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New technique for measuring Newton’s constantG
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We discuss a new technique for measuring Newton’s constantG using a rotating torsion balance operated in
a feedback mode. The method has several conceptually new features that reduce sensitivity to the dom
systematic uncertainties of previous experiments. We have successfuly conducted exploratory measure
that establish the feasibility of the new technique.@S0556-2821~96!50116-5#

PACS number~s!: 04.80.Cc, 04.90.1e, 06.20.Jr, 06.30.Gv
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The Newtonian gravitational constantG is the least pre-
cisely determined fundamental constant. The accepted C
mittee on Data for Science and Technology~CODATA! @1#
value, G5(6.6725960.00085)310211 m3 kg21 s22, is
heavily dominated by the 1982 measurement of Luther a
Towler @2# and was assigned an uncertainty of 128 pp
Recently this value has been brought into question by sev
groups. The German Physikalisch Technische Bundesan
@3# obtained a value 0.6%~;40 standard deviations! higher,
a New Zealand group@4# reported a value 0.1%~;7 stan-
dard deviations! lower, while a Wuppertal group@5# obtained
a value 0.06% lower than the CODATA value. In addition
Russian group@6# claimed to observe a temporal and lengt
scale variation ofG at the 0.7% level. Except for Ref.@5#,
which used a new double-pendulum technique, these exp
ments employed the classical strategy of measuring
torque on a torsion pendulum or relied on the constancy
the restoring torque of a torsion fiber undergoing larg
amplitude oscillations. Kuroda@7# recently pointed out that
G measurements based on detecting the change in tors
oscillation frequency may have a systematic bias due to
sion fiber inelasticity. A decisive measurement, prefera
using a new technique, is needed to resolve the discrepan
in the value of this natural constant.

We have developed a new method for measuringG that is
based on measuring theangular accelerationof a ‘‘two-
dimensional’’ torsion pendulum. Our method, which diffe
from the acceleration method of Roseet al. @8#, overcomes
important sources of systematic error in previous measu
ments. In particular, the pendulum dimensions, mass,
density distribution need not be known precisely, and ma
torsion fiber properties need not be known precisely or e
remain constant. We have run numerical simulations a
have conducted exploratory measurements using an exis
apparatus to demonstrate the feasibility of this new meth

The gravitational angular acceleration,a, of a torsion pen-
dulum in the field of a nearby attractor can be expressed
multipole formalism@9,10#:
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whereqlm andQlm are the spherical multipole moments o
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the pendulum and multipole fields of the attractor, respec-
tively, f is the azimuthal angle between the pendulum and
the attractor, andI is the pendulum moment of inertia. Equa-
tion ~1! assumes that the restoring torque from the suspen
sion fiber is negligible; we justify this approximation below.
With the choice of pendulum and attractor geometries dis-
cussed below,a will be dominated by theq22Q22 term in Eq.
1. In this case

a~f!5a2,252
16p

5
G
q22
I
Q22sin2f. ~2!

The quotient
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→A 15
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wherer(rWp) is the pendulum density, becomes a constant for
a pendulum that lies entirely in a plane that includes the
torsion fiber axis, so that

a~f!5a2,252A24p

5
GQ22sin2f. ~4!

This allows a measurement ofa to yield a precise value of
G that is independent of the pendulum mass, dimensions, o
density distribution. It is worth noting that uncertainties in
these quantities formed the dominant contributions to the
error in the value of Ref.@2#.

A pendulum and attractor geometry that incorporates
these ideas is shown in Fig. 1. A complete torsion pendulum
apparatus mounted on a turntable is initially started rotating
at a slow ratev t , for example 2p rad/h. Eight massive
spheres centered about the pendulum exert a time-varyin
gravitational torque on the pendulum that, with the geom-
etries discussed below, will be dominated by aq22Q22 cou-
pling. The angular acceleration of the pendulum is measured
by activating a feedback loop that continually adjusts the
rotation rate of the turntable to follow the pendulum so that
the torsion fiber never twists from its equilibrium angle. In
this way the ‘‘free’’ angular acceleration of the pendulum is
directly transferred to the turntable, and the restoring torque
from the suspension fiber is driven to zero. Because the fibe
R1256 © 1996 The American Physical Society
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never twists, the torsion constant,k, of the fiber need not be
known nor will its inelastic properties directly affect th
measurement@13#.

The turntable angular acceleration is determined from
change in the pulse rate of a high-resolution angle encod
highly linear device that does not require external calibrat
~because 0°5360°!. One determinesG by fitting a~f! with a
harmonic series inf and extracting the coefficent of sin2f to
select angular accelerations,a l ,m , with m52. To eliminate
accelerations caused by other objects in the lab, the attra
are placed on a second turntable that rotates at a rateva
whose magnitude and sign differ fromv t . This rotation also
averages out any local nonlinearities of the pendulum s
encoder, reduces any effects from vibrations associated
either of the turntables, and puts the signal at a relativ
high frequency which reduces noise, in particular lo
frequency gravitational noise.

We now discuss techniques for minimizingl.2 gravita-
tional torques so thata is dominated by theq22Q22 coupling.
The magnitudes ofl.2 torques are naturally reduced b
factors (Rp /Ra)

l22, whereRp is a typical dimension of the
pendulum andRa is the radius to the attractors. The leadi
higher-l accelerations can be made to vanish with pro
pendulum and attractor design. Theql2 andQl2 moments
with odd l vanish due to symmetry about the horizontal m
plane. A rectangular pendulum with a widthw, heighth, and
thickness t will have a vanishing q42 moment if
10h253(w21t2). For such a pendulum

FIG. 1. Diagram of an apparatus for measuringG. The drawing
shows only the essential geometrical features. The torsion bal
~shown cut away to display the pendulum! sits on a turntable; the
rings supporting the spheres are mounted on a second turntable~not
shown!. The pendulum and attractor spheres are drawn to scale.
rings have a vanishingQ22 moment and do not affect the result; th
leading torque from the rings hasm58. Asymmetries in the attrac
tor turntable can be canceled by shifting the spheres to the uno
pied holes in the rings.
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A 15

32p
. ~5!

For example, a pendulum with a widthw576.00 mm, a
height h541.65 mm, and a thicknesst52.50 mm, has a
q22/I that deviates from the ‘‘two-dimensional’’ value by
only 0.2%, whileq42 still vanishes. By making the attractors
from pairs of spheres of massM , with vertical separation
z, at a radial distance from the pendulum axisr5A3/2z, we
eliminate theQ42 field; by employing two pairs of spheres on
either side of the pendulum, separated by 45° of azimuth, w
eliminate all oddm couplings as well as those withm54.
With this design, shown in Fig. 1, we have

Q225A10

7p

108

49

M

r3
, ~6!

while the leading non-q22Q22 torque, which occurs inl56
order, is calculable and small:

a6,2

a2,2
5

99

7683200

213~w41t4!1626w2t2

r4
. ~7!

For r525 cm, this ratio is 2.3531025. Note that all lower-
order torques, except for theq22Q22 torque of interest, are
the products of two small~nominally zero! values.

We have, so far, described an ideal scenario. We no
show that corrections for imperfections are small and tra
table. One can determineG to 1 part in 105 if w is uncertain
by 0.20 mm, or if density variations are as large as 0.46
@11#, or if the absolute thickness and overall flatness of th
pendulum are uncertain by 5mm. Similarly, the tip of the
pendulum about a horizontal axis can be as large as 2 mr
or a rotational misalignment about an axis perpendicular
the plane can be as large as<10 mrad. If the pendulum is
fabricated from a quartz glass plate, one can use optic
methods to measure its thickness, flatness, and density u
formity. The quartz plate faces can then be Au-coated
reflect the light beam that monitors the angular deflectio
~and to electrically ground the pendulum!. The light beam
can also be used to measure the pendulum tip by rotating
pendulum so that the light hits the opposite face of the pe
dulum. By constructing the attractor from spheres we elim
nate problems from density nonuniformities in the attracto
that otherwise would limit the precision~spherically sym-
metric density variations do not affect the fields of the
spheres, while nonsymmetric variations can be measured a
averaged out by changing the orientations of the individu
spheres!.

A feedback circuit with finite gain requires a small twist
of the torsion fiber to derive its feedback signal. Hence
small torque is tied up in twisting the torsion fiber. As the
twist angle is recorded, it is straightforward to account fo
this small extra torque when extractingG from a(f). If the
open-loop gain~the factor by which the feedback reduces th
pendulum deflection! is sufficiently high (.103), and the
damping time of the free pendulum sufficiently long
(td>104 s!, a 1025 measurement ofG can be made even if
the free oscillation frequency of the torsion oscillatorv0 and
the angular-deflection calibration are known only to 1%. Th
angular-deflection calibration,v0, andtd are easily found by
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turning off the feedback and observing the pendulum
sponse to a programmed step-change in the turntable an
velocity @9#.

The performance of the feedback loop is of central imp
tance in our technique. We have tested a feedback algori
first with numerical simulations and then with a torsion b
ance normally used for equivalence principle tests@9,10#.
The feedback loop is digital and executed in software
senses the torsion fiber twist angleu as measured by an au
tocollimator and adjusts the frequencyn of the oscillator
controlling the turntable rotation rate so that the autocollim
tor signal remains unchanged. This frequency, directly p
portional to the turntable rotational velocityv t5ḟ, is up-
dated at regular intervals,D, and recorded along with th
values off andu. The feedback loop uses differential, d
rect, and integral terms to compute the frequency chang

n i112n i}c1
u i2u i21

D
1c2

u i1u i21

2
1c3D (

m50

i

um . ~8!

Stable performance is obtained withc35D/ t̄ 3,
c253D/ t̄ 22v0

2D21.5c3t̄, and c153D/ t̄2c2D2c3D
2,

where t̄ is a characteristic time which should be seve
timesD @12#.

Figure 2 shows a numerical simulation of aG measure-
ment using the pendulum dimensions given above, an att
tor withQ2254.6 g/cm3, realistic values forv0, andtd . The
feedback loop had an update time ofD52.0 s. A 3.0 s, low-
pass, 6 db/octave analog filter was placed on the autoc
mator output, and 1/f 2 noise inu, consistent with that ob-
served in previous experiments@10#, was included. The
open-loop gain could be made to exceed several times3.
The simulation gave aG value accurate to 1025 in the
equivalent of one day of operation. We then successf
implemented the same feedback scheme in an exis
equivalence principle apparatus using similar parameters

FIG. 2. Numerical simulation of aG measurement, showing th
turntable angular acceleration for the pendulum and attractor ge
etries discussed in the text. A feedback update time ofD52 s and a
6 db/octave electronic time constant of 3.0 s were used. Rea
values forv0, td , and electronic noise were employed. A torsio
fiber drift rate of 1mrad/h~see Ref.@10#! was assumed. The averag
turntable angular velocity wasv̄ t54.87 mrad/s, which gave a 4.9%
gravitational speed modulation.
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Figure 3 shows one result from a series of tests of th
feedback algorithm using our Eo¨t-Wash rotating torsion bal-
ance@9,10#. For this test, we used a lab-fixed Pb attracto
with Q2250.52 g/cm3 ~roughly a factor of 10 smaller than
would be used in an actualG measurement!, and two of the
four test bodies of our normal pendulum were removed
create a sizableq22 moment. The average turntable spee
wasv̄ t50.0011 rad/s, with a 3.7% gravitational sin2f speed
variation, and the feedback gain was'2000. The extracted
value ofG agreed with the standard value to within the 2%
uncertainty inQ22. We found that gravity gradient fluctua-
tions caused by human activity were the biggest source
noise. These would be considerably reduced by operating
a more favorable location.

We have presented a new method for determiningG that
we believe could provide a substantially improved valu
good to 10 ppm. Our method overcomes the most significa
sources of systematic uncertainty encountered in other tec
niques. Initial tests demonstrate the practicality of th
method. Finally, we point out that the pendulum and attract
geometry discussed here offers substantial advantages
torsion-balanceG measurements based on the convention
frequency-change technique used, for example, in Ref.@2#.
With our geometry the change in the squared sma
oscillation frequency of the pendulum is

uDvo
2u58GA6p

5

w22t2

w21t2
Q22, ~9!

whereQ22 is given by Eq.~6!; we have ignored possible
problems with variations ink as discussed in Ref.@7#. New-
man @14# has independently discovered the advantages of
flat pendulum in this context.

We thank the NSF for financial support via Grant No
PHY-9104541.
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FIG. 3. Proof-of-principle demonstration using the Eo¨t-Wash
torsion balance and a stationary attractor. We show the angu
acceleration~averaged over 100 s! of the feedback turntable arising
from the predominantq22Q22 gravitational coupling. The smooth
curve is a harmonic fit to the data. Gravitational fluctuations from
human activity in the vicinity of the test setup were the dominan
noise source.



ys.

r-

of
he

nt
ad-

of-
ble
ci-

54 R1259NEW TECHNIQUE FOR MEASURING NEWTON’S CONSTANTG
@1# E.R. Cohen and B.N. Taylor, Rev. Mod. Phys.59, 1121
~1987!.

@2# G.G. Luther and W.R. Towler, Phys. Rev. Lett.48, 121
~1982!.

@3# W. Michaelis, H. Haars, and R. Augustin, Metrologia32, 267
~1995!.

@4# M. Fitzgerald and T. R. Armstrong, IEEE Trans. Instrum
Meas.44, 494 ~1995!.

@5# H. Walesch, H. Meyer, H. Piehl, and J. Schurr, IEEE Tran
Instrum. Meas.44, 491 ~1995!.

@6# V.P. Izmailov, O.V. Karagioz, V.A. Kuznetsov, V.N.
Mel’nikov, and A.E. Roslyakov, Meas. Tech.36, 1065~1993!.

@7# Kazuaki Kuroda, Phys. Rev. Lett.75, 2796~1995!.
@8# R.D. Rose, H.M. Parker, R.A. Lowry, A.R. Kuhlthau, and J.W

Beams, Phys. Rev. Lett.23, 655 ~1969!.
@9# E.G. Adelberger, C.W. Stubbs, B.R. Heckel, Y. Su, H.E
.

s.

.

.

Swanson, G. Smith, J.H. Gundlach, and W.F. Rogers, Ph
Rev. D42, 3267~1990!.

@10# Y. Su, B.R. Heckel, E.G. Adelberger, J.H. Gundlach, M. Ha
ris, G.L. Smith, and H.E. Swanson, Phys. Rev. D50, 3614
~1994!.

@11# This value occurs in a worst-case scenario where the density
the central half of the pendulum is 0.46% greater than t
density of the outer half.

@12# The small correction for the finite open-loop gain must accou
for the phase delay and attenuation of the autocollimator re
out.

@13# An alternative to the feedback scheme discussed here may
fer advantages in signal-to-noise. In this scheme the turnta
is driven in a smooth, preprogrammed way that closely anti
pates the pendulum acceleration.

@14# R.D. Newman~private communication!.


