system is therefore made

up of the N optimal spin orbitals with the lowest energies ε. These are the occupied

52



3.4 Solving the radial Schrödinger equation of diatomic molecules - The
LEVEL and BCONT programs

orbitals. The remaining orbitals are unoccupied. For Slater determinants describing

excited states of the system, electrons are promoted from the ground state occupied

orbitals to unoccupied orbitals. However, this single determinant description does not

give an accurate representation of the excited states. Therefore for a better description,

one must use the method of configuration interaction (CI).

The difference between the exact non-relativistic energy and the Hartree-Fock energy

is known as the correlation energy :

Ecorr = Eexact − EHF, (3.28)

since in the Hartree-Fock approximation, the correlation of the motion of the electrons

with opposite spins is neglected. The correlation effects are accounted for in the CI

method where the exact wavefunction is expanded in terms of Slater determinants or

configuration state functions:

Ψ = c0Ψ0 +
∑

ra

cr
aΨ

r
a +

∑

a<b
r<s

crs
abΨ

rs
ab + . . . , (3.29)

where Ψr
a are determinants describing singly excited states where one electron which

is in an occupied state Φa in the ground state has been promoted to the virtual state

Φr. Similarly Ψrs
ab are doubly excited determinants etc. If the expansion in equation

(3.29) included the complete infinite set of N -electron determinants then eigenvalues

of the Hamiltonian would give the exact energies of the system, however this cannot

be implemented in practise and so finite sets of spin orbitals are used. If all the N -

tuply excited configurations of the finite set are included in the expansion then the

solutions of the finite Hamiltonian are exact within the N -electron subspace spanned by

the determinants. This is called a full CI calculation. This is however only feasible for

small systems and basis sets as the size of the Hamiltonian, and hence the calculation,

gets extremely large otherwise.

3.4 Solving the radial Schrödinger equation of diatomic

molecules - The LEVEL and BCONT programs

The need to determine the number, energies and properties of vibrational-rotational

levels of an electronic potential arises in many problems in chemical physics. In this

section two programs by Robert J. Le Roy, LEVEL [120] and BCONT [121], that tackle

53



3.4 Solving the radial Schrödinger equation of diatomic molecules - The
LEVEL and BCONT programs

this problem for one-dimensional potentials, are described. These codes have been used

to calculate the energies and radial wavefunctions of the rovibrational states and nuclear

motion continuum discussed in chapter 2.

The core of both programs is concerned with solving the radial or (effective) one-

dimensional Schrödinger equation:

−
!2

2µ

d2fnvJ(R)

dR2
+ U eff

nJ(R)fnvJ (R) = EnvJfnvJ(R), (3.30)

where fnvJ(R) are the radial wavefunctions, µ is the effective or reduced mass of the

system and n, v and J are the electronic, vibrational and rotational quantum numbers.

The effective one-dimensional potential, U eff
nJ(R) is written:

U eff
nJ(R) =

J(J + 1)!2

2µR2
+ UBO(R) + Uad(R)

+ Urel(R) + Urad(R), (3.31)

and is a sum of a centrifugal term J(J+1)!2

2µR2 and the rotationless potential, which con-

sists of the electronic potential in the non-relativistic Born-Oppenheimer approximation

UBO(R), and if known, the mass-dependent adiabatic Uad(R), relativistic Urel(R) and

radiative Urad(R) corrections, see figure 3.1. The adiabatic correction, which is an elec-

tronically diagonal correction, can be considered as a first order correction to the BO

electronic energy due to the coupling between the electronic and nuclear motion, and is

given by:

〈Ψelec | T̂n | Ψelec〉, (3.32)

where Ψelec is the electronic wavefunction which describes the motion of the electrons

and T̂n is the kinetic energy operator of the nuclei (see section 3.2). The relativistic

correction is, in principle, the difference in energy between the full relativistic treatment

(Dirac equation) and the Schrödinger equation. In practise, it is often put in by per-

turbation theory in terms if the fine structure constant. The radiative correction is the

difference in energy between the full quantum electrodynamic (QED) equation and the

Dirac equation. It is equivalent to the Lamb shift in hydrogen atoms.

The LEVEL program determines the discrete eigenvalues EnvJ and eigenfunctions

fnvJ(R) for a specified one-dimensional potential. If requested the program also cal-

culates matrix elements, transition intensities, Franck-Condon factors and other off-

diagonal matrix elements, coupling levels of a single potential or levels of two separate

potentials. The BCONT program, which is designed to calculate bound to continuum
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transition intensities associated with photodissociation, spontaneous emission and pre-

dissociation, determines the discrete eigenvalues and eigenfunctions for an initial state

potential and calculates continuum state wavefunctions at a given energy in the contin-

uum above the asymptote of the final state potential.

The solution of equation (3.30) is performed in subroutine SCHRQ, which is based

on the Cooley-Cashion-Zare routines SCHR [122–126]. The numerical integration of

equation (3.30) is performed for a range of internuclear separations using the Numerov

algorithm [122, 127]. The accuracy of the eigenvalues and eigenfunctions obtained for

a given potential is largely determined by the size of the fixed radial mesh used in the

numerical integration. In the Cooley procedure for obtaining the eigenvalues [122, 123],

for a given trial energy the numerical integration proceeds outwards from a minimum

separation RMIN and inwards from maximum separation RMAX until the two solutions

meet at a point R. The discontinuity in the slopes at R is used to estimate the energy

correction required to converge on the eigenvalue closest to the trial energy [128]. This

is repeated until the chosen convergence criterion is reached. RMIN and RMAX must lie

far enough into the classically forbidden regions that the amplitude of the wavefunction

has decayed by several orders of magnitude relative to its amplitude in the classically

allowed region.

The LEVEL and BCONT programs also contain a special feature in subroutine

SCHRQ that allows ‘quasibound’ levels (also known as tunnelling predissociative reso-

nances) to be automatically located and their widths calculated. These are metastable

states that lie above the dissociation limit, but whose dissociation is inhibited by the

potential energy barrier that results from the centrifugal term in the potential, as shown

in figure 3.1. The height of this barrier varies for each value of the rotation quantum

number J . The energies of these levels are determined using a bound state type method

where an Airy function boundary condition is applied to the third outermost turning

point [129, 130]. This method is virtually exact for narrow, long-lived states, but be-

comes less reliable for broader levels that lie just below the barrier maxima. The widths

are calculated using a uniform semiclassical procedure in which the predissociation rate

is thought of as being the product of the probability of tunnelling past the barrier at the

specified energy times the vibrational frequency for the state trapped in the well behind

the barrier. Again this procedure becomes less exact as the resonance becomes broader.
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Figure 3.1: Graphic representation of the effective potential energy curve and predissociative

resonances

3.5 Molecular R-matrix theory and implementation

In this section the process of electron scattering by a diatomic molecule as modelled

using the R-matrix method is described. The UK Molecular R-matrix codes that have

been used in this work for the study of the resonance states of 3HeT+ that arise in

electron - 3HeT2+ collisions and also the background electronic continuum of 3HeT+ are

discussed. For a more detailed discussion, the development of the R-matrix approach to

electron-atom and electron-molecule scattering is well documented in reference [131].

The time independent Schrödinger equation for a scattering system formed by an

N -electron target and colliding electron is:

HN+1ΨE = EΨE . (3.33)

where ΨE is the wavefunction describing the system and E is the total energy of the

system. HN+1 is the non-relativistic fixed-nuclei Hamiltonian given by:

HN+1 =
N+1
∑

i=1

(−
1

2
∇2

i −
ZA

rAi
−

ZB

rBi
) +

ZAZB

R
+

N+1
∑

i>j=1

1

rij
(3.34)
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Figure 3.2: Splitting of configuration space in the R-matrix model.

where ZA and ZB are the nuclear charges, rAi = |rA−ri|, rBi = |rB−ri| and rij = |ri−rj|

where rA, rB are the coordinates of the two nuclei, ri and rj are the coordinates of

electrons i and j and R is the internuclear separation.

The R-matrix method is based on the division of configuration space into two regions

by a spherical boundary of radius a centred on the centre of mass of the target molecule

(figure 3.2). a is chosen such that the entire electronic charge distribution of the molecule

is contained within the sphere, hence the contributions that dominate the Hamiltonian

differ in the two regions.

In the inner region, r < a (where r is the radial coordinate of the scattered electron),

the scattered electron lies within the molecular charge cloud and therefore short range

interactions such as electron exchange and correlation must be taken into account. The

target molecule and scattering electron complex behaves similarly to a bound state, and

so rigorous quantum chemistry methods can be used to obtain the wavefunctions.

In the outer region, r > a, exchange and correlation become negligible, and the

electron moves in the long range multi-pole potential of the target and a single-centre

expansion of the wavefunction can be used.
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3.5.1 The inner region

The target molecular orbitals (MO’s) are constructed from a basis set of Slater-type

atomic orbitals (STO’s), which can be expressed using basis functions centred on the

nuclei. STO’s are based on solutions of the hydrogenic atom problem and give a correct

representation of the cusp of the wavefunction on the nucleus and the exponential fall-off

of the wavefunction at long range. Normalised STO’s are of the form [132]:

ρik(n, l,m, ζi) =

√

(2ζi)2n+1

(2n)!
rn−1
k e−ζirkYlm(θ, φ), (3.35)

where i is the orbital index, k is the nuclear centre index, n, l, m have their usual

hydrogenic meanings, and Ylm(θ, φ) are spherical harmonics. ζi is the orbital exponent

which can be varied to provide optimum representation. The target molecular orbitals

are linear combinations of these atomic orbitals (LCAO), with the coefficients found

through a self-consistent field (SCF) or Hartree-Fock calculation (see, for example, [133]).

The electrons are placed in certain combinations of the target molecular orbitals

multiplied by spin functions to produce configuration state functions (CSF’s), φN
i , of

different total symmetries. For a few-electron molecule (as in our case where the target

molecule, HeT2+, has only one electron) all possible combinations can be used. The

target molecular wavefunctions, ψN
I , are linear combinations of all the CSF’s of the

wavefunctions symmetry in a configuration interaction (CI) expansion

ψN
I =

∑

i

ciIφ
N
i . (3.36)

The coefficients ciI are found by diagonalising the N -electron target Hamiltonian matrix

given by:

< φN
i |HN |φN

i′ >, (3.37)

using the configuration state functions as a basis.

The target molecular orbitals are supplemented with a set of continuum orbitals, ξj,

centred on the centre of mass of the molecule, which describe the scattering electron in

a partial wave expansion.

In some cases linear dependence between the target and continuum molecular or-

bitals can arise. To eliminate this linear dependence the continuum orbitals may be

Lagrange orthogonalised to several of the target molecular orbitals [134]. Each time a

Lagrange orthogonalisation is performed the linear combinations of continuum orbitals
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most linearly dependent on a target orbital are removed. The continuum and target

orbitals are then orthogonalised using the Schmidt orthogonalisation procedure [134].

The inner region scattering energy-independent eigenfunctions of the target molecule

plus scattering electron system are represented by a close-coupling expansion:

ψN+1
k = A

∑

I

ψN
I (X1, ...,XN )

∑

j

ξ̄j(XN+1)aIjk +
∑

m

χm(X1, ...,XN ,XN+1)bmk,

(3.38)

where A is the anti-symmetrisation operator, Xn = (rn, σn) where rn is the spatial

coordinate and σn is the spin state of the nth electron, ξ̄j is a continuum molecular orbital

spin-coupled with the scattering electron and aIjk and bmk are variational coefficients.

The first term summation runs over CI target states. It accounts for one electron

in a continuum state with the remaining electrons in a target state, known as a ‘tar-

get+continuum’ configuration. The second term summation runs over configurations

χm in which all the electrons are placed in target molecular orbitals and are known

as L2 functions. These functions account for polarisation and correlation effects. The

coefficients aIjk and bmk are found through diagonalisation of the HN+1 Hamiltonian

matrix in the inner region. In principle an extra term, the Bloch term, needs to be added

to make the Hamiltonian Hermitian in the inner region. However due to the choice of

continuum functions in the diatomic code, the boundary conditions make the Bloch term

zero.

Once the energy independent eigenfunctions have been found, the final inner region

wavefunction can be determined as a linear combination of these eigenfunctions with the

coefficients found by matching with the computed outer region functions at the boundary

using the R-matrix. The R-matrix on the boundary is determined from the solutions of

the Hamiltonian matrix. The R-matrix contains a complete description of the collision

problem in the inner region for the energy range defined by the choice of target states

and continuum orbitals, and provides the boundary conditions necessary to match the

inner and outer region wavefunctions, and solve the problem in the outer region.

3.5.2 The outer region

In the outer region, the wavefunction is expanded in a single-centre close-coupling ex-

pansion over target states [135]:

Ψ =
∑

I

ψ̄N
I (x1...xN , σN+1)r

−1
N+1FI(rN+1)YlImI

(r̂N+1), (3.39)
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where xj = (r̂j , σj) is the position and spin of the jth target electron, ψ̄N
I are the

functions formed by coupling the scattering electron spin σN+1 with the target state

ψN
I , and FI are reduced radial wavefunctions evaluated on the R-matrix sphere. The

reduced radial functions can be solved by propagating the R-matrix from the boundary

to the asymptotic region where the interaction between the scattering electron and the

target molecule may be assumed to be zero [136, 137]. The outer region functions are

then solved using Gailitis [138] asymptotic expansion techniques [139]. The asymptotic

form of the solutions for FI in the limit r → ∞ defines the K-matrix, which contains all

the scattering information.

The T-matrix is formed from a transformation of the K-matrix:

T =
1 + iK

1 − iK
− 1, (3.40)

and is used to derive physical observables such as cross sections and also multichannel

quantum defects.

3.5.3 Resonances

Under certain conditions, it is possible for an electron which collides with an atom/molecule

to be temporarily captured in a quasistationary orbit in the field of the target molecule.

These metastable states which occur at very specific energies are called resonances, and

are parameterised by an energy position and width. According to the uncertainty prin-

ciple, the narrower the width, the longer the lifetime of the resonance and hence the

more stable it is. These resonances can be classified into the following types.

• Ground state shape resonances. These resonances are associated with the

ground state of a molecule and are a one-electron phenomenon. The electron is

temporarily trapped by a barrier in the effective potential caused by the combina-

tion of the attractive polarisation potential and centrifugal repulsive potential. A

molecule plus electron resonance is formed, until the electron can tunnel through

the barrier. These resonances are normally broad (short lifetimes) as they can

easily decay into the ground state. They do not occur for s-waves (l = 0).

Resonances that are associated with excited states are known as core-excited reso-

nances. These are doubly excited states where two electrons occupy excited orbitals, i.e.

the target is in an electronically excited state with the other electron in an orbit of the

field produced by the excited target. There are two types.
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• Feshbach resonances. These resonances [140, 141] (which are also called closed-

channel or Type I) are associated with a parent singly excited state with positive

electron affinity. They lie below their parent and their energy curve tracks that

of the parent state. Due to energy restrictions, they are prevented from decaying

into their parent and must decay into lower target states. They are normally

narrow (long-lived) and can occur for all partial waves. In the case of scattering

by positively charged molecular ions there will be a positive electron affinity and

so this type of resonance is expected.

• Core-excited shape resonances. Also called Type II, these resonances are

associated with parent states with negative electron affinity, and lie above their

parent. They have some similarities to the ground state shape resonances and can

decay into all lower target states, although normally decay preferentially into their

parent state.

There are several methods that are used to fit resonances. In this work, the eigen-

phase method has been used, which is the most common way of finding resonances. The

eigenphase sum, δ, is a sum of the eigenphases, δi, of the open channels i, which are

found by diagonalising the K-matrix, and is written as:

δ =
∑

i

tan−1(KD
ii ). (3.41)

A resonance will produce a characteristic form in the eigenphase sum as a function of

energy. Near an isolated resonance, the eigenphase sum can be fitted to a Breit-Wigner

profile given by [142]:

δ(E) = δbg(E) + tan−1

(

Γ

2(Er − E)

)

, (3.42)

where Er and Γ are the position and width of the resonance respectively, and δbg(E) is the

background eigenphase sum. As E passes through the resonance region the eigenphase

sum will increase approximately by π. The position of the resonance lies at the point

of inflection of the curve. Therefore using this method for fitting it is possible to obtain

the resonance parameters.

If two or more resonances overlap, or if a resonance is near to or on top of a threshold,

the resonance becomes very difficult to fit. Hence eigenphase fitting programs work well

for single, narrow resonances which are away from a threshold, but the results become

very unreliable close to thresholds or in regions of resonance crossings.
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3.5.4 The UK Molecular R-matrix package (diatomic code)

The UK Molecular R-matrix scattering package has been developed over many years by a

variety of people. The inner region code was originally based on the quantum chemistry

package ALCHEMY [143] developed by IBM in the 1970’s with many modifications to

make it suitable for the scattering problem [144]. The outer region codes have been

developed by Morgan, unless otherwise stated. The program comprises the following

modules:

Inner region

• INTS generates 1-electron, 2-electron and property integrals. For the target cal-

culation it provides the necessary integrals to be used by the SCF module in

setting up the target. It is later used again to provide the integrals for the (N +1)

calculation. This module was modified by Noble [144] to restrict the range of the

radial coordinate to within the R-matrix boundary.

• SCF performs a self-consistent field (Hartree-Fock) calculation to produce the

target orbitals from linear combinations of atomic orbitals.

• NUMBAS generates the continuum orbitals.

• MOS computes molecular orbitals. Initially it takes as input the target orbitals

from SCF to output the molecular orbitals to be used in the target CI calculation.

In the (N + 1) calculation it takes both the target orbitals and the continuum

orbitals from NUMBAS and outputs orthogonalised molecular orbitals. It has

the option to Lagrange orthogonalise the continuum orbitals to a specified number

of target orbitals in order to eliminate linear dependence between the continuum

and the target orbitals, and then to Schmidt orthogonalise all the orbitals [134].

Each time a Lagrange orthogonalisation is performed, the linear combination of

continuum orbitals most linearly dependent on a target orbital are removed. This

module also computes the amplitudes of the continuum orbitals on the R-matrix

boundary.

• TRANS takes the atomic integrals produced by INTS and multiplies them by

combinations of molecular orbital coefficients generated by MOS to transform

them into molecular integrals which are required for the construction of the Hamil-

tonian.
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• CONGEN generates the configuration state functions (CSF’s) with appropriate

spin and symmetry couplings first for the target and then for the (N + 1) system.

The molecular orbitals are hand picked by the user. It also computes phase factors

to keep the phases between the target and (N + 1) system consistent [145]. The

module had been adapted for scattering calculations to allow explicit coupling of

the continuum electron to individual target states [144].

• SCATCI [146] performs the configuration interaction calculation for the target

and (N + 1) system. It takes the molecular integrals from TRANS and the

configurations from CONGEN to build the Hamiltonian matrix. The matrix is

then diagonalised to find all the eigenvectors and eigenvalues. For the (N + 1)

calculation the matrix is first contracted using the target eigenstate vectors before

diagonalisation.

• DENPROP calculates the dipole and quadrupole moments of the target from

the target CI vectors and the property integrals produced by INTS. The target

properties are used in the outer region calculation.

The flow diagram for the inner region calculation of the target is shown in figure 3.3

and for the (N + 1) calculation in figure 3.4.

Outer region

• INTERF provides the interface between the inner and outer regions. It constructs

the surface amplitudes using the boundary amplitudes and CI vectors generated

in the inner region. It also passes on target and channel data.

• RSOLVE takes the output of INTERF and propagates the R-matrix to the

asymptotic region [136, 137], solves the wavefunctions in this region and calculates

the K-matrices [139] .

• EIGENP takes the K-matrices produced by RSOLVE and produces eigenphase

sums.

• RESON [147] searches the eigenphase for resonances. It automatically detects

and parameterises resonances by fitting a standard Breit-Wigner form [142] to the

eigenphase sum.

• TMATRX transforms K-matrices into T-matrices.
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Figure 3.3: Flow diagram of the inner region target state calculation. Red arrows indicate input

required by the scattering calculation, green arrows indicate input required by the outer region

codes.
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Figure 3.4: Flow diagram of the inner region (N+1) scattering calculation. Green arrows indicate

input required by the outer region codes.
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• MCQD calculates multichannel quantum defects for a given set of input T-

matrices.

Other modules such as IXSECS and DCS, which calculate integral and differential

cross sections respectively, and RATES, which gives the integration of collision strengths

over a Maxwellian temperature distribution, are also available, however these modules

have not been used in this work.

A flow diagram for the outer region codes used in this work is shown in figure 3.5.
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Figure 3.5: Flow diagram of the outer region scattering calculation. Other modules are also

available (see text for details).
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Chapter4
Previous studies

In the 1980’s an elaborate molecular final state distribution (FSD) for the β-decay of

T2 was constructed and presented by Fackler et al. [113] using the results of the de-

tailed studies reported in [108, 111, 112, 148]. The aim of this investigation was to aid

the interpretation of the neutrino mass experiment at the Lawrence Livermore National

Laboratory. However the contemporaneous experiments were reporting negative values

for the neutrino mass squared, obtained from fitting the experimental results to theoret-

ical spectra, which lay outside the error bars extending into the negative region. This

indicated a possible systematic error in the experimental results or adopted theory, and

initiated a reinvestigation of the FSD being performed [109, 117, 149–152] leading to

the distribution reported by Saenz et al. [106]. The main aim of this new calculation

was to investigate the validity of the underlying approximations used in the previous

work. A further motivation for this new calculation was the increased sensitivity of the

experimental setups at Mainz and Troitsk.

In this chapter, the studies which lead to the two final state distributions [113] and

[106] are described and their main results given. For more detail and full results, the

reader is referred to the individual articles.

4.1 The final state distribution of Fackler et al.

In 1985, Ko)los et al. [111] considered transitions to the discrete (1Σ+ symmetry) elec-

tronic states of the daughter molecule. The electronic wavefunctions, ψn, for HeT+ were
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assumed to be in the form of an expansion in elliptical coordinates:

ψ =
∑

i

ci[Φi(1, 2) + Φi(2, 1)], (4.1)

where ci are variational parameters and Φi are the basis functions defined by:

Φi(1, 2) = exp(−αξ1 − ᾱξ2 − βη1 − β̄η2)ξri
1 ξ

r̄i
2 η

si
1 η

s̄i
2 ρ

µi . (4.2)

ξ1,η1 and ξ2,η2 denote the elliptical coordinates of electrons 1 and 2 respectively and are

given by:

ξj =
rAj + rBj

R
(4.3a)

ηj =
rAj − rBj

R
(4.3b)

where rAj is the distance from nucleus A to electron j, rBj is the distance from nucleus

B to electron j and R is the internuclear distance. α, ᾱ, β and β̄ are variational

parameters, ri, r̄i, si, s̄i and µi are integers, ρ = 2r12/R and r12 is interelectronic

distance. The wavefunctions for the first five excited states of HeT+ were computed by

performing a stepwise optimisation of the exponents in equation (4.2) for several values

of R, resulting in 77, 76, 85, 85 and 86 term expansions for the second through sixth

electronic state. The ground state wavefunction for HeT+ was taken from [153]. For

T2 the 72 term expansion from [154] was used for R > 2.2 a0 and a 69 term expansion

obtained from the 80 term expansion from [155] was used for R ≤ 2.2 a0. Using these

basis sets, the energies and wavefunctions for the six lowest electronic states of HeT+

were computed for 0.6 ≤ R ≤ 4.0 a0. The wavefunctions were then used to compute the

overlap integrals, Sn(R), between each electronic state and the ground state of T2, to

an accuracy of 0.0001 in S2
n(R). Using the equation (c.f. equation (2.38)):

Pn =

∫

∞

0
S2

n(R)[f i
100(R)]2 dR. (4.4)

the total transition probability, Pn, to all rovibrational and scattering states associated

with electronic state n of HeT+, averaged over the zero-point vibration of the parent

molecule, was obtained for n = 1 − 6. The total probability to the six states is given

as 84.22%. By considering ‘vertical’ transitions at R = 1.4 a0, they also report that

the contribution to higher electronic states is only about 1%, meaning the remaining

probability, 14.8%, is connected to the electronic continuum.

Following on from [111], Jeziorski et al. [112] took into account the nuclear motion

effects by considering the transitions from the ground electronic, vibrational and rota-

tional state of T2, to the various bound rovibrational and scattering states connected
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to the first six electronic states of HeT+. Within the sudden approximation, and by

invoking the Born-Oppenheimer approximation, Jeziorski et al. derive expressions for

the probability that the HeT+ molecule will be left in a bound rovibrational state (v, J)

of electronic state n (c.f. equation 2.29) and the probability per unit energy that the

HeT+ molecule dissociates via the nth electronic state and that the dissociation prod-

ucts are in a state with energy E and angular momentum J (c.f. equation 2.37). Using

equation (2.29) and the overlap integrals calculated by Ko)los et al. [111], they calculate

probabilities for all bound rovibrational states of the electronic ground state of HeT+.

The radial functions were obtained by using Cooley’s method and the Numerov inte-

gration routine [122] (as used by the Le Roy codes discussed in chapter 3). The most

accurate ground state adiabatic potentials for T2 [154, 155] and HeT+ [153, 156, 157]

were used. For the T2 potential, relativistic corrections from [155] were also included.

A total of 300 bound states were found, with a total probability of 40.826%. For the

nuclear motion continuum and rotationally predissociative resonance states, they obtain

the probability density using equation (2.37). However for very narrow resonances the

total probability of the resonance was obtained from their bound state program. The to-

tal probability associated with the scattering states is given as 16.586%, therefore giving

a total probability for the electronic ground state of HeT+ of 57.412%. As the excited

electronic states of HeT+ are purely repulsive, no bound states are supported and the

probability density distribution for the continuous spectrum of each state were obtained

using equation (2.37). The total probability of the excited states was given as 26.809%.

Using the sum rule for Pn given in reference [118], and the sum rule for PnJ given by

them (see chapter 2), they checked their calculations for missing probability. For all n

and J the sum rule for PnJ was satisfied with errors smaller than 0.01%. The authors

estimate that the errors in the probability calculated is determined by the error in the

overlap integral. An analogous calculation of the FSD of the ground state of HeH+

resulting from the β-decay of TH was also calculated. A total of 150 bound states with

a probability of 55.72% were found. The probability of the scattering states was 1.36%

giving a total probability for the ground state of 57.08%.

The FSD of the electronic continuum of HeT+ was investigated by Ko)los et al. [148]

and the calculation extended by Szalewicz et al. [108]. The resonance states were

studied by using the stabilisation method to determine potential energy curves for these

states for a range of internuclear distances. The resonances are detected by the presence
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of the stable values of their energies, as the wavefunction describing the continuum is

changed by either increasing the number of terms in the expansion, or by scaling the

nonlinear parameters. This method is based on the observation that at an energy close

to the position of a resonance the inner part of the continuum state wavefunctions should

resemble the wavefunction of a bound state, with the amplitude of the wavefunction in

the asymptotic region being much smaller than in the inner part. The wavefunction

can then be represented approximately by exponentially decaying trial functions, and

expanded in a square integrable basis, and the hamiltonian matrix diagonalised. Some

of the roots obtained will refer to the resonance states and others to the background

continuum. If the wavefunction is changed as described above, then a different set of

eigenvalues will be obtained. As long as the wavefunction expansion remains reasonably

accurate, then the energies of the resonance states should not vary much. However

the roots corresponding to the background continuum may change considerably. The

resonance states can then be determined by plotting the eigenvalues against the number

of terms in the expansion or the scaling parameter applied to the exponents. It is crucial,

however, that the starting approximation of the wavefunction is reasonably accurate.

(The above description of the stabilisation method is based on the discussion in [148]).

In [148] and [108] a 200 term expansion was used and the nonlinear parameters varied.

Using this method the energies of the lowest five resonances were obtained for a range of

R. Problems were encountered for the higher resonances as a state that appeared with

one set of parameters would disappear for other sets. Some results are also given for the

sixth and seventh resonance states. At each internuclear distance, the overlap integrals

of the wavefunctions with the T2 electronic ground state wavefunction was determined.

Using equation (2.38), and therefore not taking into account the nuclear motion, the total

probabilities connected with the resonance states and with the discretized background

continuum were obtained. For the background continuum, only the vertical transition

probability at R = 1.4 a0. was considered. The majority (two-thirds) of the probability

in the electronic continuum was found to be associated with the two lowest resonance

states. The accuracy of the FSD in the electronic continuum was considered to be lower

than the FSD obtained below the ionisation threshold, due to possible errors in the

positions of the resonance states.

Fackler et al. [113] combined the results from the studies discussed above [108, 111,

112, 148] to give the overall FSD. They also compared the Kurie plots (which is a form
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of describing the β spectrum) for different levels of accuracy of the FSD. By considering

a neutrino mass of 30 eV/c2, Kurie plots were obtained for pure nuclear, atomic and

molecular processes. For the molecular processes, three versions of construction of the

FSD were considered; (i) fixed value of the internuclear distance R = 1.4 a0, (ii) various

R averaged over the ground rovibrational state of the T2 molecule, and (iii) the same

as (ii) but with the nuclear motion effects of the lowest six electronic states of 3HeT+

taken into account. They found that the molecular effects are important and that the

nuclear motion effect must be considered in all regions of the spectrum. By considering

several neutrino masses in the range of 0 - 50 eV/c2, they also found that the nuclear

motion effect is significant at all values of the neutrino mass. The accuracy of the FSD

was considered, and they reported that the main source of error arises from the sudden

approximation, i.e. the neglect of the interaction of the β electron with the remaining

molecular electrons.

The FSD given in [113] is for gaseous T2, however the experiment at Livermore used

a frozen T2 source. The solid state effects were considered by Ko)los et al. [158], by

computing the excitation probabilities of the T2 molecules in the crystal surrounding

the β-decaying tritium and studying the influence of this effect on the neutrino mass

determination. It was found that for a neutrino mass of the order of a few eV/c2, the

solid state effects are very important.

4.2 The final state distribution of Saenz et al.

As the experiments were still reporting negative values for the neutrino mass squared,

a reinvestigation of the FSD was performed in the 1990’s, with the aim of investigating

the validity of the underlying approximations used and to meet the new requirements of

the Mainz and Troitsk experiments, resulting from their increased sensitivity.

Froelich et al. [149] performed a reinvestigation of the FSD of the electronic contin-

uum, as it was felt that in the previous probability distribution the resonant part of the

spectrum had not been sufficiently described. They used a novel technique whereby the

probability density distribution, including the contribution from both the resonances and

background scattering, was obtained by avoiding the explicit calculation of the wave-

functions describing the continuum states of 3HeT+. Their method was based on the

observation that the probability density, P (E), can be given by the imaginary part of

the expectation value of the 3HeT+ resolvent operator with respect to the ground state
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of T2, G(E), provided that a meaningful approximation to the resolvent operator can

be found. Hence:

P (E) = π−1Im{G(E)}. (4.5)

In this way, the probability density at a given energy is obtained, without explicitly

calculating the transition probability to a specific final state. This is not a problem,

since for the analysis by the neutrino mass experiments, it is not necessary to resolve

the molecular final states that are energetically degenerate. The probability density of

the electronic continuum was evaluated by applying the complex scaling method [159].

The clamped-nuclei approximation was assumed and the probability density obtained

for the T2 equilibrium separation, R = 1.4 a0. Unlike the discretized FSD given in

[108, 113], the probability density distribution calculated within the complex scaling

method exhibits a smooth background and broadened resonances. It was also found [151]

that the FSD obtained with the complex scaling method, is to a good approximation,

basis set independent. Using this approach the probability distribution for the electronic

continuum was improved but the fits of the neutrino mass were found to remain nearly

unchanged [151].

Fackler et al. [113] reported that the main source of error in the FSD was due to

the neglect of the interaction of the β electron with the remaining molecular electrons,

therefore Saenz and Froelich investigated the validity of the use of the sudden approx-

imation [109, 150, 151]. In reference [109] a detailed derivation of the β spectrum in

a beyond sudden approximation treatment of the β-decay of a nucleus embedded in

an atom/molecule was performed. Explicit expressions for the zeroth and first order

transition amplitudes are derived and final expressions for the molecular higher order

transition probabilities were given. Calculations for the specific case of T2 were given

in [150, 151]. For the first time, the probability distribution, including electronically

bound and continuous states, were calculated in a beyond sudden approximation [151].

They found that if the interaction of the β electron with the decaying nucleus is already

included in the zeroth order treatment (see equation (2.3) and the discussion given in

chapter 2) then the largest corrections arise from the interference term between the ze-

roth order and first order amplitudes. These corrections were calculated explicitly in

[151] and found to be negligible.

In [151] Saenz and Froelich also examined the reliability of the β spectrum within

the sudden approximation. The investigation concentrated on considering the effect of
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nuclear motion in the electronic continuum and extending the previous distributions,

which go up to an energy of 165 eV, to larger energies, up to 800 eV. The effect of nu-

clear motion in the electronic continuum was taken into account by use of the reflection

approximation which assumes that the transition from the initial T2 state to the final

HeT+ state occurs without a change of the internuclear geometry and that the nuclear

wavefunction of the final dissociative state is given by a delta function at the classical

turning point of the potential curve. The FSD was calculated at different values of

internuclear separation and the final distribution obtained from the R-dependent distri-

butions weighted with the vibrational wavefunction of the rovibronic ground state of T2.

It was found that the main effect of the nuclear recoil, was a considerable broadening of

the resonance contributions due to the strong dependence of the resonance positions on

the internuclear separation. The FSD of the Rydberg states (high lying electronically

bound states) was also calculated using the same basis functions used for the electronic

continuum.

Jonsell et al. [117] performed a reinvestigation of the FSD for the electronically

bound states of 3HeT+ and 3HeH+, since recent experimental results had indicated that

the source of the negative neutrino mass squared problem lay close to the endpoint

of the β spectrum [88, 89]. The refinements added to this new calculation included a

relativistic correction to the molecular recoil caused by the emitted electron, improved

potential energy curves and improved overlaps for the excited electronic states. The

validity of the Born-Oppenheimer approximation was investigated by considering the

non-adiabatic corrections. Also the decay from rotationally excited T2 (Ji = 1) was

considered (previously only Ji = 0 had been considered). In reference [112] the relation

pβ =
√

2meEβ was used for the momentum of the β electron. Jonsell et al. found that

by using the relativistic relation for pβ, which increased the recoil momentum by 1%, the

probability of transitions to certain v, J states changed by as much as 40%. However they

stated that as the sum rule is unaffected by a change in the recoil momentum, changes

in the probability for one state must be compensated by changes in other states. They

found that this correction moved probability from lower to higher vibrational levels, and

that the relative change to individual bins compared to [112] was up to 10%. For the

ground state of 3HeT+, the same data as in reference [112] was used for the potential and

electronic overlap. The Born-Oppenheimer energies and overlaps of the excited states

were recalculated using the same method as in [111], 400 basis functions, three sets of
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nonlinear exponents and the T2 ground state wavefunction from [160]. The electronic

energies were obtained from [161]. A separate FSD was calculated for the β-decay of

T2 in its Ji = 1 state. It was found that this not only changed the probability of the

rovibrational states, but also transfered probability between different electronic states.

The FSD due to the β-decay of HT was also calculated for the first six electronic states

(previously it had only been calculated for the ground state [112]). The first order

correction to the transition probability to a given rovibrational state resulting from

non-adiabatic couplings was derived by Jonsell et al. [152] where the largest change in

probability was found to occur in the coupling between the ground state and first excited

state. In [117] the corrections were calculated for rovibrational states of the ground

electronic state. They found these corrections to be very small, therefore validating the

Born-Oppenheimer approximation.

Using the results from [109, 117, 149–152] an improved FSD for 3HeT+ and 3HeH+

was presented in reference [106]. The total probability to all states was given as 99.83%

for T2. It was reported that the missing 0.17%, was distributed uniformly over the

electronic continuum, and so the FSD above 40 eV was multiplied by the factor 1.0106.

They obtained an estimate of the improvement of the new FSD over the one presented

in [113], by creating synthetic experimental spectra using typical parameters from the

Mainz experiment and the new FSD assuming a zero neutrino mass, and then extracting

the neutrino mass squared using the previous FSD. The fitted value of the neutrino mass

squared was found to be as large as 1 eV/c2 depending on the energy range included in

the fit.
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Chapter5
The final state probability distribution for

the electronically bound states

In chapter 4 the previous studies that have been performed on the molecular final state

distributions were discussed. Each of these works were performed based on the re-

quirements of the neutrino mass experiments at that time. The increased sensitivity

and changes in requirements for the future KATRIN experiment has therefore led us to

perform a reinvestigation of the molecular final state distribution.

As described in chapter 1, the KATRIN experiment aims to obtain an upper limit

for the value of the neutrino mass by analysing the β spectrum in an energy interval

with a lower limit of 30 eV below the endpoint energy [98]. In this energy interval the

effect from only the six lowest electronic states of 3HeT+ need to be considered. The

Rydberg states (high-lying electronic states) and electronic continuum of 3HeT+ begin

to have an effect from 40 eV below the endpoint.

In this chapter the calculation of the final state distribution of the first six electronic

states of 3HeT+, 3HeD+ and 3HeH+ performed by us is discussed. The emphasis of this

new calculation is to investigate the effect of uncertainties in the temperature of the T2

source and amount of isotope contamination from HT and DT molecules on the deduced

value of the neutrino mass obtained from fitting. This error budget will be discussed in

the following chapter.
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5.1 The electronic ground state of 3HeT+

5.1 The electronic ground state of 3HeT+

The calculation of the probability distribution of the electronic ground state of 3HeT+

can be split into two parts.

1. the discrete probability distribution of the bound and ‘quasibound’ rovibrational

states,

2. the continuous probability density distribution of the nuclear motion continuum.

These two areas must be treated differently, and are discussed below.

5.1.1 Probability distribution of bound and quasibound states

In chapter 2 an expression for the probability that the 3HeT+ molecule will be left in

a bound rovibrational state (v, J) of electronic state n was given. For now, the T2

molecules are assumed to be in their lowest energy state (rotational excitation, J > 0, of

the T2 molecules is discussed in section 5.2). For the case where the initial T2 molecule

is in its ground electronic and rovibrational state and 3HeT+ in its ground electronic

state, this expression becomes:

P1vJ (K) = (2J + 1)

∣

∣

∣

∣

∫

S1(R)jJ (KR)f f
1vJ (R)f i

100(R)dR

∣

∣

∣

∣

2

. (5.1)

In order to calculate the probabilities, the radial parts of the rovibrational wavefunc-

tions of 3HeT+ and T2, f f
1vJ (R) and f i

100(R) respectively, need to be determined. To do

this, Le Roy’s program LEVEL [120], discussed in section 3.4, was used.

To calculate the wavefunctions and energies the LEVEL program must be supplied

with:

1. the rotationless electronic potentials for T2 and 3HeT+ and,

2. the nuclear masses of T and He in order to obtain the reduced mass.

For the ground state rotationless electronic potential of 3HeT+ the same procedure as

in reference [117] was used. The Born-Oppenheimer potential was taken from references

[153, 156, 157] and the adiabatic correction from reference [157]. Kolos and Peek [153]

give the Born-Oppenheimer potential of HeH+ for 28 values of internuclear separation R

between 0.9 and 4.5 a.u. Kolos [156] gives the Born-Oppenheimer potential for 8 values

of R between 5.0 and 9.0 a.u. and also at R = ∞. Bishop and Cheung [157] report an

improved calculation of the Born-Oppenheimer potential giving corrections, ∆E(R), to
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the values given in references [153, 156] for seven internuclear separations, R = 0.9, 1.46,

1.8, 3.0, 4.5, 6.0 and ∞. They also report adiabatic corrections for 4He1H+ by using the

Born method to take into account the coupling between electronic and nuclear motion.

To obtain the required energy corrections for the other separations, the ∆E(R) for

the six finite R from [157] were fitted to the polynomial (also given in [157]):

∆E(R) =
k=2
∑

k=−3

akR
k, (5.2)

and values of ∆E(R) were interpolated for the 31 separations R (between 0.9 and 6.0

a0) considered in [153, 156]. For separations between R = 6.0 a0 and ∞, a linear

interpolation of ∆E(R) was performed. These energy corrections were then subtracted

from the Born-Oppenheimer energies in [153, 156].

The Born-Oppenheimer curve, E(R), is corrected for adiabaticity in the following

way:

U(R) = E(R) −
〈(∇1 + ∇2)2〉

8µ
−

〈∇2
R〉

2µ
−

〈∇R · (∇1 + ∇2)〉
2µa

, (5.3)

where U(R) is the corrected curve, ∇2
R is the Laplacian operator for one nucleus relative

to the other, µ is the reduced nuclear mass mHmHe
(mHe+mH) and µa is the mass ratio mHmHe

(mHe−mH) .

mH and mHe are the masses of the hydrogen nucleus and helium nucleus respectively.

In reference [157] values are given for each of the three terms separately for the same

separations R for which the Born-Oppenheimer energy corrections were given (see above)

and for R = 1.2 and 2.4 a0 also, using µ = 1466.898 and µa = 2453.844 in atomic units,

for 4He1H+. However as the adiabatic corrections are mass dependent, to obtain the

corrections for 3HeT+ a mass scaling of the values given in [157] must be performed.

Using values of µ = 2748.201 and µa = -29132525.73 (where m3He = 5495.883 and mT =

5496.920 taken from the NIST Physical Reference Data website [162] have been used),

the total adiabatic correction for 3HeT+ for the 9 separations R were determined. These

values were then fitted to the polynomial (given in [157]):

k=2
∑

k=−5

bkR
k, (5.4)

and the total adiabatic correction for 3HeT+ was interpolated for all the other sepa-

rations. The adiabatic corrections were then subtracted from the Born Oppenheimer

values to give the final potential.

The ground state rotationless electronic potential for 3HeT+ is given in the second

column of table 5.1 and shown in figure 5.1. The potential is given in units of Eh, which
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Figure 5.1: Electronic energy curves for the first six electronic states of 3HeT+ as a function of

the internuclear separation R. Eh is the Hartree unit of energy.

represents the Hartree unit of energy. The two extra points at R = 0.6 and 0.8 a0 were

obtained by using Born-Oppenheimer values from [111] and extrapolating the adiabatic

correction.

The ground state rotationless electronic potential of T2 was obtained by combining

the Born-Oppenheimer potential, and the radiative, relativistic and adiabatic corrections

of Wolniewicz [163]. The adiabatic corrections given in [163] are for H2, therefore they

were mass scaled to give the corrections for T2 using the values µH2 = 918.076 and µT2 =

2748.46. The radiative and relativistic corrections are mass independent. The electronic

potential is given in the third column of table 5.1.

The reduced mass which enters in the radial one-dimensional Schrödinger equation

(3.30) solved by the LEVEL program is defined in the program as the atomic reduced

mass. In the previous calculation of the final state distribution by Jonsell et al. [117],

the atomic reduced masses were replaced by nuclear reduced masses when solving the

radial Schrödinger equation. Coxon and Hajigeorgiou [164] investigated the effect of

using different reduced masses for the isotopes of HeH+. In this work, the use of the

following different reduced masses, as in reference [164], have been tested;

1. the nuclear reduced mass µnuc = mnuc
1 mnuc

2
mnuc

1 +mnuc
2

.

2. the charge adjusted reduced mass µC =
mat

1 mat
2

mat
1 +mat

2 +Qme
(which corrects for net charge
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Table 5.1: Electronic energies, in Eh, for the ground states of 3HeT+, T2, 3HeD+, DT, 3HeH+

and HT as a function of the internuclear separation R, in a0

R 3HeT+ T2
3HeD+ DT 3HeH+ HT

0.4 -0.119996959 -0.119931191 -0.119733451
0.5 -0.526410515 -0.526347715 -0.526158897
0.6 -2.35089595 -0.769414400 -2.35078689 -0.769354600 -2.35049017 -0.769174801
0.8 -2.75006498 -1.019851823 -2.75003244 -1.019797531 -2.74993554 -1.019634295
0.9 -2.84507728 -1.083446222 -2.84505095 -1.083394331 -2.84497177 -1.083238312
1.0 -2.90424718 -1.124350006 -2.90422462 -1.124300266 -2.90415670 -1.124150713
1.1 -2.94038588 -1.149874337 -2.94036629 -1.149826507 -2.94030735 -1.149682699
1.2 -2.96150035 -1.164758239 -2.96148330 -1.164712093 -2.96143200 -1.164573347
1.3 -2.97273529 -1.172175518 -2.97272042 -1.172130845 -2.97267573 -1.171996531
1.35 -1.173794540 -1.173750531 -1.173618211
1.4 -2.97747176 -1.174308820 -2.97745878 -1.174265428 -2.97741976 -1.174134964
1.45 -1.173892312 -1.173849492 -1.173720748
1.46 -2.97816767 -2.97815569 -2.97811970
1.5 -2.97796828 -1.172692313 -2.97795693 -1.172650023 -2.97792281 -1.172522873
1.6 -2.97575292 -1.168424160 -2.97574297 -1.168382807 -2.97571308 -1.168258474
1.7 -2.97186771 -1.162302522 -2.97185898 -1.162261954 -2.97183275 -1.162139980
1.8 -2.96702601 -1.154915030 -2.96701834 -1.154875105 -2.96699529 -1.154755067
1.9 -2.96171761 -2.96171087 -2.96169060
2.0 -2.95627357 -1.137982819 -2.95626764 -1.137943795 -2.95624981 -1.137826465
2.2 -2.94579234 -1.119983828 -2.94578776 -1.119945246 -2.94577398 -1.119829241
2.4 -2.93656323 -1.102274661 -2.93655971 -1.102236119 -2.93654911 -1.102120239
2.6 -2.92890147 -1.085642352 -2.92889878 -1.085603513 -2.92889070 -1.085486740
2.8 -2.92278531 -1.070532389 -2.92278328 -1.070492987 -2.92277719 -1.070374519
3.0 -2.91803748 -1.057172763 -2.91803598 -1.057132612 -2.91803147 -1.057011894
3.2 -2.91442574 -1.045643141 -2.91442465 -1.045602149 -2.91442137 -1.045478901
3.4 -2.91171328 -1.035915840 -2.91171250 -1.035874002 -2.91171017 -1.035748211
3.5 -2.91062798 -2.91062734 -2.91062539
3.6 -2.90969236 -1.027883989 -2.90969183 -1.027841375 -2.90969021 -1.027713250
3.8 -2.90819161 -1.021385152 -2.90819125 -1.021341878 -2.90819016 -1.021211769
4.0 -2.90707650 -1.016223786 -2.90707627 -1.016179985 -2.90707556 -1.016048290
4.2 -1.012192137 -1.012147936 -1.012015039
4.4 -1.009087721 -1.009043227 -1.008909449
4.5 -2.90536593 -2.90536584 -2.90536559
4.6 -1.006725754 -1.006681049 -1.006546639
4.8 -1.004946067 -1.004901213 -1.004766354
5.0 -2.90450147 -1.003615400 -2.90450140 -1.003570439 -2.90450124 -1.003435258
5.2 -1.002626331 -1.002581293 -1.002445881
5.4 -1.001894412 -1.001849319 -1.001713739
5.5 -2.90403198 -2.90403192 -2.90403176
5.6 -1.001354493 -1.001309359 -1.001173657
5.8 -1.000957040 -1.000911875 -1.000776082
6.0 -2.90375371 -1.000664800 -2.90375370 -1.000619614 -2.90375368 -1.000483753
6.2 -1.000450010 -1.000404807 -1.000268895
6.4 -1.000292018 -1.000246802 -1.000110851
6.5 -2.90358413 -2.90358412 -2.90358410
6.6 -1.000175863 -1.000130637 -0.999994657
6.8 -1.000090174 -1.000044940 -0.999908937
7.0 -2.90347259 -1.000026857 -2.90347258 -0.999981618 -2.90347256 -0.999845598
7.2 -0.999979922 -0.999934678 -0.999798644
7.4 -0.999945007 -0.999899759 -0.999763716
7.5 -2.90339636 -2.90339636 -2.90334268
7.6 -0.999918911 -0.999873660 -0.999737608
7.8 -0.999899311 -0.999854059 -0.999718000
8.0 -2.90334270 -0.999884502 -2.90334270 -0.999839248 -0.999703185
8.5 -0.999861058 -0.999815801 -0.999679730
9.0 -2.90327529 -0.999848662 -2.90327528 -0.999803403 -2.90327526 -0.999667326
9.5 -0.999841732 -0.999796472 -0.999660392
10.0 -0.999837631 -0.999792371 -0.999656289
11.0 -0.999833380 -0.999788119 -0.999652035
12.0 -0.999831431 -0.999786169 -0.999650084
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Table 5.2: Reduced masses for 3HeH+ and 3HeD+

3HeH+ 3HeD+

µnuc 0.755025526 1.207267369

µdis 0.75509432 1.207443253

µC 0.755505552 1.207772213

µeff 0.755231243 1.207497908

on the molecule (ion)). The masses here are atomic masses.

3. the dissociation reduced mass µdis, where the atomic masses of the particles at

dissociation are used. (ie. He and H+).

4. the effective mass µeff, which assumes that one of the two electrons is essentially

tied to the He2+ nucleus, with the second electron being distributed between the

H+ and He+ centres (ie. He
1
2+ and H

1
2+).

For each of the reduced masses, the LEVEL program was used to calculate the

energies of the rovibrational states. The resulting theoretical transition frequencies

were compared to experimental transition frequencies given in references [165–167]. As

there are no experimental values available for 3HeT+ the comparison was performed for

3HeH+ and 3HeD+. The values of the reduced masses used are given in table 5.2, based

on (atomic) masses mH = 1.007825035, mD = 2.014101779, m3He = 3.01602931 and

me = 0.00054858 u from reference [164]. The differences between the theoretical and

experimental frequencies are summarised in table 5.3.

As in [164], µeff was found to be the best compromise and so was used for the daughter

molecular ion in our calculations. However, at the level of a few tenths of an eV, the

energy resolution of KATRIN, the choice of reduced mass has negligible effect on the

final state distribution. Similar calculations have recently been used to determine the

partition function and opacity of various HeH+ isotopologues for stellar modelling [168],

these used µdis.

For the T2 potential the nuclear reduced mass was used. As it is only the lowest

rovibrational state which is of interest, the choice of reduced mass has negligible effect.

The accuracy of the T2 potential was tested by comparing the theoretical transition fre-

quencies obtained using the energies computed by LEVEL, with experimental transition

frequencies from reference [169]. The results are shown in table 5.4.
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Table 5.3: Differences between experimental rotation-vibration transition frequencies (cm−1)

[165–167] and theoretical frequencies calculated using different reduced masses for 3HeH+ and

3HeD+

νcalc − νobs

(v′,J ′) (v′′,J ′′) νobs µnuc µC µdis µeff

3HeH+

(0,1) (0,0) 71.367 0.004 -0.042 -0.005 -0.016

(0,2) (0,1) 142.293 0.005 -0.084 -0.008 -0.033

(1,0) (0,1) 2923.680 0.395 -0.408 0.279 0.050

(1,1) (0,2) 2846.775 0.389 -0.365 0.281 0.066

(1,2) (0,3) 2764.768 0.388 -0.311 0.288 0.088

(1,3) (0,4) 2678.113 0.383 -0.258 0.291 0.108

(1,4) (0,5) 2587.243 0.380 -0.200 0.297 0.131

(1,5) (0,6) 2492.591 0.372 -0.143 0.298 0.151

(1,1) (0,0) 3060.433 0.399 -0.488 0.270 0.018

(1,2) (0,1) 3119.405 0.400 -0.519 0.268 0.006

(1,3) (0,2) 3171.549 0.402 -0.542 0.266 -0.003

(1,4) (0,3) 3216.468 0.403 -0.559 0.265 -0.009

(1,5) (0,4) 3253.785 0.406 -0.567 0.267 -0.011

(1,6) (0,5) 3283.156 0.404 -0.572 0.264 -0.014

(1,7) (0,6) 3304.247 0.395 -0.575 0.256 -0.021

(1,8) (0,7) 3316.761 0.395 -0.560 0.258 -0.014

(6,12) (5,11) 981.322 0.014 1.380 0.210 0.600

3HeD+

(0,2) (0,1) 89.932 0.006 -0.031 -0.007 -0.011

(0,3) (0,2) 134.467 0.009 -0.046 -0.011 -0.016

(1,0) (0,1) 2378.374 0.374 -0.071 0.219 0.171

(1,2) (0,3) 2280.081 0.378 -0.025 0.238 0.194

(1,2) (0,1) 2504.487 0.386 -0.109 0.213 0.160

(1,3) (0,2) 2540.161 0.391 -0.116 0.214 0.159

(1,4) (0,3) 2572.388 0.392 -0.126 0.212 0.155

(1,5) (0,4) 2601.007 0.396 -0.129 0.213 0.156

(6,19) (5,18) 1034.144 0.048 0.738 0.289 0.363

(7,17) (5,19) 995.415 0.061 1.215 0.464 0.589
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5.1 The electronic ground state of 3HeT+

Table 5.4: Differences between experimental rotation-vibration transition frequencies (cm−1)

[169, 170] and theoretical frequencies for T2, DT and HT

T2 DT HT

(v′,J ′) (v′′,J ′′) νobs νcalc − νobs νobs νcalc − νobs νobs νcalc − νobs

(0,2) (0,0) 120.021 0.039

(0,3) (0,1) 199.681 0.012

(0,4) (0,2) 278.9 -0.2

(0,5) (0,3) 357.0 -0.1

(0,6) (0,4) 434.1 -0.1

(0,7) (0,5) 510.0 -0.2

(0,8) (0,6) 584.3 -0.1

(0,9) (0,7) 657.0 -0.1

(0,10) (0,8) 727.8 -0.1

(0,11) (0,9) 796.7 -0.2

(0,12) (0,10) 863.2 0.0

(0,13) (0,11) 927.8 -0.1

(1,0) (0,0) 3434.9 0.7

(1,1) (0,1) 3431.6 0.8

(1,2) (0,2) 2461.0 0.7 2738.4 0.8 3425.1 0.8

(1,3) (0,3) 2457.5 0.7 2733.7 0.7 3415.6 0.7

(1,4) (0,4) 2453.0 0.6 2727.2 0.8 3402.8 0.7

(1,5) (0,5) 2447.3 0.6 2719.2 0.8

(1,6) (0,6) 2440.5 0.5 2709.8 0.7

(1,7) (0,7) 2432.5 0.5 2698.5 0.9

(1,8) (0,8) 2423.5 0.4 2686.3 0.6

(1,9) (0,9) 2413.2 0.6

(1,10) (0,10) 2402.2 0.4

(1,1) (0,2) 3273.140 0.801

(1,0) (0,1) 3355.355 0.788

(1,1) (0,0) 3511.020 0.812

(1,2) (0,1) 3583.530 0.830

(1,3) (0,2) 3651.870 0.863

(1,4) (0,3) 3715.630 0.898

(1,5) (0,4) 3774.450 0.918
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5.1 The electronic ground state of 3HeT+

Modifications were made to the matrix element calculation part of the code by Jonsell

(see reference [117]) to include the electronic overlap Sn(R) and calculation of the Bessel

function jJ(KR) and therefore to calculate probabilities PnvJ (K). In this work, as in

[117], the electronic overlap of reference [111] was used. To calculate K, equation (2.6),

and hence the Bessel function, the maximum (endpoint) energy of the β electron, 18.6

keV, was used. As higher states of 3HeT+ become accessible, the endpoint energy and

hence K will decrease. However, it has been noted by Jeziorski et al. [112] that the

effect is small for changes to Eβ of the order of 100 eV.

Using the input described above in the LEVEL program, the energies and radial

wavefunctions of all the rovibrational and quasibound states of 3HeT+ and the ground

(v = 0, J = 0) state of T2, and the discrete probabilities that the 3HeT+ molecules will

be left in any of its bound or quasibound states were obtained. A total of 300 bound

states and 47 quasibound states were found, their energies and probabilities are given

in tables 5.5 and 5.6. For the quasibound states, widths and lifetimes calculated by the

LEVEL program, are given.

5.1.2 Continuous probability density distribution of the nuclear mo-

tion continuum

In chapter 2 an expression was given for the probability per unit energy that the 3HeT+

molecule dissociates via the nth electronic state and that the dissociation products are

in a state with energy E and angular momentum J . For the case where the initial T2

molecule is in its ground electronic and rovibrational state and 3HeT+ in the electronic

ground state n=1, this equation becomes:

P1J (E) = (2J + 1)

∣

∣

∣

∣

∫

S1(R)jJ(KR)f f
1J(R|E)f i

100(R)dR

∣

∣

∣

∣

2

. (5.5)

The radial wavefunctions of the continuum states of 3HeT+, f f
1J(R|E), were calcu-

lated at chosen energy steps using the BCONT program by Le Roy [121] discussed in

chapter 3. Modifications similar to those applied to the LEVEL program were made to

the BCONT program by Jonsell, to include the electronic overlap and Bessel function

and therefore to determine the probability densities, P1J (E).

Using the same electronic potentials for 3HeT+ and T2, electronic overlap Sn(R),

and β electron energy Eβ = 18.6 keV, as before, the probability density distributions for

each value of angular momentum J in the nuclear motion continuum at chosen energy

steps was produced.
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5.1 The electronic ground state of 3HeT+

Table 5.5: Energies and widths, in Eh, of the quasibound bound states of the 3HeT+ ground

electronic state. Also given are probabilities, in %, that 3HeT+ will be left in each state after the

β-decay of T2 in the Ji = 0 state. The last column gives the program used to give the probability

distribution for a particular resonance.
(v, J) Energy Probability Width Program
(0,33) 1.910063 0.016733 0.10625E-47 LEVEL
(0,34) 1.991289 0.006559 0.59294E-20 LEVEL
(0,35) 2.070840 0.002311 0.45308E-12 LEVEL
(0,36) 2.148150 0.000722 0.13529E-07 LEVEL
(0,37) 2.222360 0.000193 0.11941E-04 BCONT
(0,38) 2.291661 0.000039 0.93654E-03 BCONT
(1,32) 1.960592 0.046456 0.41081E-21 LEVEL
(1,33) 2.032846 0.019701 0.99710E-12 LEVEL
(1,34) 2.102709 0.007504 0.60423E-07 LEVEL
(1,35) 2.168987 0.002453 0.55421E-04 BCONT
(1,36) 2.229113 0.000613 0.29042E-02 BCONT
(2,30) 1.937138 0.138729 0.61557E-23 LEVEL
(2,31) 2.002122 0.068542 0.15943E-11 LEVEL
(2,32) 2.064622 0.030793 0.18971E-06 BCONT
(2,33) 2.123112 0.011830 0.16293E-03 BCONT
(2,34) 2.174620 0.003825 0.54583E-02 BCONT
(3,28) 1.920229 0.251671 0.20831E-25 LEVEL
(3,29) 1.977962 0.139369 0.30187E-11 LEVEL
(3,30) 2.033146 0.070835 0.60819E-06 BCONT
(3,31) 2.083900 0.030363 0.41172E-03 BCONT
(4,26) 1.909065 0.341603 0.14553E-28 LEVEL
(4,27) 1.959569 0.204295 0.94597E-11 LEVEL
(4,28) 2.007459 0.111889 0.23444E-05 BCONT
(4,29) 2.050486 0.050318 0.97402E-03 BCONT
(5,24) 1.902731 0.395636 0.49712E-32 LEVEL
(5,25) 1.946045 0.252255 0.65155E-10 LEVEL
(5,26) 1.986653 0.142652 0.11593E-04 BCONT
(5,27) 2.022052 0.064879 0.21980E-02 BCONT
(6,22) 1.900194 0.393093 0.45300E-33 LEVEL
(6,23) 1.936394 0.279279 0.11571E-08 LEVEL
(6,24) 1.969707 0.160845 0.69944E-04 BCONT
(7,20) 1.900299 0.271892 0.42725E-27 LEVEL
(7,21) 1.929506 0.246894 0.47528E-07 LEVEL
(7,22) 1.955481 0.149744 0.40979E-03 BCONT
(8,18) 1.901783 0.063935 0.21495E-18 LEVEL
(8,19) 1.924178 0.115713 0.27925E-05 BCONT
(8,20) 1.943067 0.094998 0.17872E-02 BCONT
(9,16) 1.903355 0.007309 0.17044E-11 LEVEL
(9,17) 1.919190 0.004426 0.99182E-04 BCONT
(10,14) 1.903914 0.038416 0.71743E-07 LEVEL
(10,15) 1.913835 0.013867 0.93500E-03 BCONT
(11,12) 1.902947 0.000085 0.29773E-04 BCONT
(12,9) 1.897460 0.001896 0.49574E-21 LEVEL
(12,10) 1.901038 0.004332 0.35672E-03 BCONT
(13,7) 1.897727 0.002419 0.37565E-07 LEVEL
(14,5) 1.897593 0.000249 0.60370E-05 BCONT
(15,3) 1.897472 0.000004 0.27283E-04 BCONT
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5.1 The electronic ground state of 3HeT+

Table 5.6: Energies, in Eh, of the bound states of the 3HeT+ ground electronic state. Also given are the

probabilities, in %, that 3HeT+ will be left in each state after the β-decay of T2 in the Ji = 0 state.

(v, J) Energy Probability (v, J) Energy Probability (v, J) Energy Probability
(0,0) 0.000000 0.000256 (0,1) 0.004489 0.000000 (0,2) 0.013453 0.001326
(0,3) 0.026865 0.000087 (0,4) 0.044684 0.002252 (0,5) 0.066855 0.001101
(0,6) 0.093311 0.001837 (0,7) 0.123973 0.004631 (0,8) 0.158748 0.000022
(0,9) 0.197532 0.007612 (0,10) 0.240212 0.005119 (0,11) 0.286661 0.001356
(0,12) 0.336745 0.015904 (0,13) 0.390317 0.009826 (0,14) 0.447226 0.001042
(0,15) 0.507310 0.026504 (0,16) 0.570399 0.034441 (0,17) 0.636319 0.005214
(0,18) 0.704886 0.013269 (0,19) 0.775912 0.073863 (0,20) 0.849203 0.098013
(0,21) 0.924561 0.045417 (0,22) 1.001781 0.000024 (0,23) 1.080654 0.060167
(0,24) 1.160967 0.221084 (0,25) 1.242501 0.389116 (0,26) 1.325032 0.475027
(0,27) 1.408329 0.454863 (0,28) 1.492154 0.362316 (0,29) 1.576260 0.248244
(0,30) 1.660389 0.149402 (0,31) 1.744267 0.080063 (0,32) 1.827600 0.038533
(1,0) 0.271315 0.000305 (1,1) 0.275541 0.002453 (1,2) 0.283980 0.002325
(1,3) 0.296605 0.004134 (1,4) 0.313375 0.008060 (1,5) 0.334238 0.001847
(1,6) 0.359127 0.018553 (1,7) 0.387963 0.001140 (1,8) 0.420656 0.019791
(1,9) 0.457104 0.024175 (1,10) 0.497194 0.000740 (1,11) 0.540801 0.044918
(1,12) 0.587793 0.038631 (1,13) 0.638025 0.000480 (1,14) 0.691347 0.067317
(1,15) 0.747598 0.101468 (1,16) 0.806608 0.020223 (1,17) 0.868204 0.026854
(1,18) 0.932201 0.177696 (1,19) 0.998411 0.242630 (1,20) 1.066637 0.115750
(1,21) 1.136677 0.000527 (1,22) 1.208323 0.124628 (1,23) 1.281358 0.470442
(1,24) 1.355560 0.829035 (1,25) 1.430698 1.012787 (1,26) 1.506531 0.975994
(1,27) 1.582806 0.789144 (1,28) 1.659256 0.554576 (1,29) 1.735594 0.346287
(1,30) 1.811508 0.194853 (1,31) 1.886644 0.099637
(2,0) 0.522315 0.000325 (2,1) 0.526278 0.007503 (2,2) 0.534190 0.000629
(2,3) 0.546026 0.019956 (2,4) 0.561744 0.000324 (2,5) 0.581294 0.030119
(2,6) 0.604608 0.014231 (2,7) 0.631611 0.017617 (2,8) 0.662211 0.058135
(2,9) 0.696309 0.001999 (2,10) 0.733791 0.058018 (2,11) 0.774535 0.087718
(2,12) 0.818409 0.002221 (2,13) 0.865268 0.081593 (2,14) 0.914962 0.173526
(2,15) 0.967329 0.055143 (2,16) 1.022201 0.019801 (2,17) 1.079401 0.229519
(2,18) 1.138741 0.354031 (2,19) 1.200029 0.190183 (2,20) 1.263064 0.005511
(2,21) 1.327635 0.129044 (2,22) 1.393523 0.549686 (2,23) 1.460500 0.994701
(2,24) 1.528323 1.224599 (2,25) 1.596739 1.185690 (2,26) 1.665474 0.966708
(2,27) 1.734234 0.690200 (2,28) 1.802691 0.442277 (2,29) 1.870473 0.258348
(3,0) 0.753000 0.003755 (3,1) 0.756698 0.002746 (3,2) 0.764079 0.016428
(3,3) 0.775118 0.013743 (3,4) 0.789776 0.016862 (3,5) 0.808000 0.044765
(3,6) 0.829725 0.001479 (3,7) 0.854874 0.077886 (3,8) 0.883358 0.027882
(3,9) 0.915075 0.033025 (3,10) 0.949915 0.132166 (3,11) 0.987754 0.028322
(3,12) 1.028458 0.049934 (3,13) 1.071883 0.210858 (3,14) 1.117876 0.116520
(3,15) 1.166275 0.002036 (3,16) 1.216906 0.197843 (3,17) 1.269588 0.393460
(3,18) 1.324127 0.259747 (3,19) 1.380324 0.025182 (3,20) 1.437964 0.080150
(3,21) 1.496825 0.461139 (3,22) 1.556667 0.895092 (3,23) 1.617237 1.128436
(3,24) 1.678260 1.101656 (3,25) 1.739436 0.902088 (3,26) 1.800428 0.648464
(3,27) 1.860849 0.421202
(4,0) 0.963265 0.005409 (4,1) 0.966692 0.001044 (4,2) 0.973534 0.029317
(4,3) 0.983764 0.000000 (4,4) 0.997343 0.053655 (4,5) 1.014218 0.012829
(4,6) 1.034324 0.046509 (4,7) 1.057585 0.079078 (4,8) 1.083909 0.001039
(4,9) 1.113197 0.122568 (4,10) 1.145334 0.090165 (4,11) 1.180197 0.005885
(4,12) 1.217648 0.177587 (4,13) 1.257543 0.186294 (4,14) 1.299724 0.010465
(4,15) 1.344022 0.107989 (4,16) 1.390257 0.351008 (4,17) 1.438238 0.311186
(4,18) 1.487763 0.069261 (4,19) 1.538613 0.023411 (4,20) 1.590557 0.296677
(4,21) 1.643343 0.668787 (4,22) 1.696699 0.890681 (4,23) 1.750323 0.887972
(4,24) 1.803873 0.731471 (4,25) 1.856950 0.525943
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5.1 The electronic ground state of 3HeT+

Table 5.6 – Continued from previous page
(v, J) Energy Probability (v, J) Energy Probability (v, J) Energy Probability

(5,0) 1.152880 0.002411 (5,1) 1.156031 0.011669 (5,2) 1.162321 0.017177
(5,3) 1.171722 0.015965 (5,4) 1.184195 0.051472 (5,5) 1.199686 0.002093
(5,6) 1.218131 0.090782 (5,7) 1.239450 0.024336 (5,8) 1.263553 0.049600
(5,9) 1.290336 0.139790 (5,10) 1.319684 0.013816 (5,11) 1.351468 0.082383
(5,12) 1.385546 0.212355 (5,13) 1.421770 0.068536 (5,14) 1.459973 0.022003
(5,15) 1.499977 0.237806 (5,16) 1.541590 0.319498 (5,17) 1.584606 0.133870
(5,18) 1.628800 0.000020 (5,19) 1.673928 0.137180 (5,20) 1.719720 0.423160
(5,21) 1.765875 0.630024 (5,22) 1.812050 0.658737 (5,23) 1.857838 0.551628
(6,0) 1.321503 0.000066 (6,1) 1.324368 0.019384 (6,2) 1.330087 0.002120
(6,3) 1.338631 0.039383 (6,4) 1.349959 0.020362 (6,5) 1.364018 0.030798
(6,6) 1.380741 0.077396 (6,7) 1.400045 0.000045 (6,8) 1.421839 0.103634
(6,9) 1.446013 0.080130 (6,10) 1.472448 0.005302 (6,11) 1.501009 0.149868
(6,12) 1.531549 0.141683 (6,13) 1.563904 0.003840 (6,14) 1.597899 0.098390
(6,15) 1.633337 0.260062 (6,16) 1.670005 0.191504 (6,17) 1.707668 0.026488
(6,18) 1.746064 0.031452 (6,19) 1.784896 0.212998 (6,20) 1.823820 0.394325
(6,21) 1.862426 0.452876
(7,0) 1.468683 0.000786 (7,1) 1.471252 0.016355 (7,2) 1.476374 0.001322
(7,3) 1.484023 0.042400 (7,4) 1.494156 0.001394 (7,5) 1.506717 0.056038
(7,6) 1.521634 0.036811 (7,7) 1.538825 0.018054 (7,8) 1.558189 0.106648
(7,9) 1.579613 0.022852 (7,10) 1.602967 0.040958 (7,11) 1.628108 0.148401
(7,12) 1.654875 0.059632 (7,13) 1.683088 0.008385 (7,14) 1.712548 0.141511
(7,15) 1.743030 0.197807 (7,16) 1.774282 0.083780 (7,17) 1.806016 0.000168
(7,18) 1.837893 0.067784 (7,19) 1.869499 0.199966
(8,0) 1.593876 0.002444 (8,1) 1.596130 0.008862 (8,2) 1.600625 0.008171
(8,3) 1.607329 0.029430 (8,4) 1.616199 0.002215 (8,5) 1.627174 0.056251
(8,6) 1.640180 0.008994 (8,7) 1.655125 0.040593 (8,8) 1.671902 0.075102
(8,9) 1.690388 0.001246 (8,10) 1.710439 0.066475 (8,11) 1.731897 0.105631
(8,12) 1.754577 0.015135 (8,13) 1.778270 0.030378 (8,14) 1.802738 0.130415
(8,15) 1.827702 0.119287 (8,16) 1.852830 0.028160 (8,17) 1.877708 0.004168
(9,0) 1.696515 0.003162 (9,1) 1.698436 0.003278 (9,2) 1.702262 0.012706
(9,3) 1.707962 0.015162 (9,4) 1.715487 0.009128 (9,5) 1.724770 0.041179
(9,6) 1.735731 0.000361 (9,7) 1.748269 0.046430 (9,8) 1.762263 0.041426
(9,9) 1.777573 0.001576 (9,10) 1.794038 0.065305 (9,11) 1.811465 0.060815
(9,12) 1.829634 0.001585 (9,13) 1.848280 0.036991 (9,14) 1.867082 0.089043
(9,15) 1.885631 0.058375
(10,0) 1.776205 0.002803 (10,1) 1.777771 0.000791 (10,2) 1.780885 0.012359
(10,3) 1.785511 0.006256 (10,4) 1.791596 0.012305 (10,5) 1.799066 0.024711
(10,6) 1.807828 0.000647 (10,7) 1.817767 0.037808 (10,8) 1.828743 0.019318
(10,9) 1.840591 0.005174 (10,10) 1.853112 0.046910 (10,11) 1.866063 0.029486
(10,12) 1.879143 0.000003 (10,13) 1.891958 0.024898
(11,0) 1.833071 0.001951 (11,1) 1.834261 0.000100 (11,2) 1.836623 0.009059
(11,3) 1.840115 0.002202 (11,4) 1.844677 0.010478 (11,5) 1.850225 0.012786
(11,6) 1.856650 0.001698 (11,7) 1.863819 0.023634 (11,8) 1.871563 0.007856
(11,9) 1.879675 0.004838 (11,10) 1.887891 0.023808 (11,11) 1.895853 0.010576
(12,0) 1.868641 0.001098 (12,1) 1.869457 0.000002 (12,2) 1.871066 0.005202
(12,3) 1.873426 0.000708 (12,4) 1.876468 0.006305 (12,5) 1.880099 0.005631
(12,6) 1.884199 0.001347 (12,7) 1.888611 0.010731 (12,8) 1.893130 0.002555
(13,0) 1.887112 0.000498 (13,1) 1.887601 0.000001 (13,2) 1.888557 0.002329
(13,3) 1.889935 0.000218 (13,4) 1.891664 0.002681 (13,5) 1.893644 0.001927
(13,6) 1.895737 0.000506
(14,0) 1.894747 0.000175 (14,1) 1.894994 0.000001 (14,2) 1.895466 0.000767
(14,3) 1.896118 0.000057 (14,4) 1.896874 0.000675
(15,0) 1.897070 0.000038 (15,1) 1.897159 0.000000 (15,2) 1.897313 0.000120
(16,0) 1.897422 0.000002
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5.1 The electronic ground state of 3HeT+

As the nuclear motion continuum begins at the asymptote of the electronic potential,

the predissociative resonances found by the LEVEL program can also appear in the

probability density distribution produced by BCONT, therefore giving us two possible

ways in which to account for them. These predissociative resonances, which lie in the

energy region 0 - 0.5 eV above the dissociation limit result in volatile behaviour of the

probability density distribution. There are usually 1−3 sharp peaks and several broader

peaks associated with each J [112]. The method chosen for describing the probability

of a particular resonance depended on its position and shape. For resonances with

very narrow widths (where the entire resonance falls within a single 0.01 eV bin) and

that can be easily isolated from the background continuum, the discrete result from the

LEVEL program was used. For resonances with larger widths (therefore spanning across

several 0.01 eV bins) and that could not be isolated from the background continuum,

the BCONT program was used instead, using very small energy steps, as small as 10−9

eV, to obtain a probability density profile of the resonance. In general, the narrow (long-

lived) resonances lie close to the dissociation limit while the broader (short-lived) ones

lie marginally below the barrier maxima. Below is an example for each case.

Figure 5.2 shows the probability density distribution of the isolated resonance (v, J)

= (2,32) with a width of 0.2 × 10−6 eV. The black curve is the probability density

distribution of the resonance obtained using the BCONT program. The green line shows

the energy position of the resonance given by the LEVEL program. The red curve is a

Lorentzian profile of the resonance obtained by using the discrete result from LEVEL

and the equation:

P1J(E) =
Γ2/4

(E − Eres
1vJ )2 + Γ2/4

× P1J (Eres
1vJ ), (5.6)

where

Γ =
2

π

P res
1vJ

P1J (Eres
1vJ )

, (5.7)

is the resonance width, Eres
1vJ is the energy at which P1J(E) reaches the maximum,

P1J(Eres
1vJ ) is the probability density at Eres

1vJ , P1J(E) is the probability density at energy

E and P res
1vJ is the total probability of the resonance. Γ, Eres

1vJ and P res
1vJ are given by the

LEVEL program. Equation (5.6) has been obtained from the Breit-Wigner formula for

resonant cross-sections, adjusted to calculate the probability density distribution of the

resonance. By comparing the Lorentzian profile of the LEVEL result with the BCONT

result it can be seen that the results are in very close agreement. The entire resonance
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Figure 5.2: Example of a narrow, isolated resonance.

is contained within one of the 0.01 eV bins, therefore the resonance can be treated as a

‘bound’ state and the LEVEL result used.

Figure 5.3 shows the probability density distribution of the non-isolated resonance

(v, J) = (2,34) with a width of 0.5 × 10−2 eV. The black curve is the probability den-

sity distribution from BCONT and the red line is the energy position of the resonance

from the LEVEL program. This resonance is not easily separable from the background

continuum, witness the asymmetric profile. It also spans across several energy bins. It

is not accurate enough in this case to use the result from the LEVEL program.

The discrete results from the LEVEL program were used for 24 resonances and the

density distribution from the BCONT program for the remaining 23 resonances.

For the region beyond 0.5 eV above the dissociation limit, where no predissociative

resonances are present, an energy step of 0.001 eV is sufficient for the determination of

the radial functions using BCONT.

5.1.3 Total ground state distribution

The previous final state probability distribution [106] was presented as a finite number of

discrete transition probabilities by dividing the spectrum into small energy bins varying

in size from 0.1 eV, for the ground state of 3HeT+, to 1.0 eV, for the electronically
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Figure 5.3: Example of a wide non-isolated resonance.

excited states of 3HeT+. This approach is the best for analysis of the experiments and

was also used here. However due to the improved sensitivity of the experiment, 0.1 eV

bins were no longer sufficient and so bins of 0.01 eV were used throughout. The energy

of the ground rovibrational state of 3HeT+ was set as the energy zero, thus giving a

dissociation energy for the ground electronic state of 1.89742698 eV. For convenience,

the 0.01 eV bins were relative to the dissociation limit, therefore the first energy bin is

from 0.0 - 0.00742698 eV.

As probabilities are obtained for the bound part and probability densities for the

nuclear motion continuum, the energy binning was performed separately for the two

regions. For the bound levels the energy binning was straightforward. The probabilities

within a bin were summed and a mean excitation energy calculated. For the nuclear

motion continuum, energy binning was performed separately for each J by using the

trapezoidal rule, and then combined. For the energies bins where the two regions overlap

(1.89742698 - 2.29742698 eV) the probabilities of the two regions were summed together

and new mean excitation energies calculated.

The discretized final state probability distribution for the electronic ground state

(black lines, left-hand y-axis) is shown in Figure 5.4 (top left). The probability distribu-

tion of the ground state covers the energy range up to 6 eV and is the only open channel
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Figure 5.4: The final state probability distribution of the electronic ground state of 3HeT+ for

different initial rotational states, Ji = 0, 1, 2 and 3, of T2. The black lines, which correspond with

the left-hand y-axis, is the binned (0.01 eV bins) final state probability distribution. The red

curve, which corresponds with the right-hand y-axis, is the Gaussian convolution of the binned

results in terms of probability density.

up to ≈ 20 eV. It accounts for 57.41% of the total probability. To illustrate the shape

of the distribution for easier comparison with other results presented in this chapter, a

Gaussian convolution of the binned results was performed using a standard deviation of

0.1 eV. The Gaussian convolution is given by the red curve and the right-hand y-axis.

5.2 Rotational excitation of T2

The KATRIN experiment will be performed with the gaseous T2 source at a temperature

of about 30 K, therefore the majority of the T2 molecules will be thermally excited. A

Boltzmann distribution was used to estimate the rotational state populations of T2 at

this temperature for a thermal source. The T2 molecules will be mainly distributed in

the first four rotational states of the electronic and vibrational ground state, see table

5.7. In fact at 30 K more T2 molecules will be in the Ji = 1 state than Ji = 0. Past

calculations of the final state distribution focused mainly on Ji = 0 [112, 113, 117].
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5.2 Rotational excitation of T2

Table 5.7: Rotational state populations for T2 at a thermal temperature of 30 K. The energies

of each state are given where the energy zero is at the asymptote of the potential

Ji Energy (eV) Population (%)

0 -4.59093879 42.856

1 -4.58597113 56.458

2 -4.57605227 0.676

3 -4.56121125 0.010

Calculations of transitions with Ji = 1 were performed [117], but only for the ground

state of 3HeT+. In this work separate probability distributions for the ground state and

the first five electronically excited states of 3HeT+, due to the β-decay of T2 in initial

states of Ji = 1, 2 and 3 have been calculated. In this section we focus on the ground

state of 3HeT+, excited electronic states are discussed in the next section.

In chapter 2, equations for the probability that the 3HeT+ molecule will be left

in a bound rovibrational state (v, J) of electronic state n were derived for the case

when the T2 molecule is in the state Ji = 1, 2 and 3. Similar equations are obtained

for the probability density of the nuclear motion continuum. Using these equations,

the probabilities of the bound states and probability densities of the nuclear motion

continuum of the 3HeT+ ground state were calculated for each Ji using the same method

described in the previous section.

For each initial excited Ji state of T2, the LEVEL and BCONT programs were run

separately for each integral term, i.e. twice for J = 1, three times for J = 2, etc., see

equations (2.31, 2.33, 2.35), and the probabilities/probability densities summed.

As the T2 molecules are rotationally excited they have more energy than the T2

molecules in the Ji = 0 state. This extra energy is then available to the β electron and

therefore the β-decay endpoint energy increases with the rotational excitation of the T2

molecules. For analysis by the experiment it was necessary to make the endpoint energy

consistent. For each final state distribution, before the energy binning was performed,

the excitation energies Ef were shifted by the respective rotational excitation energy of

the T2 molecule, in order to make the endpoint energies equal.

The discrete final state probability distribution (black lines) and corresponding Gaus-

sian distributions (red curve) for the electronic ground state of 3HeT+ due to the β-decay

of T2 in initial states of Ji = 1, 2 and 3 are shown in figure 5.4. For comparison, figure
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Figure 5.5: The Gaussian distributions for the electronic ground state of 3HeT+ for initial Ji =

0, 1, 2 and 3. The black, red, green and blue curves are for Ji = 0, 1, 2 and 3 respectively.

5.5 shows the Gaussian distributions for the different initial states of T2.

5.3 Excited electronic states of 3HeT+

The first five electronically excited states of 3HeT+ are purely dissociative. Therefore

there are no bound states and only the BCONT program is required to calculate the

probability density distribution for each electronic state. The same procedure was used

as for the ground state. The Born-Oppenheimer energies of the excited states of 3HeT+

and the electronic overlaps Sn(R) (n = 2 - 6) were taken from [117]. No adiabatic

corrections were included for the potentials. The n = 2, 4 and 5 states dissociate to He+

+ T, and the n = 3 and 6 states dissociate to He + T+ [117]. The relevant dissociation

reduced mass was used instead of the effective reduced mass.

The probability density distribution was obtained for each electronic state. The

combined probability density distribution for the n = 2 - 6 states is shown in figure 5.6

for each of the initial states of T2 considered.

The probability was obtained and binned as before in energy bins of 0.01 eV. Table

5.8 shows the total probabilities and the energy range covered by each electronic state

of 3HeT+ resulting from the β-decay of T2 in rotational states Ji = 0, 1, 2 and 3.
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Figure 5.6: The final state probability density distribution for the first five electronically excited

states of 3HeT+ for different initial rotational states, Ji = 0, 1, 2 and 3, of T2.

Table 5.8: Total probabilities and energy range for the first six electronic states of 3HeT+

resulting from the β-decay of T2 in rotational states Ji = 0, 1, 2 and 3.

n Pn (Ji = 0) Pn (Ji = 1) Pn (Ji = 2) Pn (Ji = 3) Energy range

1 57.412 57.394 57.356 57.299 0.00 – 6.07

2 17.359 17.373 17.401 17.443 19.65 – 40.84

3 7.761 7.758 7.752 7.743 30.41 – 44.38

4 0.782 0.781 0.781 0.779 33.88 – 48.06

5 0.011 0.011 0.010 0.010 36.30 – 44.95

6 0.918 0.917 0.917 0.915 36.18 – 49.59

84.243 84.234 84.217 84.189
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5.4 Isotopomers - 3HeH+ and 3HeD+

In previous tritium β-decay experiments the source has had a significant contamination

of HT molecules. In references [106, 117], an elaborate final state distribution of 3HeH+

was calculated. This distribution has been recalculated here for HT in states Ji = 0 and

1. However in the future KATRIN experiment the main contamination is expected to

come from DT molecules. Therefore the probability of 3HeD+ has been calculated for

DT in initial states Ji = 0 and 1. The distributions of 3HeD+have not been calculated

previously.

The ground state electronic potentials for 3HeD+, DT, 3HeH+ and HT were obtained

in the same way as for 3HeT+ and T2. The same Born-Oppenheimer potentials were

used, and the mass dependent adiabatic corrections were scaled accordingly (using mD

= 3670.482 and mH = 1836.152). These potentials are given in columns 4 - 7 of table

5.1. For the electronically excited states of 3HeD+ and 3HeH+ the same potentials used

for 3HeT+ were employed as no mass dependent corrections had been applied to them.

Effective reduced masses were used for the ground electronic state potentials of 3HeD+

and 3HeH+, dissociation reduced masses for the electronically excited states and nuclear

reduced masses for DT and HT. The same electronic overlaps, Sn(R), were used as for

T2.

As for the rotational excitation of the T2 molecules, the energies of the probability

distribution must be shifted in order to make the endpoint energies the same. For DT

(HT) molecules in the Ji = 0 state, there are three energy shifts that need to be taken

into account.

1. The difference in the ground rovibrational state energies of 3HeT+ and

3HeD+ (3HeH+) The ground state energies of 3HeD+ and 3HeH+ are higher in

energy than that of 3HeT+. This leaves less energy available for the β electron

and so reduces the endpoint energy. Therefore this energy must be added to the

distribution energies.

2. The difference in the ground rovibrational state energies of T2 and DT

(HT) The ground state energies of DT and HT lie higher than that of T2, therefore

providing extra energy for the β electron. This increases the endpoint energy and

so this energy difference must be subtracted from the distribution energies.

3. The difference in the (centre of mass motion) recoil energy of the 3HeT+
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and 3HeD+ (3HeH+) molecules E
3HeH+

rec > E
3HeD+

rec > E
3HeT+

rec , therefore the

endpoint energies decrease and so these differences must be added to the distri-

bution energies.

For rotationally excited DT (HT) the rotational excitation energy must also be taken

into account as for T2. All energy shifts were performed before energy binning was

performed.

The final state distributions were obtained for the first six electronic states of 3HeD+

and 3HeH+ using the same method as for 3HeT+.

For the electronic ground state of 3HeD+ (3HeH+), a total of 243 (151) bound states

and 34 (22) predissociative resonances were found by the LEVEL program. The prob-

ability/probability density distributions were binned as before using 0.01 eV bins. The

final state distributions of the electronic ground states of 3HeD+ and 3HeH+ due to the

β-decay of DT and HT in initial rovibrational states Ji = 0 and 1 are shown in figure

5.7. For comparison, the Gaussian distributions are shown in figure 5.8.

Figure 5.9 shows the final state probability density distribution for the first five

excited electronic states of 3HeT+, 3HeD+ and 3HeH+ for initial Ji=0.

As will be shown in chapter 5, an uncertainty in the percentage of DT molecules has

a significant effect on the reliability of the neutrino mass obtained.

5.5 Sum rules

To check the accuracy of our calculations two sum rules satisfied by PnvJ and PnJ(E),

discussed in chapter 2, have been used. The LEVEL and BCONT codes were modified

to also calculate these sum rules. Our probability distributions were summed over J

and n and compared. For all J , our errors in PnJ were found to be < 2× 10−5% for the

electronic ground state (n = 1), and < 1 × 10−4% for the electronically excited states

(n = 2 - 6). The error in Pn was found to be < 1 × 10−4% for n = 1, and < 7 × 10−4%

for n > 1.
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Figure 5.7: The final state probability distributions of the electronic ground states of 3HeD+

and 3HeH+ for the β-decay of DT and HT molecules in initial rovibrational states Ji = 0 and

1. The black lines, which correspond with the left-hand y-axis, is the binned (0.01 eV bins) final

state probability distribution. The red curve, which corresponds with the right-hand y-axis, is

the Gaussian convolution of the binned results in terms of probability density.
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Figure 5.8: The Gaussian distributions for the electronic ground states of 3HeT+, 3HeD+ and

3HeH+ for the β-decay of T2, DT and HT molecules in initial rovibrational states Ji = 0 and 1.
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states of 3HeT+, 3HeD+ and 3HeH+ for initial Ji=0
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Chapter6
The error budget

In the previous chapter the calculation of the final state distribution of the six lowest

lying electronic states of 3HeT+ resulting from the β-decay of T2, to accommodate the

increased sensitivity and requirements of the future neutrino mass experiment, KATRIN,

was discussed. Due to impurities in the KATRIN source calculations of the final state

distributions of 3HeD+ and 3HeH+ were also performed. The effect of rotational excita-

tion of the parent molecule was also investigated, by explicitly calculating separate final

state distributions for the daughter molecule following the β-decay of T2 in rotational

states Ji = 0, 1, 2 and 3, and DT/HT in states Ji = 0 and 1. Using this data an over-

all final state distribution for a given source can be obtained by summing the separate

calculated final state distributions weighted by the percentage of molecules in that state.

In this chapter, estimates of the error in the value of the neutrino mass deduced from

fitting theoretical curves, due to uncertainties in the source temperature, ortho:para ratio

of T2 and the percentage of DT molecules in the source are discussed.

6.1 Determination of the neutrino rest mass and the inte-

gral β-decay spectrum

The recorded spectrum obtained by the KATRIN experiment is an integral β-decay

spectrum. The spectrometer used in the KATRIN experimental set-up acts as an inte-

grating high-energy filter (see chapter 1 for a description of how the spectrometer works).

The mass of the neutrino is obtained by fitting the experimental spectra to theoretical

spectra.
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6.1 Determination of the neutrino rest mass and the integral β-decay
spectrum
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Figure 6.1: Response function of the KATRIN spectrometer for isotropically emitted electrons

with fixed energy E as a function of the retarding energy qU .

The theoretical integral β-decay spectrum is given by [98]:

N(qU) = NtottU

∫ W0

0
I(Ee)fres(Ee, qU) dEe, (6.1)

where U is the retarding potential, Ntot is the total number of tritium nuclei in the

source, tU is the measuring time at retarding potential U and I(Ee) is the intensity of β

electrons with kinetic energy Ee given by equation (2.3). fres is the response function of

the KATRIN spectrometer for isotropically emitted electrons [98] and is shown in figure

6.1. q is the charge.

The experiments are not free from systematic and statistical errors, therefore these

must also be accounted for in the theoretical spectra as fit parameters. For a complete

investigation of the uncertainty effects discussed in this chapter, one would ideally include

the effect of all these parameters. However, to obtain an estimate of the error in the

neutrino mass caused by uncertainty in the source temperature, ortho:para ratio and

isotope contamination, fits have been performed with idealised conditions (no systematic

or statistical errors) using only the fit parameters expected from a theoretical point of

view.
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6.2 Rotational temperature effect - thermal source

6.2 Rotational temperature effect - thermal source

The source in the KATRIN experiment is expected to be at a temperature of around 30

K [104]. If the source is thermal, the relative populations of rotational states of the T2

molecules are dependent on the temperature of the source and are given by a Boltzmann

distribution:

PJ (T ) =
gsgJe−EJ/kT

QT
, (6.2)

where PJ(T ) is the probability that the molecule will be in rotational state J at temper-

ature T , gs = (2s+1) is the nuclear spin degeneracy factor, gJ = (2J +1) is a rotational

degeneracy factor, EJ is the energy of the state with rotational quantum number J with

respect to E0, and k is Boltzmann’s constant. QT is the rotational partition function

for T2 at low temperature T and is given by:

Q(T ) =
∑

J

gsgJe−EJ/kT , (6.3)

where we have ignored other terms as they are for high T .

At a temperature of 30 K, the amount of T2 molecules in states Ji = 0, 1, 2 and 3 are

42.856%, 56.458%, 0.676% and 0.01% respectively. The overall final state distribution

at a given temperature is obtained by summing the final state distributions for each

different initial state Ji, weighted by the percentage of T2 molecules in that state.

An uncertainty in the temperature of the source could result in an inaccurate overall

final state distribution being used in the calculation of the theoretical spectrum, and

hence an error in the neutrino mass deduced from fitting the theoretical and experimental

spectra.

To determine how accurately the temperature of the source must be known, the effect

of uncertainties in the source temperature on the value of the neutrino mass deduced

from fitting, have been investigated.

A range of temperatures from 0 to 50 K in steps of 5 K were considered. The

distribution of T2 molecules in each Ji state for each of these temperatures is shown

in figure 6.2. For comparison, in figure 6.3, the overall final state distributions of the

ground state of 3HeT+ for different source temperatures are shown. The distributions of

the excited states from 20 - 30 eV do not vary significantly so are not shown. For these

calculations a pure tritium source has been assumed.

The temperature T = 30 K was taken as our reference temperature. Using the final

state distribution at this temperature, a reference integral β spectrum was produced us-
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Figure 6.2: Distribution of T2 molecules in each J state as a function of temperature

ing equation (6.1) and chosen values for the fit parameters A, W0 and m2
νe

. The endpoint

energy, W0, was fixed at a value of 18.575 keV, and the normalisation constant omitted.

Separate calculations were performed for three different values of the neutrino mass, 0.0

eV/c2, 0.2 eV/c2 and 0.5 eV/c2. The theoretical integral β spectra for the other temper-

atures were fitted to the reference spectra with m2
νe

as the only free parameter, by using

the corresponding final state distributions. A χ2 fitting was performed using subroutines

MRQMIN, MRQCOF, COVSRT and GAUSSJ from Numerical Recipes [171].

For the fitting an energy window with a lower limit of 30 eV below the endpoint was

chosen, as this will be the energy interval analysed in the KATRIN experiment. The last

2 eV below the endpoint was not included in the fitting, as it will also be excluded from

the fit in the KATRIN experiment as the spectrum here is dominated by the background

noise. A statistical distribution for the error in the intensity of β electrons, σ =
√

I, was

assumed. The mass errors, defined as the absolute difference in m2
νe

, are shown in figure

6.4. These absolute differences in m2
νe

are very similar for all three values of the neutrino

mass squared tested. For a 0.2 eV/c2 neutrino mass this translates to a ± 0.25% error

in the value of mνe , as a result of an uncertainty in the source temperature of ± 5 K.
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Figure 6.3: Overall final state distributions for a pure T2 source at different temperatures between

5 - 50 K
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Figure 6.4: Error in the neutrino mass squared deduced from fitting, due to uncertainties in the

source temperature (from fitting of β spectra with W0 = 18.575 keV and 100% T2).

6.3 Ortho:para ratio - non thermal source

In the previous section a thermal source was considered. However if the source is not

completely thermalised then the ratio of ortho-T2 to para-T2 in the source must be

considered.

For homonuclear molecules with non-zero nuclear spin, the selection rule prohibit-

ing interconversion between the symmetric and anti-symmetric states (i.e. transitions

between even J states and odd J states are not allowed), although not rigorous, still

holds sufficiently strictly that it may take months or years before a molecule goes spon-

taneously from an even numbered rotational level to an odd numbered level. Therefore

if the source is initially at a higher (lower) temperature than 30 K and is then cooled

(heated) to 30 K, it may take a long time before the source becomes thermal. In this

case the T2 molecules may be regarded as a mixture of two separate species: para-T2

(even J) and ortho-T2 (odd J), and separate partition functions used for each species:

Qp(T ) =
∑

Jeven

gJe−EJ/kT , (6.4a)

Qo(T ) =
∑

Jodd

gJe−EJ/kT , (6.4b)
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Figure 6.5: Distribution of T2 molecules in each J state as a function of the ortho:para ratio, λ

where Qp(T ) and Qo(T ) are the partition functions for the para and ortho T2 at tem-

perature T .

The total partition function is then given by:

QT = (1 − λ)Qp + (λ)Qo (6.5)

where λ (which includes the spin degeneracy) defines the ortho:para ratio. For ther-

malised T2 at T = 0 K, λ is 0 and at high temperatures λ is 3/4. The relative populations

are then:

P (Jeven) =
(1 − λ)gJe−EJ/kT

QT
, (6.6a)

P (Jodd) =
λgJe−EJ/kT

QT
. (6.6b)

Estimates of the error in the deduced neutrino mass due to uncertainties in the

ortho:para ratio of the source have been obtained. A range of values of λ varying

between 0 and 3/4 in steps of 0.05 were considered. Figure 6.5 shows the distribution

of T2 molecules in each J state for each of value of λ. Again, a pure tritium source has

been assumed.
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Figure 6.6: Error in the neutrino mass squared deduced from fitting, due to uncertainties in the

ortho:para ratio (from fitting of β spectra with W0 = 18.575 keV and 100% T2).

Using the same fitting procedure described in the previous section, theoretical inte-

gral β spectra for different values of λ were fitted to a reference spectrum for λ = 0.3

(which corresponds to a temperature T = 29.6 K). The results are shown in figure 6.6.

The error of the neutrino mass squared is similar to the error caused by temperature

uncertainty.

6.4 Isotope effects

Even though the isotopic purity of tritium atoms in the source of the KATRIN experi-

ment is expected to be at least 95%, this means that the amount of DT molecules may

be anything between 0 and 10%. To see how accurately this percentage needs to be

known, the error in the neutrino mass deduced as a result of uncertainties in the amount

of DT in the source between 0 and 20% has been investigated. Figure 6.7 shows how the

final state distribution changes with the amount of DT contamination in the source. It

has been assumed that the source is thermal and at a temperature of 30 K.

Theoretical integral β spectra for different DT:T2 ratios were fitted to a reference

spectrum (10% DT) using the same fit procedure as before. The results of these fits are
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Figure 6.8: Error in the neutrino mass squared deduced from fitting, due to uncertainties in the

amount of DT molecules in the source (from fitting of β spectra with W0 = 18.575 keV and T

= 30 K).

shown in figure 6.8. For a neutrino mass of 0.2 eV/c2, a 10% change in the amount of

DT molecules in the source, gives an error in the deduced neutrino mass of ≈ 18%. This

is a significant difference and therefore the isotope contamination needs to be measured

more accurately than the current estimate.

6.5 Summary

In the KATRIN experiment, the main systematic error of the windowless gaseous tritium

source is associated with the column density of the tritium molecules, which must be

known to a precision of 0.1% [98]. This means that to avoid tritium density changes in

the source, the temperature must be stabilised to a precision of about 1% [105]. There-

fore an uncertainty in the temperature of this amount should have a negligible affect on

the deduced value of the neutrino mass. The KATRIN experiment will use thermalised

T2 which will be rapidly cooled, so λ values in the range 0.3 < λ < 0.75 are to be

expected. In section 6.3 it was shown that the error on the deduced neutrino mass due

to uncertainty in the ortho:para ratio is also small. However, it should be noted that the
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6.5 Summary

stability of the ortho and para T2 ratio also depends completely on experimental condi-

tions. The long life-time stabilisation is valid for isolated molecules, however molecular

collisions with the walls (and possibly external fields) may very well change these num-

bers. It is therefore recommended that the ortho:para ratio be measured directly when

running the experiment rather than obtained from theoretical considerations. Of the

three uncertainties considered, it was found that uncertainties in the amount of isotopic

contamination could give a significant error in the deduced neutrino mass. It is therefore

essential that the gas composition be quantitatively monitored in line and as close to

real time as possible. To do this, laser Raman spectroscopy will be used [172].
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Chapter7
The final state probability distribution for

the electronic continuum of 3HeT+

So far the final state distribution (FSD) of the electronically bound states of 3HeT+

has been considered, however from about 40 eV below the endpoint of the β spectrum

the contribution from the electronic continuum begins to have an effect. Although the

KATRIN experiment aims to deduce the mass of the neutrino by analysing the last 30

eV of the β spectrum, other parameters such as the background noise will be investigated

by analysing a larger energy interval. The electronic continuum of 3HeT+ consists of

the background singly excited molecular continuum together with contributions from

Feshbach resonances (Feshbach resonances have been discussed in chapter 3). It has

been shown that these resonances track strongly repulsive states of 3HeT2+ and therefore

have a very strong dependence on the internuclear separation [173]. This means that

for an accurate calculation of the FSD of the electronic continuum, the nuclear motion

effects must be considered as each resonance will effect a wider range of energies than

its (generally) narrow width suggests [173].

In the calculation of the FSD to date, the part associated with the electronic contin-

uum is the least accurately determined. Early works [108, 149, 174, 175] were limited

by the number of resonances obtained and did not take into account their variation as

a function of the internuclear separation, R. The R dependence of the final state dis-

tribution was later considered explicitly by Saenz and Froelich [151] for a few low lying

resonances. Also, as discussed in chapter 4, the previous FSD’s had some missing prob-

ability. In [106], this missing probability (0.17%) was found to belong to the electronic

continuum part. These investigations have been discussed in more detail in chapter 4.
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7.1 R-matrix calculation of the resonance states of 3HeT+

In this chapter the calculation of the final state distribution of the electronic con-

tinuum, using a different method to the previous works mentioned above, is described.

In this work, the R-matrix method has been used to perform a geometry dependant

calculation of the 1Σ+ total symmetry resonance states of 3HeT+ (as this is the relevant

symmetry for T2 β-decay [113]). The positions and widths of resonances converging

to the first eight excited states of 3HeT2+ have been obtained. By performing a simi-

lar R-matrix (inner region only) calculation for T2, the wavefunction for the electronic

ground state of T2 was obtained, and hence overlaps integrals between 9 resonance states

and the ground state of T2 were calculated. Probability density distributions for each

resonance were then obtained using the modified BCONT code discussed in chapters 3

and 5. A discrete probability distribution for the background continuum has also been

determined for R = 1.4 a0.

7.1 R-matrix calculation of the resonance states of 3HeT+

Resonance states of an atom/molecule can manifest themselves in collisions of an electron

with the corresponding ion. Hence calculations on the resonance states of 3HeT+ can

be performed by considering the collision between an electron and 3HeT2+:

e− + 3HeT2+ → 3HeT+∗∗ → e− + 3HeT2+. (7.1)

Tennyson presented results for resonant states of 3HeT+ converging to the first three

excited states of 3HeT2+ as a function of internuclear separation [173], using the UK

molecular R-matrix programs [135]. In the work presented below, the same method and

programs as in [173] have been used to perform an improved calculation of the continuum

states. Calculations have been performed for 21 internuclear separations in the range R

= 1.0 - 2.0 a0, in steps of 0.05 a0.

7.1.1 Target calculation

The quality of the calculation depends heavily on the quality of the target and hence

on the basis set used to represent it. The quality of a given basis set can be tested

by comparing the target state energies obtained using that basis, as a function of the

internuclear separation, with ‘exact’ energies. However problems can arise as a basis set

that works well at one particular geometry may be poor at others.
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Figure 7.1: Error in the target state energies from [173] when compared to the exact energies

computed using the code by Power [176], as a function of internuclear separation. Eh represents

the Hartree unit of energy

In this calculation a basis set of Slater-type orbitals (STO’s) was used. The criteria

determining the choice of the STO’s are that the basis be small enough to be manageable

but flexible enough to be able to represent the target sufficiently at all the internuclear

separations used. In this work the basis set used by Tennyson [173] was taken as a

starting point. Tennyson used 3 s, 2 p and 1 d Slater-type orbitals on each atom, where

the exponents of each orbital were optimised for the four lowest target states at the

equilibrium geometry R = 1.4 a0 by comparison with exact energies computed using the

code by Power [176]. Figure 7.1 shows the energy errors of the target states from [173]

when compared to the exact energies. Units of Eh, which represents the Hartree unit

of energy, are used. As can be seen from the plot, the 1sσ, 2pσ and 2pπ states are in

reasonably good agreement with the exact energies. The errors are considerably worse

for the 2sσ state. (It must be noted that in the calculation of the exact energies, the

2pσ state is the first excited state and the 2sσ state is the third excited state, whereas

in [173] these assignments are reversed. Here the assignments of the exact energies are

used).

112



7.1 R-matrix calculation of the resonance states of 3HeT+

The basis set of Tennyson was adjusted in order to meet the following criteria:

• to improve the energies of the 2sσ target state,

• and to include higher energy target states with reasonable accuracy.

For each atom, one compact orbital (large ζ exponent) and one diffuse orbital (small

ζ exponent) were added to the basis set. Unfortunately, extending the basis set caused

linear dependency problems between the states. To combat this the ζ exponents were

adjusted one at a time until this problem could be eliminated but at the same time trying

to retain as much as possible reasonable energies for the target states. However, by

adjusting a given exponent to improve the situation at a certain internuclear separation

sometimes worsened it at other separations. Therefore, the exponents were adjusted by

considering their effect at three geometries, R = 1.0, 1.4 and 2.0 a0, until a reasonable

compromise could be reached. To remove this linear dependency entirely the extra

diffuse hydrogen orbital added to the set had to be dropped.

The final basis set used in this work is given in table 7.1. The target energy levels

calculated using this basis set, as a function of internuclear separation, are given in table

7.2. Figure 7.2 shows the energy errors of the target states obtained using the new

basis set when compared to the exact energies. The target states obtained are in good

agreement with the exact energies. All the states, except the 3pσ state, have energy

errors that are < 0.02 Eh, The error of the 3pσ state is < 0.04 Eh.

7.1.2 Scattering calculation

To represent the continuum, numerical functions were obtained by solving for a Coulomb

potential V = −2/r (in a.u.) inside the R-matrix sphere using an l ≤ 7 partial wave

expansion. A total of 162 orbitals consisting of 64 σ, 54 π and 44 δ orbitals were

obtained. Using Lagrange orthogonalisation [134], 2 σ and 1 π continuum orbitals were

removed from the basis in order to alleviate linear dependence problems. The remaining

continuum orbitals were then Schmidt orthogonalised to the entire set of target functions.

The general form for the target plus electron wavefunction in the inner region is given

by equation (3.38). Using an R-matrix sphere of radius 10 a0, scattering calculations were

performed including all nine of the target states given in table 7.2. As the target molecule

3HeT2+ has just the one electron, it was possible to include all the symmetry allowed

L2 configurations (configurations with 2 electrons in any target orbital) to account for

correlation and polarisation effects, without the risk of over-correlation of the system.
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7.1 R-matrix calculation of the resonance states of 3HeT+

Table 7.1: Slater-type basis set for 3HeT2+.

T He

n l m ζ n l m ζ

1 0 0 3.5 1 0 0 7.0

1 0 0 1.74122 1 0 0 4.05813

2 0 0 0.94122 2 0 0 3.12675

3 0 0 1.520

2 1 0 1.29241 2 1 0 1.4109

3 1 0 1.93496 3 1 0 6.36

3 2 0 1.2 3 2 0 1.25

2 1 1 1.5 2 1 1 2.4

3 1 1 0.8 3 1 1 1.6

3 2 1 1.0 3 2 1 1.25

3 2 2 1.75 3 2 2 1.25
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Figure 7.2: Error in the target state energies obtained in this work when compared to the exact

energies computed using the code by Power [176], as a function of internuclear separation.
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Table 7.2: Computed energy levels of 3HeT2+, in Eh, as a function of the internuclear separation R, in a0.

R 1sσ 2pσ 2pπ 2sσ 3pσ 3dσ 3dπ 3dδ 3pπ

1.00 −1.031838 0.664206 0.974206 1.092261 1.487324 1.497228 1.499393 1.517294 1.535361

1.05 −1.082963 0.558405 0.885805 1.005321 1.388263 1.400653 1.404026 1.423331 1.442084

1.10 −1.128108 0.462461 0.806054 0.926800 1.298218 1.312706 1.317360 1.338070 1.357489

1.15 −1.168239 0.375292 0.733811 0.855582 1.216100 1.232233 1.238272 1.260379 1.280452

1.20 −1.204142 0.295979 0.668127 0.790737 1.140985 1.158272 1.165823 1.189317 1.210038

1.25 −1.236461 0.223729 0.608204 0.731485 1.072089 1.090018 1.099224 1.124091 1.145463

1.30 −1.265725 0.157856 0.553366 0.677169 1.008737 1.026788 1.037810 1.064033 1.086066

1.35 −1.292375 0.097756 0.503039 0.627226 0.950351 0.967999 0.981010 1.008570 1.031287

1.40 −1.316773 0.042895 0.456729 0.581178 0.896428 0.913156 0.928335 0.957214 0.980648

1.45 −1.339224 −0.007202 0.414011 0.538610 0.846533 0.861828 0.879365 0.909543 0.933739

1.50 −1.359981 −0.052960 0.374518 0.499165 0.800284 0.813646 0.833731 0.865191 0.890206

1.55 −1.379257 −0.094762 0.337928 0.462529 0.757346 0.768291 0.791114 0.823839 0.849744

1.60 −1.397231 −0.132953 0.303962 0.428431 0.717421 0.725489 0.751232 0.785208 0.812088

1.65 −1.414053 −0.167846 0.272371 0.396631 0.680219 0.685026 0.713836 0.749053 0.777007

1.70 −1.429852 −0.199726 0.242939 0.366916 0.645170 0.647029 0.678706 0.715157 0.744299

1.75 −1.444736 −0.228849 0.215472 0.339099 0.609647 0.613733 0.645645 0.683330 0.713784

1.80 −1.458796 −0.255452 0.189799 0.313015 0.574915 0.583526 0.614479 0.653399 0.685307

1.85 −1.472114 −0.279750 0.165766 0.288515 0.541686 0.555388 0.585049 0.625214 0.658726

1.90 −1.484756 −0.301938 0.143236 0.265466 0.509885 0.529117 0.557216 0.598637 0.633917

1.95 −1.496781 −0.322196 0.122087 0.243750 0.479409 0.504571 0.530850 0.573547 0.610768

2.00 −1.508241 −0.340687 0.102205 0.223260 0.450158 0.481628 0.505838 0.549834 0.589175
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7.1 R-matrix calculation of the resonance states of 3HeT+

In the outer region the R-matrices were propagated to 50 a0 and the K-matrices

obtained.

7.1.3 Resonances

A Rydberg series of resonance states converges to each electronic state of 3HeT2+. In

each series there is one member for each (n, l) combination with n > l. There are there-

fore an infinite number of increasingly narrow resonances in each series. The 3HeT2+

states are often referred to as ‘parent’ states and the resonances as ‘daughter’ states.

At each internuclear separation, R, resonances converging to the eight excited target

states of HeT2+ were detected and their positions and widths determined by fitting the

associated eigenphase sum to a Breit-Wigner profile using the RESON program [147].

For each resonance, the fit was performed for 20 energy points. The quality of a fit can

be defined by the goodness factor gf , which analyses the sum of the residues:

gf = −log10

∣

∣

∣

∣

∣

20
∑

i=1

ηfit(Ei) − ηcalc(Ei)

∣

∣

∣

∣

∣

, (7.2)

where η is the eigenphase sum. Fits with gf ≥ 4 give reliable results and those with

gf ≤ 0 give unreliable results. For intermediate values of gf the positions are reliable

but the widths are often too large [173]. Hence gf values give us some idea of the

error in the calculated positions and widths which result from the fact that the reso-

nances are not calculated directly, but through a fit procedure. The accuracy of the

resonance parameters are of course also dependant on the accuracy of the target rep-

resentation. Improvements in the target representation should give lower energies and

narrower widths for the resonances.

Resonance curves which describe the (energy) position of a resonance as a function

of R, have been obtained by correlating the resonances detected at different geometries

using quantum defect analysis (For detailed information on quantum defect theory see

[177]). The quantum defect can be used to parameterise a Rydberg series of states below

a threshold. This has proved to be the most reliable method of interpolating resonance

parameters over a grid of geometries [178].

The complex quantum defect µnl is given by:

µnl = αnl + iβnl. (7.3)

From the position determined by the fit, the RESON program calculates the effective
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7.1 R-matrix calculation of the resonance states of 3HeT+

quantum number n∗ of the resonance using the relation:

Etarget − Eres =
R∞Z2

(n∗)2
, (7.4)

where Eres(R) and Etarget(R) are the energies at R of the resonance and the relevant

‘parent’ target state threshold respectively, R∞ is the Rydberg constant and Z is the

residual charge. The effective quantum number n∗ is related to the real part of the

complex quantum defect, αnl, by:

n∗ = n − αnl. (7.5)

αnl (and hence n∗) varies gently and smoothly as a function of internuclear separation.

Resonances were therefore matched at different geometries by matching their effective

quantum numbers. αnl has a very weak dependence on n but depends strongly on l. In

general, αnl decreases rapidly as l increases. It is therefore generally easier to match n∗

for the low-l states than for the high-l states because at high-l the quantum defects are

close to zero. Within a series of resonances converging to a particular target state, it is

also possible to identify separate series of resonances with increasing n but the same l as

the quantum defects will be the same for these resonances and so the effective quantum

numbers will differ by a whole number.

Table 7.3 gives the positions, widths, goodness factors and effective quantum numbers

for resonances detected converging to the first three excited states of 3HeT2+. The

assignments of the resonance states comes from the quantum defect analysis, but they

should not be regarded as definitive. The resonance curves and 3HeT2+ target states

are also shown graphically in figure 7.3.

As can be seen from the figure, there are a number of resonances crossing the thresh-

olds belonging to lower target states. The RESON program, however, calculates the

effective quantum number of these resonances, relative to the nearest threshold. These

‘intruder’ resonances can normally be identified easily if the shape of the target state

curve to which they actually belong varies significantly from the lower threshold curve,

as the effective quantum numbers calculated by RESON will not vary smoothly as a

function of R. For these resonances, the effective quantum numbers given in table 7.3

have been recalculated relative to the correct parent target state.

The n = 3 electronic states of 3HeT2+ lie very close together in energy (see table 7.2).

The resonances detected above the 2sσ and below the 3pσ state, are not all related to the

series converging to 3pσ, but include contributions from resonances converging to the
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Figure 7.3: 3HeT+ resonance curves and 3HeT2+ target potentials as a function of internuclear

separation R. Resonances converging to the 2pσ, 2pπ and 2s target states are drawn in red,

green and blue respectively.
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7.1 R-matrix calculation of the resonance states of 3HeT+

Table 7.3: Positions Eres, and widths Γ, for 1Σ+ resonance states of 3HeT+, as a function of internuclear separation

R. Also given are assignments, effective quantum numbers n∗, and goodness factors gf

R (a0) Eres (Eh) Γ (Eh) n∗ gf Eres (Eh) Γ (Eh) n∗ gf
2pσ2 2pσ3s

1.00 −0.04349 0.02607 1.68109 9 0.15136 0.01704 1.97479 8
1.05 −0.15385 0.02644 1.67571 7 0.04910 0.01756 1.98165 7
1.10 −0.25379 0.02655 1.67100 6 −0.04366 0.01793 1.98787 7
1.15 −0.34401 0.02656 1.66747 6 −0.12817 0.01830 1.99312 7
1.20 −0.42647 0.02645 1.66384 6 −0.20490 0.01819 1.99825 7
1.25 −0.50101 0.02629 1.66121 6 −0.27483 0.01802 2.00290 8
1.30 −0.56864 0.02600 1.65920 7 −0.33863 0.01780 2.00706 8
1.35 −0.62997 0.02555 1.65779 9 −0.39692 0.01753 2.01074 7
1.40 −0.68557 0.02493 1.65696 8 −0.45022 0.01722 2.01392 7
1.45 −0.73590 0.02412 1.65669 7 −0.49898 0.01685 2.01665 7
1.50 −0.78142 0.02316 1.65696 7 −0.54361 0.01641 2.01897 7
1.55 −0.82253 0.02209 1.65774 8 −0.58446 0.01593 2.02093 7
1.60 −0.85964 0.02092 1.65899 8 −0.62186 0.01540 2.02255 8
1.65 −0.89307 0.01969 1.66065 9 −0.65611 0.01486 2.02390 8
1.70 −0.92317 0.01843 1.66270 9 −0.68747 0.01430 2.02498 9
1.75 −0.95022 0.01718 1.66508 8 −0.71618 0.01375 2.02584 10
1.80 −0.97450 0.01594 1.66777 8 −0.74246 0.01320 2.02650 10
1.85 −0.99625 0.01475 1.67073 8 −0.76653 0.01268 2.02698 9
1.90 −1.01572 0.01358 1.67392 8 −0.78856 0.01217 2.02730 9
1.95 −1.03309 0.01247 1.67730 8 −0.80873 0.01169 2.02749 8
2.00 −1.04857 0.01140 1.68087 8 −0.82719 0.01122 2.02756 8

2pσ3pσ 2pσ3dσ
1.00 0.41355 0.00398 2.82471 6 0.43863 0.00148 2.97759 6
1.05 0.31031 0.00439 2.83927 4 0.33268 0.00201 2.97665 5
1.10 0.20880 0.00535 2.80795 5 0.22598 0.00580 2.90817 6
1.15 0.12208 0.00477 2.81044 6 0.14466 0.00415 2.94477 5
1.20 0.04196 0.00461 2.80597 6 0.06744 0.00314 2.95823 4
1.25 −0.03051 0.00441 2.80474 6 −0.00390 0.00268 2.96414 5
1.30 −0.09547 0.00429 2.80982 6 −0.06872 0.00255 2.97106 5
1.35 −0.15536 0.00410 2.81096 7 −0.12831 0.00227 2.97441 5
1.40 −0.21003 0.00390 2.81205 7 −0.18285 0.00203 2.97652 5
1.45 −0.25985 0.00369 2.81357 7 −0.23276 0.00182 2.97771 5
1.50 −0.30529 0.00347 2.81533 7 −0.27846 0.00168 2.97813 5
1.55 −0.34675 0.00324 2.81724 7 −0.32031 0.00157 2.97782 5
1.60 −0.38458 0.00301 2.81928 7 −0.35863 0.00151 2.97693 5
1.65 −0.41909 0.00277 2.82145 7 −0.39372 0.00149 2.97562 5
1.70 −0.45057 0.00254 2.82365 7 −0.42587 0.00149 2.97387 6
1.75 −0.47933 0.00231 2.82572 8 −0.45533 0.00152 2.97167 6
1.80 −0.50555 0.00208 2.82785 8 −0.48230 0.00155 2.96925 6
1.85 −0.52949 0.00188 2.82989 8 −0.50701 0.00161 2.96657 6
1.90 −0.55134 0.00167 2.83180 8 −0.52964 0.00166 2.96371 6
1.95 −0.57130 0.00148 2.83353 8 −0.55035 0.00171 2.96071 6
2.00 −0.58954 0.00130 2.83495 8 −0.56933 0.00176 2.95756 6

2pσ4s 2pσ4pσ
1.00 0.44646 0.00208 3.03065 5 0.52709 0.00155 3.81917 6
1.05 0.34013 0.00199 3.02698 5 0.42136 0.00167 3.82021 6
1.10 0.24420 0.00394 3.02709 2 0.32548 0.00167 3.82104 6
1.15 0.15705 0.00237 3.02720 7 0.23883 0.00162 3.82833 6
1.20 0.07601 0.00296 3.01535 5 0.16140 0.00118 3.85495 6
1.25 0.00544 0.00326 3.02691 5 0.09314 0.00097 3.91343 6
1.30 −0.06025 0.00346 3.02814 4 0.02023 0.00138 3.81211 9
1.35 −0.12029 0.00370 3.02861 4 −0.03917 0.00129 3.82186 6
1.40 −0.17504 0.00390 3.02937 4 −0.09383 0.00109 3.82459 4
1.45 −0.22502 0.00407 3.03016 4 −0.14378 0.00119 3.82669 5
1.50 −0.27065 0.00414 3.03107 4 −0.18935 0.00111 3.82937 6
1.55 −0.31231 0.00416 3.03205 4 −0.23093 0.00103 3.83243 6
1.60 −0.35037 0.00412 3.03299 4 −0.26894 0.00094 3.83505 6
1.65 −0.38511 0.00405 3.03405 4 −0.30366 0.00087 3.83742 7
1.70 −0.41684 0.00393 3.03510 5 −0.33538 0.00079 3.83976 7
1.75 −0.44582 0.00382 3.03606 5 −0.36428 0.00071 3.84292 7
1.80 −0.47228 0.00367 3.03707 5 −0.39073 0.00064 3.84507 7
1.85 −0.49645 0.00353 3.03797 5 −0.41488 0.00057 3.84722 7
1.90 −0.51850 0.00337 3.03894 5 −0.43694 0.00050 3.84899 7
1.95 −0.53863 0.00322 3.03984 6 −0.45709 0.00044 3.85053 7
2.00 −0.55699 0.00307 3.04076 6 −0.47549 0.00038 3.85187 6
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R (a0) Eres (Eh) Γ (Eh) n∗ gf Eres (Eh) Γ (Eh) n∗ gf

2pσ4dσ 2pσ5s
1.00 0.53645 0.00090 3.95664 5 0.54077 0.00083 4.02531 5
1.05 0.43068 0.00095 3.95707 5 0.43506 0.00078 4.02683 5
1.10 0.33537 0.00090 3.96698 5 0.33920 0.00089 4.02813 5
1.15 0.24873 0.00090 3.97518 5 0.25255 0.00094 4.03662 5
1.20 0.17604 0.00101 4.08347 6
1.25 0.09998 0.00087 4.02017 5
1.30 0.03483 0.00144 4.03202 4
1.35 −0.02522 0.00168 4.03284 2
1.40 −0.08045 0.00148 4.02671 2
1.45 −0.13034 0.00158 4.03013 5
1.50 −0.18091 0.00192 3.95357 4 −0.17601 0.00167 4.03157 4
1.55 −0.22208 0.00138 3.96342 4 −0.21774 0.00170 4.03275 4
1.60 −0.26000 0.00113 3.96760 4 −0.25588 0.00171 4.03356 4
1.65 −0.29480 0.00101 3.96906 4 −0.29070 0.00169 4.03475 4
1.70 −0.32667 0.00096 3.96920 4 −0.32251 0.00166 4.03598 4
1.75 −0.35583 0.00093 3.96863 4 −0.35157 0.00161 4.03704 4
1.80 −0.38252 0.00095 3.96734 3 −0.37810 0.00156 4.03823 5
1.85 −0.40692 0.00091 3.96579 4 −0.40232 0.00149 4.03941 5
1.90 −0.42923 0.00094 3.96386 3 −0.42444 0.00143 4.04058 5
1.95 −0.44962 0.00093 3.96182 4 −0.44463 0.00137 4.04173 5
2.00 −0.46823 0.00096 3.95991 3 −0.46305 0.00131 4.04284 5

2pσ5pσ 2pσ5dσ
1.00 0.57987 0.00112 4.86980 5 0.58277 0.00046 4.95567 6
1.05 0.47089 0.00052 4.78056 7 0.47703 0.00068 4.95744 1
1.10 0.37626 0.00074 4.81678 6 0.38141 0.00049 4.96760 3
1.15 0.28942 0.00077 4.82597 6 0.29452 0.00044 4.97609 1
1.20 0.21043 0.00073 4.83521 6
1.25 0.13894 0.00077 4.85681 6
1.30 0.07191 0.00068 4.82389 7
1.35 0.01203 0.00066 4.83007 7
1.40 −0.04278 0.00064 4.83166 7
1.45 −0.09277 0.00062 4.83465 7
1.50 −0.13842 0.00061 4.83770 6
1.55 −0.18010 0.00061 4.84108 7
1.60 −0.21816 0.00068 4.84486 8
1.65 −0.25289 0.00095 4.84957 5
1.70 −0.28558 0.00154 4.82645 3
1.75 −0.31436 0.00043 4.83620 4 −0.31172 0.00240 4.91249 3
1.80 −0.34077 0.00028 4.84165 4 −0.33763 0.00166 4.93331 3
1.85 −0.36496 0.00024 4.84473 5 −0.36164 0.00127 4.94199 4
1.90 −0.38708 0.00021 4.84654 6 −0.38369 0.00114 4.94625 3
1.95 −0.40731 0.00020 4.84755 6 −0.40388 0.00097 4.94818 3
2.00 −0.42579 0.00019 4.84780 6 −0.42234 0.00089 4.94912 3

2pσ6s 2pσ6pσ
1.00 0.58604 0.00040 5.05836 6 0.60586 0.00058 5.85475 5
1.05 0.50029 0.00068 5.86639 3
1.10 0.38317 0.00050 5.02218 4
1.15 0.29634 0.00053 5.03294 4 0.31612 0.00038 5.81352 6
1.20 0.21768 0.00062 5.05395 5 0.23706 0.00041 5.82647 6
1.25 0.14487 0.00066 5.03610 4 0.16502 0.00043 5.83682 6
1.30 0.07885 0.00071 5.03123 4 0.09897 0.00038 5.82781 6
1.35 0.01876 0.00077 5.03158 3 0.03896 0.00037 5.83237 6
1.40 −0.03606 0.00082 5.03307 3 −0.01585 0.00035 5.83472 6
1.45 −0.08612 0.00081 5.03426 3 −0.06589 0.00034 5.83765 6
1.50 −0.13183 0.00081 5.03580 3 −0.11159 0.00033 5.84065 6
1.55 −0.17353 0.00070 5.03903 2 −0.15333 0.00031 5.84380 6
1.60 −0.21234 0.00055 5.01937 2 −0.19145 0.00030 5.84705 5
1.65 −0.24705 0.00078 5.02512 3 −0.22628 0.00030 5.85041 5
1.70 −0.27880 0.00090 5.02919 4 −0.25809 0.00030 5.85401 5
1.75 −0.30783 0.00090 5.03204 4 −0.28713 0.00031 5.85813 6
1.80 −0.33436 0.00087 5.03437 4 −0.31365 0.00032 5.86247 6
1.85 −0.35860 0.00083 5.03623 4 −0.33785 0.00035 5.86733 5
1.90 −0.38074 0.00079 5.03789 4 −0.35993 0.00040 5.87273 5
1.95 −0.40095 0.00076 5.03935 4 −0.38007 0.00045 5.87868 5
2.00 −0.41940 0.00073 5.04073 5 −0.39844 0.00050 5.88487 4
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R (a0) Eres (Eh) Γ (Eh) n∗ gf Eres (Eh) Γ (Eh) n∗ gf

2pσ7s 2pσ7pσ
1.00
1.05
1.10
1.15
1.20 0.24115 0.00038 6.03979 4
1.25
1.30 0.10286 0.00040 6.03054 3 0.11496 0.00023 6.82842 5
1.35 0.04277 0.00044 6.03101 3
1.40 −0.01207 0.00047 6.03219 3 0.00009 0.00022 6.83565 5
1.45
1.50 −0.10788 0.00046 6.03465 3 −0.09569 0.00020 6.84180 5
1.55
1.60 −0.18782 0.00044 6.03773 3
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00

2pπ2 2pπ3pπ
1.00 0.38429 0.00060 1.84128 6 0.73813 0.00521 2.91066 4
1.05 0.30243 0.00924 1.85157 2 0.64998 0.00451 2.91222 3
1.10 0.56953 0.00519 2.90791 4
1.15 0.17054 0.00522 1.88433 5 0.49687 0.00505 2.90535 5
1.20 0.10598 0.00062 1.88621 5 0.43098 0.00506 2.90405 5
1.25 0.05085 0.00593 1.89430 4 0.37070 0.00503 2.90187 5
1.30 −0.00057 0.00616 1.90014 6 0.31560 0.00507 2.90029 5
1.35 −0.04778 0.00631 1.90551 3 0.26495 0.00510 2.89829 6
1.40 0.21829 0.00513 2.89619 6
1.45 −0.12408 0.00314 1.92791 4 0.17521 0.00518 2.89399 6
1.50 −0.16200 0.00436 1.93074 5 0.13533 0.00524 2.89164 6
1.55 −0.19610 0.00472 1.93523 8 0.09827 0.00528 2.88883 6
1.60 −0.22754 0.00470 1.93983 5 0.06387 0.00534 2.88617 6
1.65 −0.25662 0.00499 1.94442 2 0.03176 0.00539 2.88310 6
1.70 0.00178 0.00545 2.87978 6
1.75 −0.30275 0.00268 1.96452 4 −0.02629 0.00551 2.87621 6
1.80 −0.32651 0.00334 1.96816 5 −0.05263 0.00557 2.87225 7
1.85 −0.34828 0.00356 1.97249 6 −0.07746 0.00562 2.86752 7
1.90 −0.36846 0.00356 1.97701 6 −0.10078 0.00568 2.86288 7
1.95 −0.38723 0.00345 1.98162 5 −0.12279 0.00576 2.85786 7
2.00 −0.40472 0.00328 1.98629 4 −0.14361 0.00584 2.85238 7

2pπ3dπ 2pπ4pπ
1.00 0.75034 0.00418 2.98898 4 0.83755 0.00293 3.82566 3
1.05 0.66585 0.00284 3.01542 5 0.74960 0.00280 3.83196 3
1.10 0.58351 0.00385 2.99783 5 0.67000 0.00243 3.83402 4
1.15 0.51277 0.00358 3.00798 5 0.59763 0.00222 3.83228 5
1.20 0.44790 0.00353 3.01358 6 0.53197 0.00209 3.83256 5
1.25 0.38890 0.00349 3.01987 6 0.47211 0.00202 3.83349 6
1.30 0.33472 0.00307 3.02443 6 0.41785 0.00174 3.84171 6
1.35 0.28524 0.00329 3.03032 6 0.36621 0.00191 3.82326 6
1.40 0.23982 0.00326 3.03649 6 0.31970 0.00189 3.82039 6
1.45 0.19810 0.00322 3.04354 7 0.27662 0.00187 3.81534 6
1.50 0.15959 0.00318 3.05050 7 0.23666 0.00187 3.80885 6
1.55 0.12362 0.00313 3.05488 7 0.19949 0.00188 3.80090 7
1.60 0.09023 0.00306 3.05898 7 0.16488 0.00189 3.79215 7
1.65 0.05957 0.00303 3.06570 2 0.13255 0.00192 3.78203 7
1.70 0.03100 0.00300 3.07189 8 0.10228 0.00195 3.77077 7
1.75 0.00409 0.00295 3.07595 9 0.07385 0.00198 3.75790 7
1.80 −0.02070 0.00294 3.08239 7 0.04711 0.00201 3.74388 7
1.85 −0.04422 0.00294 3.08617 7 0.02188 0.00203 3.72826 8
1.90 −0.06589 0.00295 3.09249 6 −0.00195 0.00205 3.71154 8
1.95 −0.08624 0.00297 3.09845 5 −0.02452 0.00205 3.69356 8
2.00 −0.10537 0.00301 3.10407 5 −0.04593 0.00203 3.67441 8
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R (a0) Eres (Eh) Γ (Eh) n∗ gf Eres (Eh) Γ (Eh) n∗ gf

2pπ4dπ 2pπ5pπ
1.00 0.85269 0.00051 4.05699 7 0.87646 0.00167 4.52346 6
1.05 0.76439 0.00053 4.05862 8 0.79137 0.00208 4.60204 7
1.10 0.68471 0.00054 4.05973 8 0.71399 0.00225 4.66090 7
1.15 0.61224 0.00055 4.05596 9 0.64206 0.00138 4.66877 8
1.20 0.54646 0.00057 4.05434 8 0.57834 0.00135 4.71953 7
1.25 0.48594 0.00062 4.04458 7 0.51999 0.00125 4.76162 6
1.30 0.43131 0.00072 4.04798 6 0.46665 0.00120 4.80247 6
1.35 0.38057 0.00064 4.04106 7 0.41732 0.00113 4.83041 6
1.40 0.33434 0.00072 4.04240 7 0.37182 0.00105 4.85346 5
1.45 0.29152 0.00075 4.04074 7 0.32977 0.00101 4.87245 6
1.50 0.25191 0.00078 4.03879 7 0.29075 0.00097 4.88624 6
1.55 0.21514 0.00081 4.03590 6 0.25439 0.00096 4.89310 5
1.60 0.18155 0.00082 4.04202 6 0.22066 0.00096 4.90004 5
1.65 0.14974 0.00084 4.03851 7 0.18922 0.00096 4.90440 5
1.70 0.12045 0.00086 4.04080 7 0.15989 0.00096 4.90728 5
1.75 0.09261 0.00087 4.03460 8 0.13249 0.00098 4.90942 5
1.80 0.06669 0.00089 4.03054 8 0.10681 0.00100 4.90902 5
1.85 0.04272 0.00086 4.03161 5 0.08259 0.00102 4.90355 5
1.90 0.01995 0.00087 4.02768 6 0.05999 0.00104 4.90156 5
1.95 −0.00137 0.00086 4.02485 6 0.03875 0.00107 4.89894 5
2.00 −0.02154 0.00085 4.02019 6 0.01873 0.00109 4.89493 5

2pπ5dπ 2pπ6pπ
1.00 0.89499 0.00052 5.02465 4 0.90794 0.00122 5.49392 9
1.05 0.80685 0.00046 5.03289 4 0.82063 0.00129 5.53961 8
1.10 0.72730 0.00043 5.03925 4 0.74241 0.00135 5.60568 7
1.15 0.65532 0.00047 5.04783 3 0.67106 0.00092 5.64550 7
1.20 0.58978 0.00045 5.05231 3 0.60585 0.00092 5.66697 7
1.25 0.53007 0.00049 5.05937 2 0.54676 0.00084 5.70504 7
1.30 0.47534 0.00044 5.06280 3 0.49329 0.00076 5.77001 6
1.35 0.42505 0.00040 5.06411 4 0.44120 0.00096 5.68703 7
1.40 0.37880 0.00038 5.06592 4 0.39509 0.00095 5.69608 7
1.45 0.33618 0.00038 5.06906 4 0.35306 0.00093 5.72830 6
1.50 0.29679 0.00037 5.07255 4 0.31390 0.00094 5.74407 7
1.55 0.26036 0.00040 5.07779 4 0.27769 0.00090 5.76188 7
1.60 0.22636 0.00037 5.07679 4 0.24376 0.00094 5.76392 7
1.65 0.19481 0.00036 5.07816 4
1.70 0.16557 0.00036 5.08435 5
1.75 0.13774 0.00033 5.07239 4 0.15542 0.00101 5.77117 6
1.80 0.11203 0.00031 5.07132 5 0.12974 0.00102 5.77063 6
1.85 0.08880 0.00040 5.09754 6 0.10583 0.00100 5.77673 6
1.90 0.06630 0.00037 5.09859 6 0.08323 0.00101 5.77342 6
1.95 0.04517 0.00035 5.09918 6 0.06199 0.00103 5.76870 6
2.00 0.02525 0.00032 5.09789 6 0.04197 0.00104 5.76230 7

2pπ6dπ
1.00
1.05
1.10
1.15 0.67911 0.00018 6.04692 3
1.20 0.61342 0.00018 6.04639 3
1.25 0.55355 0.00022 6.04913 2
1.30 0.49882 0.00028 6.05522 3
1.35 0.44844 0.00031 6.05236 3
1.40 0.40225 0.00037 6.05904 3
1.45 0.35969 0.00040 6.06761 4
1.50 0.32034 0.00040 6.07604 4
1.55 0.28384 0.00042 6.08091 4
1.60 0.24985 0.00046 6.07932 1
1.65
1.70
1.75 0.16155 0.00039 6.09017 5
1.80
1.85 0.11216 0.00042 6.10814 5
1.90 0.08975 0.00040 6.11469 5
1.95
2.00 0.04889 0.00035 6.12455 6
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R (a0) Eres (Eh) Γ (Eh) n∗ gf Eres (Eh) Γ (Eh) n∗ gf

2s3s 2s3pσ
1.00 0.80540 0.00403 2.64046 7
1.05 0.71695 0.00375 2.63354 8
1.10 0.63461 0.00363 2.61627 4
1.15 0.56199 0.00336 2.61001 8
1.20 0.49541 0.00321 2.60234 9
1.25 0.43434 0.00303 2.59436 10
1.30 0.17174 0.00617 1.98923 8 0.37503 0.00357 2.57283 4
1.35 0.12523 0.00603 1.99602 8 0.32678 0.00281 2.58007 10
1.40 0.08252 0.00590 2.00269 8 0.27923 0.00270 2.57365 9
1.45 0.04320 0.00576 2.00924 9 0.23516 0.00261 2.56727 9
1.50 0.00692 0.00562 2.01569 9 0.19423 0.00254 2.56101 9
1.55 −0.02665 0.00550 2.02200 9 0.15613 0.00247 2.55488 8
1.60 −0.05777 0.00539 2.02818 9 0.12066 0.00243 2.54918 8
1.65 −0.08667 0.00528 2.03426 9 0.08741 0.00241 2.54320 8
1.70 −0.11357 0.00519 2.04021 9 0.05625 0.00239 2.53728 8
1.75 −0.13864 0.00511 2.04607 9 0.02699 0.00240 2.53140 7
1.80 −0.16205 0.00504 2.05182 9 −0.00054 0.00241 2.52556 7
1.85 −0.18394 0.00497 2.05748 9 −0.02654 0.00243 2.51954 7
1.90 −0.20445 0.00491 2.06303 9 −0.05101 0.00247 2.51388 6
1.95 −0.22368 0.00487 2.06851 9 −0.07412 0.00251 2.50836 6
2.00 −0.24175 0.00483 2.07388 9 −0.09596 0.00255 2.50305 5

2s3dσ 2s4s
1.00 0.86441 0.00450 2.96271 6 0.89683 0.00051 3.19903 4
1.05 0.77700 0.00430 2.95966 6 0.80847 0.00051 3.18747 4
1.10 0.69796 0.00395 2.95630 6 0.72876 0.00047 3.17789 4
1.15 0.62595 0.00338 2.95120 8 0.65661 0.00047 3.17044 4
1.20 0.56028 0.00317 2.94591 8 0.59099 0.00047 3.16428 4
1.25 0.50032 0.00297 2.94140 8 0.53126 0.00048 3.16050 3
1.30 0.44556 0.00276 2.93858 7 0.47661 0.00046 3.15787 4
1.35 0.39453 0.00259 2.93171 7 0.42651 0.00055 3.15663 4
1.40 0.34753 0.00239 2.92573 7 0.38051 0.00059 3.15701 4
1.45 0.30449 0.00223 2.92278 7 0.33826 0.00069 3.15951 4
1.50 0.26450 0.00209 2.91938 7 0.29936 0.00077 3.16382 5
1.55 0.22721 0.00197 2.91532 7 0.26371 0.00083 3.17165 5
1.60 0.19250 0.00184 2.91154 7 0.23047 0.00087 3.17852 6
1.65 0.16022 0.00172 2.90858 7 0.19962 0.00090 3.18618 6
1.70 0.13004 0.00160 2.90573 7
1.75 0.10193 0.00150 2.90393 7 0.14406 0.00090 3.20224 7
1.80 0.07547 0.00140 2.90163 7 0.11902 0.00090 3.21085 7
1.85 0.05074 0.00131 2.90023 6 0.09562 0.00088 3.21999 8
1.90 0.02742 0.00124 2.89858 6 0.07359 0.00087 3.22853 9
1.95 0.00552 0.00118 2.89746 6 0.05286 0.00086 3.23686 9
2.00 −0.01507 0.00114 2.89685 6 0.03337 0.00085 3.24537 8

2s5s 2s5pσ
1.00 0.99852 0.00223 4.61914 4
1.05 0.91158 0.00298 4.61914 4
1.10 0.80825 0.00152 4.10733 5 0.83272 0.00316 4.61079 4
1.15 0.73561 0.00082 4.08288 5 0.76110 0.00323 4.60085 4
1.20 0.67148 0.00080 4.09520 6 0.69591 0.00314 4.59259 4
1.25 0.61251 0.00075 4.10008 6 0.63637 0.00312 4.58555 5
1.30 0.55885 0.00078 4.11134 6 0.58187 0.00312 4.58105 5
1.35 0.50926 0.00070 4.11745 7 0.53125 0.00284 4.56499 5
1.40 0.46389 0.00067 4.12948 7 0.48493 0.00266 4.55858 5
1.45 0.42194 0.00065 4.14028 7 0.44220 0.00262 4.55462 5
1.50 0.38308 0.00064 4.15083 7 0.40254 0.00256 4.54953 5
1.55 0.34703 0.00065 4.16132 7 0.36568 0.00248 4.54436 5
1.60 0.31349 0.00065 4.17127 8 0.33136 0.00235 4.53921 5
1.65 0.28225 0.00064 4.18149 8 0.29934 0.00229 4.53398 5
1.70 0.25308 0.00062 4.19162 8 0.26940 0.00220 4.52885 5
1.75 0.22577 0.00063 4.20086 8 0.24136 0.00216 4.52346 5
1.80 0.20019 0.00063 4.21032 10 0.21504 0.00214 4.51801 4
1.85 0.17617 0.00065 4.21929 8 0.19029 0.00217 4.51242 4
1.90 0.15357 0.00069 4.22768 7 0.16714 0.00258 4.51010 3
1.95 0.13223 0.00081 4.23488 6 0.14521 0.00194 4.50524 4
2.00 0.11204 0.00121 4.24049 5 0.12437 0.00187 4.49710 5
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7.1 R-matrix calculation of the resonance states of 3HeT+

Table 7.3 – Continued from previous page
R (a0) Eres (Eh) Γ (Eh) n∗ gf Eres (Eh) Γ (Eh) n∗ gf

2s5dσ 2s5fσ
1.00 1.00823 0.00296 4.87859 3 1.01215 0.00049 4.99668 3
1.05 0.92133 0.00343 4.87986 2 0.92517 0.00042 4.99536 3
1.10 0.84668 0.00041 4.99632 3
1.15 0.77071 0.00291 4.85440 3 0.77550 0.00044 4.99740 5
1.20 0.70561 0.00274 4.84710 3 0.71060 0.00044 4.99572 5
1.25 0.64614 0.00279 4.84100 3 0.65131 0.00042 4.99461 3
1.30 0.59152 0.00267 4.83220 3 0.59701 0.00044 4.99509 4
1.35 0.54126 0.00252 4.82344 3 0.54693 0.00045 4.99080 3
1.40 0.49487 0.00219 4.81386 4 0.50043 0.00049 4.97670 3
1.45 0.45200 0.00226 4.80545 4 0.45817 0.00041 4.98634 4
1.50 0.41221 0.00226 4.79583 4 0.41878 0.00041 4.98811 4
1.55 0.37518 0.00224 4.78500 4 0.38224 0.00044 4.99102 5
1.60 0.34071 0.00224 4.77495 4 0.34814 0.00044 4.99095 5
1.65 0.30853 0.00234 4.76451 3 0.31633 0.00044 4.99054 7
1.70 0.27850 0.00248 4.75602 3 0.28660 0.00046 4.99015 5
1.75 0.25074 0.00283 4.75765 3 0.25876 0.00047 4.98936 4
1.80 0.22344 0.00177 4.72520 3 0.23268 0.00052 4.98946 4
1.85 0.19811 0.00222 4.70351 3 0.20821 0.00051 4.99042 4
1.90 0.17426 0.00275 4.68291 4 0.18516 0.00047 4.99033 4
1.95 0.15134 0.00381 4.65228 4 0.16343 0.00045 4.99019 5
2.00 0.14293 0.00044 4.98976 6

2s6s 2s6pσ
1.00 1.01392 0.00038 5.05262 3 1.02904 0.00171 5.62465 4
1.05 0.92756 0.00032 5.07135 4 0.94178 0.00169 5.61016 5
1.10 0.84936 0.00035 5.08180 5 0.86296 0.00177 5.59711 4
1.15 0.77783 0.00031 5.07169 5 0.79150 0.00183 5.58663 5
1.20 0.71337 0.00031 5.08446 5 0.72647 0.00179 5.57870 4
1.25 0.65428 0.00029 5.08979 5 0.66703 0.00178 5.57026 5
1.30 0.60028 0.00029 5.10015 5 0.61256 0.00175 5.56361 4
1.35 0.55041 0.00030 5.10270 5 0.56242 0.00174 5.55511 4
1.40 0.50482 0.00028 5.11801 6 0.51627 0.00161 5.55101 4
1.45 0.46253 0.00029 5.12732 6 0.47356 0.00158 5.54498 4
1.50 0.42333 0.00033 5.13553 6 0.43397 0.00154 5.53870 4
1.55 0.38690 0.00040 5.14240 7 0.39718 0.00183 5.53220 3
1.60 0.35288 0.00060 5.14511 7 0.36313 0.00155 5.53436 6
1.65 0.32096 0.00125 5.14096 4 0.33114 0.00142 5.52609 6
1.70 0.30126 0.00135 5.51908 5
1.75 0.26587 0.00090 5.22599 5 0.27327 0.00132 5.51189 5
1.80 0.23983 0.00059 5.22744 6 0.24698 0.00140 5.50320 4
1.85 0.21547 0.00046 5.23281 7 0.22224 0.00190 5.49335 3
1.90 0.19261 0.00040 5.23949 6 0.19976 0.00179 5.51715 3
1.95 0.17108 0.00045 5.24614 5 0.17767 0.00115 5.50153 5
2.00 0.15089 0.00053 5.25711 4 0.15685 0.00097 5.48764 6

2s6dσ 2s7s
1.00 1.03417 0.00163 5.86761 3 1.03739 0.00020 6.03748 3
1.05 0.94712 0.00182 5.86187 2 0.95079 0.00016 6.05617 3
1.10 0.86843 0.00153 5.85350 3 0.87248 0.00017 6.06771 4
1.15 0.79705 0.00151 5.84529 3 0.80118 0.00017 6.06325 4
1.20 0.73205 0.00150 5.83755 3 0.73655 0.00017 6.07538 4
1.25 0.67263 0.00152 5.82916 3 0.67740 0.00017 6.08106 5
1.30 0.61811 0.00146 5.81943 3 0.62324 0.00018 6.08997 5
1.35 0.56795 0.00178 5.80880 2 0.57316 0.00021 6.08220 4
1.40 0.52173 0.00145 5.80026 3 0.52737 0.00030 6.09640 5
1.45 0.48468 0.00067 6.08963 5
1.50 0.43969 0.00103 5.79913 3
1.55 0.40258 0.00100 5.77578 5 0.41029 0.00064 6.18775 5
1.60 0.36814 0.00103 5.75972 5 0.37619 0.00040 6.18733 6
1.65 0.33599 0.00106 5.74289 5 0.34447 0.00031 6.19239 6
1.70 0.30587 0.00113 5.72366 6 0.31488 0.00027 6.19969 7
1.75 0.27751 0.00131 5.69854 6 0.28719 0.00024 6.20711 7
1.80 0.25062 0.00178 5.66180 5 0.26124 0.00023 6.21535 5
1.85 0.23687 0.00028 6.22300 4
1.90 0.21403 0.00032 6.23592 5
1.95 0.18385 0.00190 5.77838 4 0.19247 0.00027 6.24516 6
2.00 0.16291 0.00172 5.75675 4 0.17213 0.00026 6.25431 5
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7.1 R-matrix calculation of the resonance states of 3HeT+

Table 7.3 – Continued from previous page
R (a0) Eres (Eh) Γ (Eh) n∗ gf Eres (Eh) Γ (Eh) n∗ gf

2s7pσ 2s7dσ
1.00 1.04659 0.00109 6.61739 4 1.04979 0.00115 6.86230 2
1.05 0.95946 0.00112 6.60361 4 0.96276 0.00096 6.85531 3
1.10 0.88076 0.00116 6.59121 4 0.88416 0.00092 6.84839 3
1.15 0.80939 0.00120 6.57996 4 0.81283 0.00116 6.84007 2
1.20 0.74445 0.00118 6.57334 4 0.74788 0.00089 6.83129 3
1.25 0.68506 0.00118 6.56375 4 0.68850 0.00092 6.82101 3
1.30 0.63067 0.00114 6.55841 4 0.63404 0.00097 6.80948 2
1.35 0.58031 0.00125 6.52915 4 0.58453 0.00073 6.84424 4
1.40 0.53446 0.00125 6.54274 3 0.53798 0.00076 6.80403 6
1.45 0.49184 0.00112 6.53902 4 0.49521 0.00069 6.78811 4
1.50 0.45231 0.00107 6.53352 5 0.45557 0.00067 6.77328 4
1.55 0.41558 0.00102 6.52681 5 0.41872 0.00063 6.75678 5
1.60 0.38138 0.00096 6.51998 4 0.38439 0.00065 6.73864 4
1.65 0.34946 0.00095 6.51169 4 0.35227 0.00071 6.71440 4
1.70 0.31959 0.00096 6.50081 4 0.32208 0.00090 6.67921 5
1.75 0.29153 0.00116 6.48419 3
1.80 0.26625 0.00128 6.53942 3 0.27000 0.00128 6.81860 4
1.85 0.24134 0.00090 6.51109 5 0.24509 0.00112 6.78687 4
1.90 0.21799 0.00082 6.49071 6 0.22176 0.00104 6.76473 4
1.95 0.19610 0.00139 6.47857 6 0.19985 0.00097 6.74966 5
2.00 0.17573 0.00110 6.48658 6 0.17921 0.00090 6.73787 6

2s8s 2s8pσ
1.00 1.05178 0.00012 7.02867 2 1.05775 0.00077 7.61298 4
1.05 0.96502 0.00011 7.04486 2 0.97069 0.00079 7.59910 4
1.10 0.88664 0.00011 7.05689 3 0.89206 0.00081 7.58766 4
1.15 0.81541 0.00012 7.05589 3 0.82074 0.00083 7.57630 4
1.20 0.75058 0.00037 7.05715 0 0.75584 0.00082 7.57063 4
1.25 0.69148 0.00013 7.07090 4 0.69650 0.00082 7.56044 4
1.30 0.63721 0.00019 7.07513 4 0.64216 0.00085 7.55792 3
1.35 0.58684 0.00037 7.03695 2
1.40 0.54242 0.00090 7.18324 4 0.54598 0.00086 7.53795 4
1.45 0.49965 0.00040 7.16453 4 0.50336 0.00078 7.53270 4
1.50 0.46020 0.00026 7.16427 5 0.46385 0.00075 7.52591 4
1.55 0.42362 0.00021 7.16919 5 0.42714 0.00072 7.51787 4
1.60 0.38960 0.00018 7.17665 6 0.39296 0.00068 7.50846 4
1.65 0.35789 0.00016 7.18520 6 0.36102 0.00072 7.49440 3
1.70 0.32827 0.00016 7.19412 6 0.33106 0.00097 7.46881 3
1.75 0.30054 0.00015 7.20177 3 0.30393 0.00082 7.54114 4
1.80 0.27455 0.00023 7.21060 4 0.27756 0.00065 7.51112 5
1.85 0.25019 0.00020 7.22432 4
1.90 0.22725 0.00018 7.23385 4 0.22988 0.00093 7.49664 5
1.95 0.20563 0.00017 7.24321 6 0.20807 0.00071 7.48709 4
2.00 0.18523 0.00017 7.25230 7 0.18745 0.00061 7.47338 5

2s8dσ
1.00 1.05988 0.00068 7.85942 2
1.05 0.97287 0.00090 7.85005 2
1.10 0.89431 0.00071 7.84639 2
1.15 0.82302 0.00062 7.83705 2
1.20 0.75810 0.00064 7.82786 2
1.25 0.69889 0.00146 7.83261 1
1.30 0.64458 0.00044 7.83443 4
1.35 0.59414 0.00075 7.77533 2
1.40 0.54821 0.00054 7.78846 4
1.45
1.50 0.46596 0.00043 7.76088 4
1.55 0.42916 0.00041 7.74164 4
1.60 0.39484 0.00045 7.71660 4
1.65 0.36270 0.00059 7.67757 3
1.70 0.33240 0.00088 7.61192 4
1.75
1.80 0.28002 0.00071 7.78517 3
1.85
1.90 0.23215 0.00059 7.74812 6
1.95 0.21033 0.00057 7.73548 5
2.00 0.18974 0.00055 7.72467 6
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7.2 Final state distribution results

other n = 3 states. These resonances lie very close together and make the interpolation

of the resonances as a function of R very difficult. Also as the n = 3 target states have

similar shaped curves it is also difficult to determine which are the ‘intruder’ resonances.

Therefore resonance curves for the resonances detected between the 2sσ and 3pσ states

have not been determined. The resonances detected above 3pσ have negative goodness

factors implying that the fit is poor, hence these resonances were ignored.

In principle there are an infinite number of resonances associated with each target

state for each n and each l. There is in fact a double infinity, as for each l there is an

infinite number of n, and there are an infinite number of l. However in practise the

number of resonances determined is limited by the choice of partial waves, which in

this calculation is states with l ≤ 7. Hence we can assume that states with l > 7 have

quantum defects very close to zero.

7.2 Final state distribution results

For the final state probability distribution of the electronic continuum the contribution

from resonances and the background continuum have been calculated separately. Tran-

sitions involving the β-decay of T2 molecules in the ground rovibrational level of the n

= 1 electronic state have been considered.

7.2.1 Probability distribution of the resonances

In chapter 2, the following equation (given by Jeziorski et al. [112]) was stated for the

probability distribution involving transitions to the nuclear motion continuum of the

electronically bound states of 3HeT+:

PnJ(E) = (2J + 1)

∣

∣

∣

∣

∫

∞

0
Sn(R)jJ (KR)f

3HeT+

nJ (R|E)fT2
100(R) dR

∣

∣

∣

∣

2

, (7.6)

where PnJ (E) is the probability per unit energy that the 3HeT+ molecule dissociates via

the nth electronic state and that the dissociation products are in a state with energy E

and angular momentum J , jJ(KR) is the spherical Bessel function, f T2
100(R) is the radial

vibrational wave function of the n = 1, v =0, J = 0 state of T2 and f
3HeT+

nJ (R|E) is the

energy normalised radial function of the continuous spectrum. Sn(R) is the overlap inte-

gral providing the R-dependent probability amplitude of transition to the nth electronic
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7.2 Final state distribution results

state of the daughter system given by:

Sn(R) =

∫

ψ
3HeT+

n

∗

(r1, r2;R)ψT2
1 (r1, r2;R) dr1 dr2. (7.7)

where ψc
n(r1, r2;R) are the clamped-nuclei electronic wavefunctions for the initial (c =

T2) and final (c = 3HeT+) state.

Equation (7.6) can also be used to calculate the probability density distribution

of the resonance states if they are considered as quasibound states embedded in the

continuum and are decoupled from the background continuum. The label n in equations

(7.6) and (7.7) now refers to the combined configuration of the 2 electrons. By using this

equation, the R dependence of the resonance is taken into account explicitly. However,

before PnJ(E) for a particular resonance can be calculated, the overlap Sn(R) must be

determined. The electronic wavefunctions for the resonance states can be extracted from

the R-matrix calculation discussed in the previous section whilst the wavefunction for

T2 can be obtained by performing an e - T+
2 scattering calculation.

As discussed in chapter 3, the full energy-dependant scattering wavefunction ΨE

in the inner region, is a linear combination of the energy-independent eigenfunctions,

ψk, describing the target molecule plus scattering electron system within the R-matrix

sphere:

ΨE =
∑

k

AEkψk, (7.8)

where the coefficients AEk are found by matching with the computed outer region func-

tions at the boundary using the R-matrix. ψk are represented by the close coupling

expansion given by equation (3.38) and have associated energies, Ek, called ‘R-matrix

poles’, which are calculated by the SCATCI module. In the outer region, the total

wavefunction ΨE is given by equation (3.39).

In order to determine Sn(R) several assumptions have been made. The first key

assumption is that the wavefunction describing the ground electronic state of T2, with

energy ET2
1 , is entirely localised inside the R-matrix sphere. Therefore in equation (7.8)

the coefficient AEk at E ' ET2
1 becomes the Dirac delta function, δ(E − ET2

1 ), and so

the wavefunction for the T2 ground state is given by the eigenfunction ψT2
1 which has

an associated R-matrix pole Ek ' ET2
1 . This is a valid assumption for the short range

ground electronic state of T2 which is the only state considered in this work. By making

this assumption we can therefore ignore the total wavefunction describing the 3HeT+

system in the outer region as the overlap of this wavefunction with the T2 wavefunction

will be zero.
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7.2 Final state distribution results

The next assumption made is that the wavefunction describing the resonance is also

totally localised inside the R-matrix box. This is a reasonable assumption for the low

lying resonances but becomes worse for higher lying resonances. The coefficient AEk at

E ' Eres becomes the Dirac delta function, and so the wavefunction for the resonance

is given by the eigenfunction ψ
3HeT+

k with an associated R-matrix pole Ek ' Eres.

The eigenfunction describing the resonance state n is given by (c.f. equation (3.38)):

ψ
3HeT+

n (r1, r2;R) =
∑

l

cl(R)φCSF
l (r1, r2), (7.9)

where φCSF
l are configuration state functions normalised over the inner region, which

include the contribution from both the ‘target+continuum’ functions and L2 functions.

Similarly, the eigenfunction describing the T2 ground state is given by:

ψT2
1 (r1, r2;R) =

∑

m

dm(R)ϕCSF
m (r1, r2), (7.10)

and the overlap integral is then:

Sn(R) =

∫

∑

l

c∗l (R)φCSF∗
l (r1, r2)

∑

m

dm(R)ϕCSF
m (r1, r2) dr1 dr2. (7.11)

If ψ
3HeT+

n and ψT2
1 are expanded in the same basis, i.e. φCSF

l and ϕCSF
m are identical,

then Sn(R) reduces to:

Sn(R) =
∑

l

c∗l (R)
∑

m

dm(R)

∫

φCSF∗
l (r1, r2)ϕ

CSF
m (r1, r2) dr1 dr2

= δlm
∑

l

c∗l (R)dl(R). (7.12)

which is a straightforward vector multiplication.

To obtain ψT2
1 in the same basis as ψ

3HeT+

n an (inner region only) R-matrix cal-

culation for e - T+
2 scattering was performed using the same target molecular orbitals

and continuum orbitals as in the e - 3HeT2+ calculation discussed above, for the same

geometries. At each R, the first (i.e. lowest energy) R-matrix pole corresponds to the

ground state of T2. The eigenfunction associated to that pole was therefore selected to

represent the state at that R. The R-matrix poles obtained for the T2 ground state in

this calculation are given in table 7.4. The poles were compared to the T2 potential from

[163], which has been used in this work for the calculation of the final state distribution

(see chapter 5). This potential and the differences between it and the poles are also

given in the table. The poles are in good agreement with the energies, with differences
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7.2 Final state distribution results

Table 7.4: Energies of the T2 ground state, in Eh, as a function of the internuclear separation R,

in a0, obtained in the R-matrix calculation. Also given are the T2 potential from [163] (column

2) and the difference between these energies (column 3)

R R-matrix [163] Difference

1.00 −1.121904077 −1.124350006 0.002445929

1.05 −1.136284136

1.10 −1.147507149 −1.149874337 0.002367188

1.15 −1.156087015

1.20 −1.162466567 −1.164758239 0.002291672

1.25 −1.166992423

1.30 −1.169962863 −1.172175518 0.002212655

1.35 −1.171621233 −1.173794540 0.002173307

1.40 −1.172174258 −1.174308820 0.002134562

1.45 −1.171796390 −1.173892312 0.002095922

1.50 −1.170632358 −1.172692313 0.002059955

1.55 −1.168819496

1.60 −1.166448621 −1.168424160 0.001975539

1.65 −1.163614991

1.70 −1.160400060 −1.162302522 0.001902462

1.75 −1.156870805

1.80 −1.153085747 −1.154915030 0.001829283

1.85 −1.149094483

1.90 −1.144941649

1.95 −1.140664067

2.00 −1.136295566 −1.137982819 0.001687253

129



7.2 Final state distribution results

less than 0.0025 Eh, which proves the validity of the assumption made on the entire

localisation of the T2 ground state wavefunction inside the R-matrix sphere.

Obtaining the eigenfunctions for the resonance states was a little more complicated.

There are a large number of poles that lie in the energy region corresponding to the

electronic continuum of 3HeT+, whose associated eigenfunctions ψ
3HeT+

k describe the

resonance states and the background continuum in a discrete form. To identify which

eigenfunction represents a particular resonance two methods were used simultaneously.

Firstly, as the poles lie close together, the resonances were matched to poles by their

effective quantum number rather than matching by energy. n∗ were obtained for all of

the poles, relative to the nearest 3HeT2+ target threshold, and so were consistent with

the n∗ obtained in RESON for the resonances. Although this proved to be easier than

matching by energy, there were cases where there was a couple of poles with very similar

n∗. Even though the entire localisation of the resonance inside the R-matrix sphere is

a reasonable assumption for lower lying resonances, it is not exact, hence the resonance

energy will not match a pole exactly but be very close. This means that the pole with

the closest energy may not necessarily be the one describing the resonance.

The second method used was to analyse the overlaps of all the eigenfunctions with

the ground state T2 eigenfunction ψT2
1 . For every eigenfunction ψk in the set, the overlap

Sn(R) was obtained by using equation (7.12) for every geometry. The coefficients cl and

dl are calculated in the SCATCI module. It is expected the eigenfunctions describing

the resonance states will have larger overlaps than those describing the background

continuum. This was found to be true for most of the poles. Using both these methods

simultaneously, the poles/eigenfunctions and overlap integrals as a function of R for nine

resonance states were determined.

For some of the cases where the pole describing the resonance state lay very close to

another pole there was some mixing of the overlaps, resulting in a slightly too small or

too large value for the overlap of the resonance at that R. To treat this the overlap was

smoothed out against those at the neighbouring geometries. The (smoothed) overlaps

Sn(R) for the nine resonance states are given in table 7.5. At some geometries it was

not possible to determine the correct pole with sufficient certainty and no overlap was

determined. For some of the higher lying resonances which lie very close together, it was

not possible to identify the corresponding eigenfunction because of the overlap mixing as

mentioned above. For even higher resonances the transition probability to these states
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Figure 7.4: Final state probability density distribution for nine resonance states of 3HeT+ result-

ing from the β-decay of a T2 molecule in the ground rovibrational state of the n = 1 electronic

state.

is very small and so the overlap integral for the resonances is of the same order as the

overlap for the background continuum.

The probability density distribution of each resonance was obtained by using the

modified BCONT code to calculate the radial functions f T2
100(R) and f

3HeT+

nJ (R|E) and

hence the probability density PnJ(E), as described in chapters 3 and 5, for the β-decay

of a T2 molecule in the ground rovibrational state of the n = 1 electronic state. The

probability density distributions of the nine resonance states of 3HeT+ are shown in

figure 7.4. The total probabilities associated with each resonance are given in table

7.6 together with the probabilities obtained by Froelich et al. [149] for the first five

resonances. As can be seen from the figure and table, there is a significant contribution

from the 2pπ2 and 2s2pσ which were not present in the calculation of reference [149].
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Table 7.5: Overlap integrals Sn(R) between nine resonance states of 3HeT+ with the electronic ground state of T2.

R 2pσ2 2pσ3s 2pσ3pσ 2pσ3dσ 2pσ4s 2pσ4dσ 2pσ5s 2pπ2 2s2pσ

1.00 0.02716

1.05 0.02630 0.02116

1.10 0.02600 0.02231

1.15 0.02576 0.02369

1.20 0.09774 0.19751 0.02568 0.05381 0.02352 0.05095

1.25 0.11281 0.20146 0.02446 0.05189 0.02324 0.02190 0.01019 0.04886

1.30 0.12016 0.20504 0.02386 0.04959 0.02331 0.02027 0.00971 0.04437 0.08073

1.35 0.14483 0.20841 0.02437 0.04659 0.02494 0.01910 0.00947 0.04272 0.08037

1.40 0.16025 0.21128 0.02487 0.04291 0.02597 0.01928 0.00940 0.03945 0.07922

1.45 0.17765 0.21657 0.02666 0.03785 0.02747 0.01983 0.03956 0.07820

1.50 0.19183 0.22252 0.02849 0.03249 0.02942 0.01408 0.02234 0.03947 0.07776

1.55 0.20221 0.23058 0.03020 0.02756 0.03143 0.01560 0.02265 0.03926 0.07619

1.60 0.21506 0.24088 0.03382 0.03432 0.01600 0.02220 0.04156 0.07441

1.65 0.22535 0.24830 0.01550 0.02148 0.04080 0.07058

1.70 0.23346 0.25536 0.01620 0.01880 0.03902 0.06963

1.75 0.23484 0.25701 0.01532 0.01919 0.03909 0.06669

1.80 0.23447 0.26122 0.01453 0.01976 0.03886 0.06312

1.85 0.23556 0.26574 0.01205 0.02174 0.04214 0.06091

1.90 0.23520 0.26992 0.01218 0.02196 0.03644 0.05455

1.95 0.23696 0.27406 0.01121 0.02266 0.04203 0.05360

2.00 0.23751 0.27909 0.01200 0.02466 0.03306 0.04617
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7.2 Final state distribution results

Table 7.6: Total probabilities, in %, of nine resonance states of 3HeT+. For comparison, the

probabilites obtained for the first five resonances in ref. [149] are also given.

Resonance This work [149]

2pσ2 2.91 2.9

2pσ3s 4.74 4.8

2pσ3pσ 0.08 0.02

2pσ3dσ 0.16 0.2

2pσ4s 0.08 0.3

2pσ4dσ 0.03

2pσ5s 0.03

2pπ2 0.17

2s2pσ 0.61

7.2.2 Probability distribution of the background continuum

The total transition probability Pn from the T2 ground state to all rovibrational and

scattering states associated with the nth electronic state of 3HeT+ is given by [118]:

Pn =

∫

∞

0
Sn(R)fT2

100(R) dR (7.13)

The use of this equation to check the internal consistency and accuracy of the calculated

probabilities to the first six lowest electronic states of 3HeT+ has been discussed in

chapter 5.

If Sn(R) is a slowly varying function of R then:

Pn ' S2
n(Re)

∫

∞

0
[fT2

100(R)]2 dR

= S2
n(Re) (7.14)

where Re is the equilibrium geometry of the T2 molecule (Re = 1.4 a0). Hence if nuclear

motion is not taken into account, the probability to a given state n is simply given by

the overlap integral squared.

If the eigenfunctions ψ
3HeT+

k representing the nine resonance states are removed

from the complete set, as well as those representing the bound states, the remaining

eigenfunctions can be used as a discrete representation of the background continuum

and the remaining infinite number of resonances. Equation (7.14) can then be used
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7.2 Final state distribution results
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Figure 7.5: Discrete final state probability distribution of the background continuum and re-

maining resonances. See text for details

to obtain the (discrete) probability distribution of the background continuum and the

remaining resonances. These results are shown in figure 7.5.

To obtain a continuous final state spectrum of the background continuum, a Gaus-

sian was run through the discrete distribution with an energy resolution of 4 eV. The

final state probability density distribution of the background continuum and remaining

resonances is shown in figure 7.6 together with the distribution of the nine resonance

states of 3HeT+ that were considered separately.

The total probability associated with the electronic continuum obtained in this work

up to 240 eV is 13.66%. Above 240 eV the total probability from the background

continuum and remaining resonances is 0.58%.

A comparison of the (binned) final state probability distribution of the electronic

continuum obtained in this work with the most recent distribution obtained by Saenz,

Jonsell and Froelich [106] is shown and discussed in chapter 9.
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7.2 Final state distribution results
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Figure 7.6: Final state probability density distribution for the electronic continuum of 3HeT+

resulting from the β-decay of a T2 molecule in the ground rovibrational state of the n = 1

electronic state.

135



Chapter8
Endpoint considerations of other tritium

species

In chapter 5 the final state distributions of the first six electronic states of 3HeD+ and

3HeH+ resulting from the β-decay of the T2 isotopomers, HT and DT, were calculated.

With the main contamination of the T2 source expected to be from DT molecules, es-

timates of the error in the value of the neutrino mass deduced from fitting theoretical

curves, due to uncertainties in the percentage of DT molecules in the source were ob-

tained and discussed in chapter 6. This isotope contamination, which comes from the

fact that the isotopic purity of tritium is around 95%, will be monitored using laser

Raman spectroscopy [172].

However, source contamination from other tritium containing species could also occur

in the WGTS. These other species – T−, T, T+, T+
2 , T+

3 and T+
5 – can arise from the

interaction of the β electrons with the source molecules, and from the β-decay itself.

The β-decay of these species, which will have slightly different endpoint energies due

to the different ground state energies of the parent and daughter atom/molecule, will

contribute to the overall β spectrum. In this chapter, estimates of the endpoint energies

of the different species relative to the endpoint energy of T2 are obtained, to see if they

will have any contribution in the small energy region (about 30 eV) close to the endpoint

which will be analysed by the KATRIN experiment.

The tritium species discussed above can be created by the processes listed below.

These processes have been obtained from the KATRIN Design Report [98]. For more

information the reader is referred to the KATRIN Design Report and the references

therein.
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The scattering of the energetic β electrons by the source molecules can result in the

formation of T+
2 , T+ and T through:

e− + T2 → T+
2 + 2e−, (8.1)

e− + T2 → T + T+ + 2e−. (8.2)

Subsequent collisions of the T+
2 ions and source molecules produce T+

3 :

T+
2 + T2 → T+

3 + T. (8.3)

T+
5 ions can be created by further (three-body) collisions of the T+

3 ions with the neutral

gas molecules:

T+
3 + 2T2 → T+

5 + T2. (8.4)

The T− ions can be formed from the dissociative attachment of T2:

e− + T2 → T− + T+. (8.5)

T+ is also formed from the break up of the daughter molecule created in the primary

β-decay:

T2 → e− + 3HeT+ → e− + T+ + 3He. (8.6)

The equations for the β-decay of these species are:

T+ → 3He++ + e− + ν̄e, (8.7)

T → 3He+ + e− + ν̄e, (8.8)

T− → 3He + e− + ν̄e, (8.9)

T+
2 → 3HeT++ + e− + ν̄e, (8.10)

T+
3 → 3HeT++

2 + e− + ν̄e, (8.11)

T+
5 → 3HeT++

4 + e− + ν̄e. (8.12)

To obtain the endpoint energies of these species relative to the endpoint of T2, the

ground state energies of the parent atoms/molecules need to be determined on the same

energy scale, and similarly for the daughter atoms/molecules. Here, the energies of the

bare nuclei, T+ and 3He++ have been set as the energy zeros. For the ground states of

the T2 and 3HeT+ molecules, results obtained from the LEVEL code discussed in chapter

5 have been used. On this energy scale, the energies of the (v=0, J=0) rovibrational

levels of T2 and 3HeT+ are -31.8 and -80.9 eV respectively.
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For the atomic species the energies are trivial. The ionisation energies for atomic

hydrogen and helium and the electron affinity of hydrogen, which are well known, can

be found in many books or online databases. The ground state energy of the hydrogen

atom is simply given by the negative of the ionisation energy, i.e. -13.6 eV. The electron

affinity of the hydrogen atom is approximately 0.75 eV, therefore the energy of T− is

-14.35 eV. The first and second ionisation energies for the helium atom are 24.6 and

54.4 eV, hence the ground state energies of 3He+ and 3He are -54.4 eV and -79.0 eV

respectively.

The solution of the exact wavefunctions and energy values of the ground electronic

state of the hydrogen molecular ion have been studied by many authors, e.g [179–184].

The equilibrium internuclear separation is found to be approximately R = 2.0 a0 [183]

and the electronic energy at this R is -2.20525 Rydbergs (-1.102625 Eh) [184]. To obtain

the potential energy, the nuclear repulsion energy, E = ZAZBe2

R = 1
2 Eh, must be added

to the electronic energy. Converting to electronvolts, the potential energy is -16.4 eV.

This value corresponds to the potential minimum, hence for the the ground rovibrational

state, the zero point energy (ZPE) must be taken into account. The ZPE of T+
2 was

obtained from ‘Constants of Diatomic Molecules’ by Huber and Herzberg [185] and is

approximately 0.08 eV, thus giving the energy of the (v=0, J=0) state to be -16.32 eV.

For the electronic ground state of 3HeT++, the potential energy at R = 2.0 a0, -41.15

eV, was computed using the code by Power [176] as in chapter 7.

The equilibrium geometry of T+
3 is an equilateral triangle, however when the zero point

energy effect is taken into account the range of geometries corresponding to the ground

rovibrational state will deviate from the equilibrium structure. As the ground state

potential curve of 3HeT++
2 is repulsive, by considering vertical transitions, any small

changes in the geometry of T+
3 could result in large energy changes of 3HeT++

2 . A

1-dimensional image of this situation is shown in figure 8.1, although in reality the

potentials of T+
3 and 3HeT++

2 are of course 3-dimensional. Therefore, by taking into

account this ZPE effect, the β-decay endpoint will lie within a range of energies and will

be dependant on the geometry of the molecule. The limits of the energy range will cor-

respond to the geometry limits of the T+
3 rovibrational ground state and the endpoints

for intermediate geometries will fall within the range.

138



Figure 8.1: ZPE effect on the repulsive curve of 3HeT++
2 . See text for details.

To determine the geometry limits, the wavefunction and energy for the ground state

of T+
3 was calculated using the DVR3D program suite [186]. The DVR3D program suite

calculates wavefunctions, energy levels, and dipole transition moments, for rotating and

vibrating triatomic molecules. To describe the geometry of T+
3 , Jacobi coordinates were

used, see figure 8.2. The Jacobi coordinate system uses two lengths and an angle (r1,

r2, θ). r1 represents the distance between the two atoms, T1 and T3, the ‘diatom’, and

r2 represents the distance from the centre of mass of the diatom to the third atom T2.

θ is the angle between r1 and r2.

The wavefunction of the rovibrational ground state obtained from the DVR3D pro-

gram is shown in figure 8.3 as a function of r1 and r2, for θ = 90◦. The energy of the state

relative to the potential minimum is 0.011795 Eh. In figure 8.4 the contours at 8%, 16%,

32%, and 64% of the wavefunction maximum are shown together with the contour of the

potential energy curve at the energy of the rovibrational ground state. The geometry

limits were taken from the black contour (8% of the wavefunction maximum), therefore

allowing for some tunneling effects. The limits chosen were (r1 = 1.69 a0, r2 = 1.92 a0)

and (r1 = 1.78 a0, r2 = 1.05 a0).
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Figure 8.2: Jacobi coordinate system for T+
3
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Figure 8.3: Wavefunction of the rovibrational ground state of T+
3 calculated using the DVR3D

program suite for θ = 90◦.
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Figure 8.4: Contours of the wavefunction of the rovibrational ground state of T+
3 drawn at 8%

(black), 16% (yellow), 32% (blue) and 64% (pink) of the wavefunction maximum. Also shown is

the contour of the potential energy curve at the energy of the rovibrational ground state (green).

The energy of the rovibrational ground state of T+
3 calculated by the DVR3D pro-

gram is given relative to the potential minimum, hence it is the ZPE of T+
3 . Therefore

to obtain the absolute energy of the state, the energy of the potential minimum must

be known. To determine this we used the MOLPRO package. MOLPRO is a package

for ab initio molecular electronic structure calculations. It performs highly accurate

computations with extensive treatment of the electron correlation problem through mul-

ticonfiguration reference CI, coupled cluster and associated methods. The potential

energy was calculated for the equilibrium geometry of H+
3 , which is an equilateral tri-

angle where the distance between any two of the atoms is 1.65 a0. The energy given by

MOLPRO for a CISD (closed-shell configuration interaction) calculation is -1.34359 Eh.

Including the ZPE, the energy of the T+
3 ground state is therefore -36.24 eV (-1.3318

Eh).

The potential energies of 3HeT++
2 at the two geometry limits obtained earlier, were

also calculated using MOLPRO. However, the potential energy of 3HeT++
2 will differ

depending on the which T nucleus is replaced with a 3He nucleus. From symmetry
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considerations, replacing either T1 or T3 with 3He (see figure 8.2), will result in the

same potential energy of 3HeT++
2 . However if it is T2 which decays then the energy

will be different. Therefore for each geometry both the decay of T1 and T2 was con-

sidered. Considering first the geometry (r1 = 1.69 a0, r2 = 1.92 a0), by replacing the

T1 nucleus with a 3He nucleus, the potential energy obtained is -69.60 eV. Replacing

the T2 nucleus with a 3He nucleus gives -67.39 eV. For the second geometry, (r1 = 1.78

a0, r2 = 1.05 a0), replacing the T1 nucleus gives a potential energy of -65.45 eV, and

replacing the T2 nucleus gives -67.39 eV. Therefore the energy limits are -69.60 eV and

-65.45 eV. To account for zero point energy in the repulsive curve of 3HeT++
2 , the ZPE

of the dissociation products was considered. The electronic ground state of 3HeT++
2 will

dissociate to 3HeT+ + T+. The ZPE of 3HeT+, which is obtained from the difference

in the rovibrational ground state energy, -80.9 eV (see above), and the potential energy

at the equilibrium distance R = 1.46 a0, -81.04 eV (see table 5.1), is 0.14 eV. This en-

ergy was added to the energy limits, giving final energy limits of -69.46 eV and -65.31 eV.

Several studies have been performed on the potential energy surface of H+
5 [187–189].

The structure of the H+
5 cluster is described by a tightly bound H+

3 ion and an H2

molecule. The structure that is found to give the lowest energy is of C2ν symmetry

[188], and is shown in figure 8.5. The energy of the stationary point on the potential for

this geometry is -2.530509 Eh [188]. The ZPE for H+
5 , taken from reference [189], is 0.89

eV (7210 cm−1). For an estimate of the ZPE for T+
5 , the ZPE of H+

5 was scaled by the

ratio of the ZPE’s of T+
3 and H+

3 . Using the ZPE of T+
3 given above and the ZPE of H+

3

from reference [190], 0.54 eV, this gives a value for the ZPE of T+
5 of 0.53 eV. Hence the

ground state energy of T+
5 is estimated to be -68.33 eV.

For the potential energy of 3HeT++
4 , the same structure as shown in figure 8.5 was

used. Considering that any of the five T atoms can undergo β-decay, and taking into

account the symmetry of the molecule there are three possible structures of 3HeT++
4

that will give different energies. The potential energies were calculated using MOLPRO.

The three distinct energies obtained are -102.93, -104.96 and -109.30 eV. An estimate of

the ZPE for 3HeT++
4 was obtained in the same way as for 3HeT++

2 , by considering the

the ZPE of the dissociation products. Assuming that 3HeT++
4 dissociates to 3HeT+ +

T+
3 , the ZPE of 3HeT++

4 is estimated to be 0.46 eV, using the values of the ZPE’s of

3HeT+ and T+
3 given above. Hence the final energies are -102.47, -104.50 and -108.84
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Figure 8.5: Global minimum structure for H+
5

Table 8.1: Endpoint energies, in eV, for the β-decays of the other tritium species, relative to the

endpoint for T2 β-decay, represented by E0

Decay Process Endpoint energy (eV)

T+ → 3He++ + e− + ν̄e E0 − 49.1

T → 3He+ + e− + ν̄e E0 − 8.3

T− → 3He + e− + ν̄e E0 + 15.55

T+
2 → 3HeT++ + e− + ν̄e E0 − 24.27

T+
3 → 3HeT++

2 + e− + ν̄e (E0 − 20.03) − (E0 − 15.64)

T+
5 → 3HeT++

4 + e− + ν̄e E0 − 14.96

E0 − 12.93

E0 − 8.59

eV.

The ground state energies of the tritium species discussed above are shown in figure

8.6. The arrows correspond to the β-decay between the parent and daughter molecule.

By taking the endpoint energy for T2 β-decay as E0, the endpoint energies for the

β-decays of the other tritium species have been obtained and are given in table 8.1.

In table 8.2 the endpoint energies obtained in this work are compared to the values

given in the KATRIN Design Report [98]. In reference [98] the endpoints are given

relative to the atomic mass difference ∆M(3He,T), hence for comparison the results

obtained in this work have been shifted accordingly. Most of the results are in exact, or

very good, agreement. However there appears to be a large difference, about 8 eV, for
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Figure 8.6: Ground state energies of the tritium species. See text for details.
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Table 8.2: Endpoint energies, in eV, for the β-decays of the other tritium species with respect

to the mass difference ∆M(3He, T)

Decay Process From [98] This work

T+ → 3He++ + e− + ν̄e -65.4 -65.4

T → 3He+ + e− + ν̄e -24.6 -24.6

T− → 3He + e− + ν̄e -0.75 -0.75

T2 → 3HeT+ + e− + ν̄e -16.5 -16.3

T+
2 → 3HeT++ + e− + ν̄e -48.9 -40.57

T+
3 → 3HeT++

2 + e− + ν̄e -35.1 (-31.94) - (-36.09)

T+
5 → 3HeT++

4 + e− + ν̄e -31.26

-29.23

-24.89

the endpoint of T+
2 . No values are given in [98] for T+

5 .

As can be seen from tables 8.1 and 8.2 the β-decay of T− is the only species to have

a higher endpoint energy than the decay of T2, and apart from T+, all the other species

have endpoints that lie within 30 eV below the endpoint of T2, the energy interval to be

analysed by the KATRIN experiment. Therefore the β-decay of all the species, bar T+,

may affect the β spectrum if there are high enough concentrations of them.

In the KATRIN Design Report [98] it is stated that due to the cubic rise of the count

rate of the integral spectrum, the β-decay of all the species, except for T and T− can be

neglected. In reference [98] results of simulations of the unaccounted contributions of T

and T− in the WGTS which lead to a systematic shift of m2
ν of ∆m2

ν = 0.01 eV2/c4, as

a function of the analysing interval below the endpoint, are shown. They find that an

unaccounted concentration of T− of a few 10−6 relative to T2 would limit the sensitivity

of KATRIN. For T this concentration is about two orders of magnitude larger. An

estimate of the anticipated relative concentration of T− to T2 within the WGTS has

been deduced as being ≤ 2 × 10−8, which is two orders of magnitude smaller than the

concentration found to limit the sensitivity [98].
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Chapter9
Conclusions

Neutrinos form part of the fundamental group of leptons in the Standard Model of

particle physics. According to the Standard model neutrinos have zero mass. However

the question of a possible finite neutrino mass, and its fundamental implications, is

one of the most investigated and controversial topics in particle physics and cosmology

today. Experimental investigations of neutrino oscillations have been and continue to

be performed using atmospheric, solar, reactor and accelerator neutrinos. Although

neutrino oscillations do not depend on the absolute masses of the neutrinos, but on the

differences of the masses, their existence has provided compelling evidence for non-zero

neutrino masses.

There are three main methods/experiments that are sensitive to the absolute mass of

the neutrino and have been used to obtain upper limits for the mass. Neutrinoless double

beta decay provides a very sensitive means of obtaining an absolute value of a neutrino

mass. A number of experiments have studied/are currently studying this process using

different ββ unstable nuclei. Cosmological data has also been used to give information

on the sum of the neutrino masses using data from several sources including studies of

the cosmic microwave background, large scale structures and Lyman-α forests. However

the experiments that provide the most direct measurements of the neutrino mass are

based on the study of the β-decay of tritium. The idea of these experiments is to detect

the energies of the electrons created in the decay and to deduce the mass of the electron

anti-neutrino by analysing the shape of the continuous electron energy spectrum close

to the endpoint.

In the 60 year history of tritium β-decay experiments, the experiments have become

more sophisticated and the upper limit for the neutrino mass decreased significantly. As
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the sensitivity improved it was recognised that knowledge of the final state probability

distribution is crucial in the analysis of the spectrum. However, a disturbing trend

in the data which became apparent was that the analysis of the β spectra returned

unphysical negative values for the neutrino mass squared. One of the possible errors

for this that was suggested was an inaccuracy in the theoretical final state distribution.

The two most recent experiments, Mainz and Troitsk, which ran from the early 1990’s

to 2001, initially reported negative values for the neutrino mass squared, however both

experiments eliminated this problem by reducing the systematic uncertainties in the case

of the Mainz experiment, and accounting for the bump in the spectrum due to excess

count rate in the case of the Troitsk experiment. The upper limits for the neutrino

mass obtained by these experiments are mν < 2.3 eV/c2 (Mainz) and mν < 2.05 eV/c2

(Troitsk). Having reached their sensitivity limits, a new experiment with the ability to

measure the electron neutrino mass in the sub eV region was proposed. The KATRIN

experiment, which is currently under construction, is a next generation tritium β-decay

experiment with a sensitivity in the neutrino mass of mν < 0.2 eV/c2. As the accuracy of

the neutrino mass determined is limited by the the accuracy of the final state distribution

(FSD), a very accurate knowledge of the FSD is required.

In the 1980’s an elaborate FSD for the β-decay of T2 was constructed [113] to aid

the interpretation of the neutrino mass experiment at the Lawrence Livermore National

Laboratory. In the 1990’s a reinvestigation of the FSD was performed [106], which was

initiated by the negative neutrino mass squared problem. The main aim of the new

investigation was to validate the underlying approximations used in the previous work,

including the sudden approximation and Born-Oppenheimer approximation, and to meet

the sensitivity requirements of the Mainz and Troitsk experiments.

In this work a reinvestigation of the FSD has been performed to satisfy the higher

resolution requirements and increased sensitivity of the KATRIN experiment. The KA-

TRIN experiment aims to obtain a value for the neutrino mass by analysing the β

spectrum in an energy interval with a lower limit of 30 eV below the endpoint energy. In

this energy region only the effect from the lowest lying electronic states of the daughter

molecule need to be considered for the FSD. However as other parameters, such as the

background noise, will be investigated by KATRIN by analysing a much larger energy

interval, the FSD resulting from the high lying electronic states and electronic continuum

of the daughter molecule must also be known.
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A recalculation of the final state distribution of the first six electronic states of 3HeT+

resulting from the β-decay of T2 in the ground rovibrational state has been performed.

Energies and radial wavefunctions for the bound rovibrational states of 3HeT+, as well

as for the ground state of T2 were determined using the LEVEL code by Le Roy, and

providing as input the electronic potentials for the daughter and parent molecules. For

the nuclear motion continuum, the energies and radial wavefunctions of the continuum

states of 3HeT+ were determined at chosen energy steps using the BCONT code by Le

Roy. Using these radial wavefunctions as well as the electronic overlap, the probabilities

of decay to each of the bound states and probability density distribution of the nuclear

motion continuum has been determined. Two different methods were used to account

for the predissociative resonance (quasibound) states, depending on their position and

shape. For isolated resonances with narrow widths, the discrete result determined by

the LEVEL program was used. For non-isolated resonances with larger widths, the

probability density profile of the resonance was determined using the BCONT program.

As the gaseous tritium source in the KATRIN experiment will be at a temperature of

about 30 K, there will be thermal excitation of the T2 molecules. At this temperature,

the T2 molecules will be mainly distributed in the first four rotational states of the

electronic and vibrational ground state. In fact there will be more molecules in the

Ji = 1 state than Ji = 0. Previous calculations of the final state distribution mainly

focused on Ji = 0, with the distribution for the β-decay from Ji = 1 only calculated for

the ground electronic state of 3HeT+. In this work separate final state distributions for

the ground state and first five electronically excited states of 3HeT+ resulting from the

β-decay of T2 in rotational states Ji = 0, 1, 2 and 3 have been calculated.

The isotopic purity of tritium atoms in the KATRIN experiment is about 95%,

therefore there can be up to 5% contamination from deuterium and hydrogen atoms and

hence up to 10% of isotopomers HT and DT in the source, with the main contamination

expected to come from DT molecules. Therefore the final state distributions of the first

six electronic states of 3HeD+ and 3HeH+ resulting from the β-decay of DT an HT in

rotational states Ji = 0 and 1, have been calculated. This is the first time the final state

distribution for 3HeD+ has been calculated.

The accuracy of the final state distributions of the low lying electronic states calcu-

lated in this work were checked by using two useful sum rules.

Using the final state distributions calculated here, the overall distribution for a source
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at a given temperature and with a known amount of isotopic contamination can be de-

termined. However any uncertainty in the temperature or amount of contamination, can

lead to an inaccurate distribution being used. In this work, estimates of the error in the

value of the neutrino mass deduced from fitting theoretical curves, due to uncertainties

in the temperature for a thermal source, ortho:para ratio of T2 for a non thermal source

at 30 K and percentage of DT molecules in the source have been obtained, in order to see

how accurately these parameters need to be known. As the source temperature will be

stabilised to a precision of 1% in the KATRIN experiment, uncertainties in the tempera-

ture of this scale will have negligible effect on the deduced neutrino mass. Uncertainties

in the ortho:para ratio give errors of the same order as the temperature uncertainties,

however as the stability of the ortho:para ratio depends on the experimental conditions

the errors may change therefore it is recommended that the ortho:para ratio be measured

directly when running the experiment. The largest errors come from the DT contamina-

tion of the source. It is found that for a neutrino mass of 0.2 eV/c2, a 10% change in the

amount of DT molecules in the source gives an error on the deduced neutrino mass of

about 18%. Laser Raman spectroscopy will be used to provide a real-time quantitative

analysis of the composition of the gas mixture.

In previous calculations of the final state distribution, the part associated with the

electronic continuum of 3HeT+ is the least accurately determined. The missing probabil-

ity in the most recent FSD [106] was associated to this part of the spectrum. Therefore

in this work, the probability distribution of the electronic continuum has been calcu-

lated using a different method to previous works. The R-matrix method has been used

to perform a geometry dependant treatment of the resonance states of 3HeT+ by con-

sidering electron collisions with a 3HeT2+ target. Positions and widths of resonances

converging to the first eight excited states of 3HeT2+ have been detected for 21 inter-

nuclear separations in the range R = 1.0 - 2.0 a0 in steps of 0.05 a0. Resonance curves

were obtained by correlating the resonances detected at different geometries using quan-

tum defect analysis. The electronic wavefunction of the resonance states were extracted

from the R-matrix calculation. By considering electron collisions with T+
2 , the electronic

wavefunction for the ground state of T2 was obtained and the overlap integrals between

9 resonance states and T2 determined. Using the BCONT program, the probability

density distribution for each resonance was obtained. A discrete probability distribution

of the background continuum and remaining infinite number of resonances has also been
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determined for R = 1.4 a0.

The entire FSD was discretized by dividing the spectrum into small energy bins of

0.01 eV. This approach is the best for the analysis by the KATRIN experiment.

In figures 9.1 and 9.2 the FSD obtained in this work is compared to the most recent FSD

given by Saenz, Jonsell and Froelich [106]. The final state distribution given in [106] is

for the β-decay of T2 in the Ji = 0 state, and is presented as a discretized distribution

with energy bins varying in size from 0.1 eV for the ground state of 3HeT+ to 1.0 eV

for the excited electronic states and electronic continuum up to 90 eV, to 2.0 eV for the

remaining spectrum up to 240 eV. To compare the FSD obtained in this work with that

of reference [106] the energy binning has been performed on the same scale.

In figure 9.1 the FSD obtained in this work for a source temperature of 30 K is

compared to the FSD given in [106] where thermal excitation of T2 is not included, i.e

T = 0 K. The FSD from this work (red lines) has been offset from the FSD of reference

[106] (black lines) by 0.02 eV for clarity. As can be seen from the figure there is some

differences in the two distributions, suggesting that the correct FSD corresponding to

the source temperature should be used in the analysis of the β spectrum. Only the FSD

of the ground electronic state is shown as the FSD of the excited states do not differ

significantly.

In figure 9.2 the two FSD’s are compared for the electronically excited states and

electronic continuum of 3HeT+ up to 240 eV. In this figure the FSD obtained in this work

(red points) does not account for thermal excitation, i.e. only Ji = 0 is considered. For

clarity, the drop-lines are not shown and the points of the probability have been joined

together. As the same method was used in this work as in [106] for the calculation of the

FSD of the first six electronic states of 3HeT+, the two FSD’s in this region (< 40 eV)

are in excellent agreement. In the figure the FSD of the ground state is not shown, but

the excellent agreement in the excited states (20 − 40 eV) can be seen from the exact

overlap of the two distributions.

In the region 40 - 55 eV there is some probability missing from the FSD obtained in

this work. This probability corresponds to the high-lying electronic or Rydberg series of

states. As the integrated probability of these states is very small, and as a sufficiently

accurate probability distribution of these states has been calculated by Jonsell et al [117],

it has not been recalculated in this work. From the R-matrix calculation discussed in
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Figure 9.1: Comparison of the final state distribution of the electronic ground state of 3HeT+

obtained in this work for a source temperature of 30 K with the FSD given in [106] for a source

temperature of 0 K.

chapter 7, a total probability of the contribution from the Rydberg states of 1.46% is

determined. This value agrees very well with the value obtained by Jonsell et al [117] of

1.4%.

For the probability distribution of the electronic continuum the complex scaling

method was used in the previous work [149] and the R-matrix method used here. The

two distributions obtained using different methods are in good agreement. In the FSD

from this work there appears to be slightly less probability attributed to region where

the probability of the resonance states including nuclear motion has been determined

explicitly, but slightly more probability attributed to the higher energy region of the

continuum.

In the previous calculation the probability in the energy region above 240 eV was

represented by an atomic tail, with a total probability of about 0.13%. From the R-

matrix calculation performed in this work, a total probability above 240 eV of 0.58 % is

obtained.

By summing all the probabilities of the FSD, the total unnormalised probability of
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Figure 9.2: Comparison of the final state distribution of the electronically excited states and

electronic continuum of 3HeT+ up to 240 eV obtained in this work with the FSD given in [106].

Exact agreement is found between the two calculations at energies below 40 eV.

the FSD given in [106] adds up to 99.83%. By summing all the contributions obtained in

this work, including the total contribution from the Rydberg states and the probability

above 240 eV obtained from the R-matrix calculation instead of the atomic tail, the total

probability in this work adds up to 99.94%. Therefore some of the missing probability

has been recovered in this new calculation of the final state distribution.

In conclusion, our final state distribution with addition of the contribution due to

Rydberg states evaluated previously by Jonsell et al [117] gives an accurate and con-

sistent treatment of the molecular decay channels over a wide range of energies. It will

allow not only the accurate fitting of the decays in the region up to 30 eV below the

endpoint, but also tests to be performed over a much wider range of energies from the

end point. We believe that this study resolves the molecular physics issues with decays

that will be measured in the KATRIN experiment and these are now determined well

enough not to cause systematic errors within the sensitivity of the proposed experiment.
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AppendixA
Publications

Molecular effects in investigations of tritium molecule beta decay endpoint experiments.

N. Doss, J. Tennyson, A. Saenz and S. Jonsell.

Phys. Rev. C 73, 025502 (2006)

Molecular effects in neutrino mass measurements.

N. Doss, J. Tennyson, A. Saenz and S. Jonsell.

Book of Invited Lectures of XXIV ICPEAC, World Scientific Publishing (2006)

Calculated spectra for HeH+ and its effect on the opacity of cool metal-poor stars

E. A. Engel, N. Doss, G. J. Harris and J. Tennyson

Mon. Not. R. Astr. Soc. 357, 471 (2005)
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