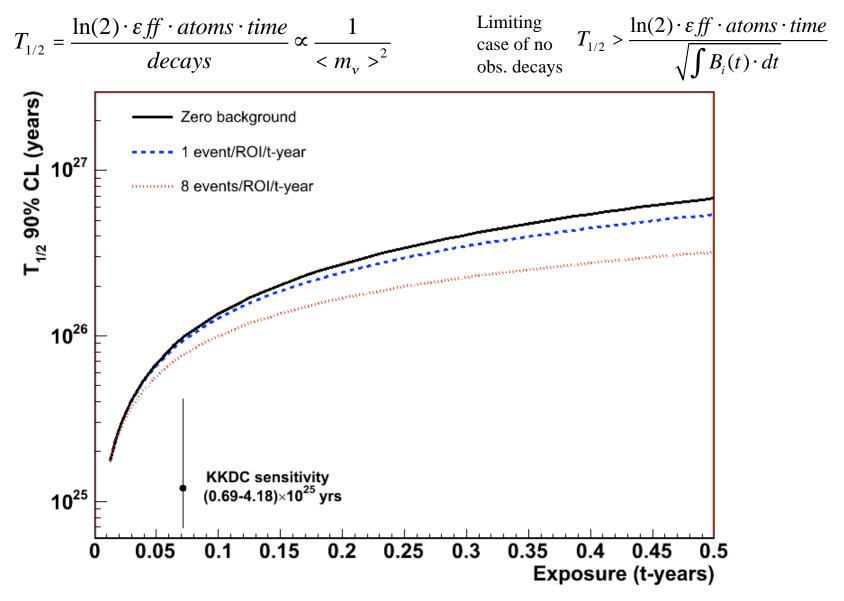
Next-generation ⁷⁶Ge neutrinoless double beta-decay experiments

J.F. Wilkerson Center for Experimental Nuclear Physics and Astrophysics University of Washington

Acknowledgments:

Stefan Schönert, MPIK Heidelberg, Jason Detwiler, CENPA The GERDA Collaboration, The Majorana Collaboration,

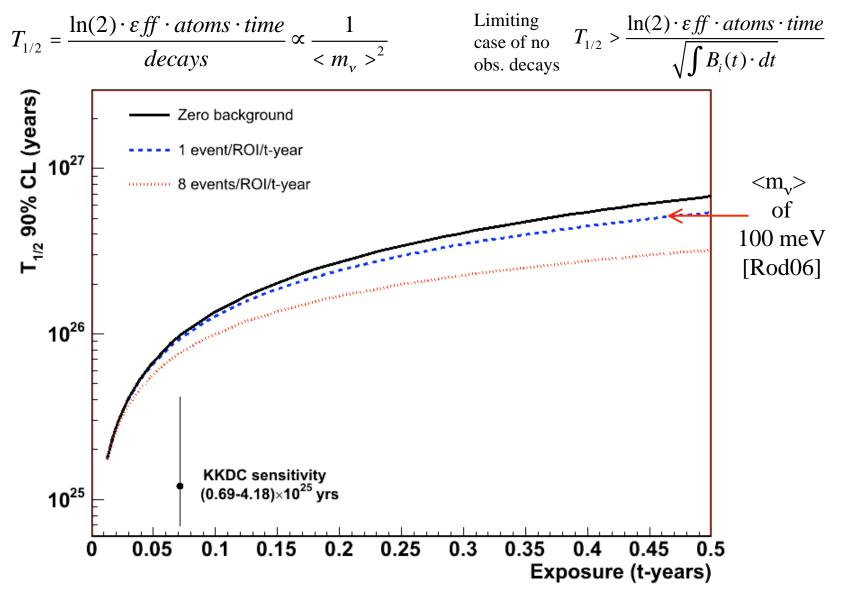
NNN06, Sept. 21, 2006 Seattle, Washington


Using ⁷⁶Ge to search for $0\nu\beta\beta$

⁷⁶Ge offers an excellent combination of capabilities and sensitivities.

- Ge as source & detector.
- Elemental Ge maximizes the source-to-total mass ratio.
- Intrinsic high-purity Ge diodes.
- Favorable nuclear matrix element $|M^{0v}|=2.5$ [Rod06].
- Reasonably slow $2\nu\beta\beta$ rate $(T_{1/2} = 1.4 \times 10^{21} \text{ y}).$
- Demonstrated ability to enrich from 7.44% to ≥ 86%.

- Excellent energy resolution 0.16% at 2.039 MeV, 4 keV ROI
- Powerful background rejection.
 Segmentation, granularity, timing, pulse shape discrimination
- Best limits on $0\nu\beta\beta$ decay used Ge (IGEX & Heidelberg-Moscow) $T_{1/2} > 1.9 \times 10^{25}$ y (90%CL)
- Well-understood technologies
 - Commercial HPGe diodes
 - Large Ge arrays (Gammasphere, TIGRESS, AGATA, GRETINA)


⁷⁶Ge Sensitivity & Background Dependence

Next-Generation ⁷⁶Ge $0\nu\beta\beta$ Experiments

NNN06, Sept. 21, 2006

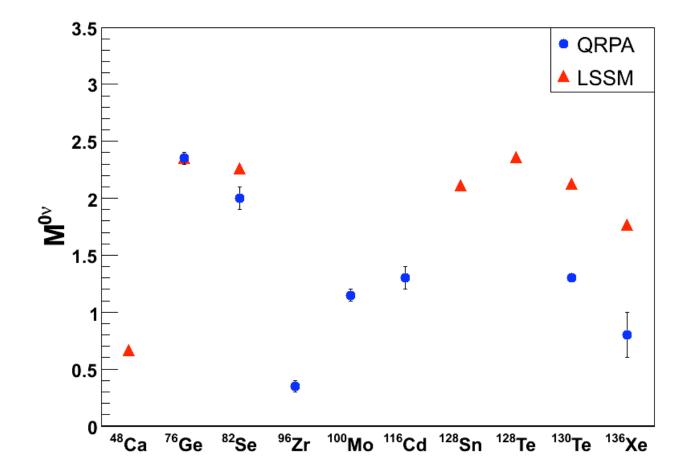
⁷⁶Ge Sensitivity & Background Dependence

Next-Generation ⁷⁶Ge 0vββ Experiments

NNN06, Sept. 21, 2006

Nuclear Matrix Elements and $0\nu\beta\beta$ -decay

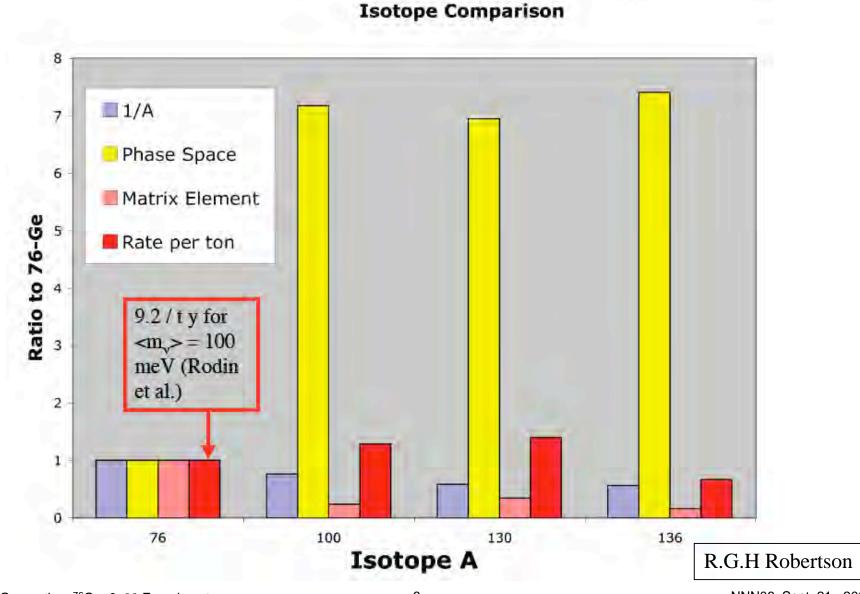
$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu}(E_0, Z) \left|\langle m_\nu \rangle\right|^2 \left|M_f^{0\nu} - (g_A/g_V)^2 M_{GT}^{0\nu}\right|^2$$


- If neutrinos are Majorana particles, extracting the effective neutrino mass requires an understanding of the nuclear matrix elements (NME) at about the 20% theoretical uncertainty level.
 - For ⁷⁶Ge, a comparison of *previous* calculations yields a factor of 2-3 in predicted decay rates between Shell Model and RQRPA techniques or ~1.6 uncertainty in neutrino mass.
 - Using compilations or averages of previous sequential calculations should not be used to estimate theoretical uncertainties.

Recent Progress in NME Calculations

- QRPA
 - Rodin, Faessler, Simkovic, and Vogel used measured values of $2\nu\beta\beta$ to adjust g_{pp} resulting in "stable" $0\nu\beta\beta$ prediction.
 - Inclusion of short-range repulsion enhances NME by ~30%
 - Induced pseudeoscalar current reduces NME by ~30%
 - Have found that semi-magic nuclei (⁴⁸Ca, ¹¹⁶Sn, ¹³⁶Xe) are very sensitive to pairing treatment.
 - Rodin has been investigating including more states and developing a Continuum-QRPA. This tends to quench the NME for $0\nu\beta\beta$ by 20-30%.
- Shell Model (Caurier, Nowacki, & Poves)
 - Advances with algorithms, "Large Scale Shell Model" (LSSM) can deal with a basis space containing 10¹¹ Slater determinants.
 - Recent "hypothetical" studies indicate $0\nu\beta\beta$ is relatively insensitive spinorbit partner effects when compared to $2\nu\beta\beta$.
 - Find a different multipole structure for 1+ contribution that is often the opposite sign from RQRPA.
 - Starting to investigate the 2p-2h excitations.

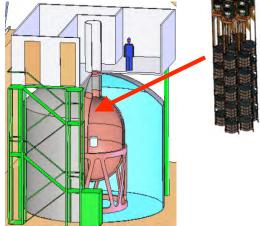
NME Comparison of QRPA and SM


QRPA: Nucl. Phys. A, **766** 107 (2006) LSSM: From Poves NDM06 talk (Caurier, Nowacki, Poves),

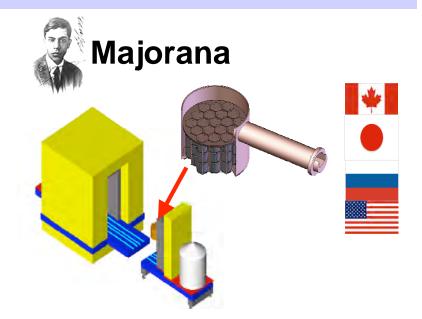
Next-Generation ⁷⁶Ge $0\nu\beta\beta$ Experiments

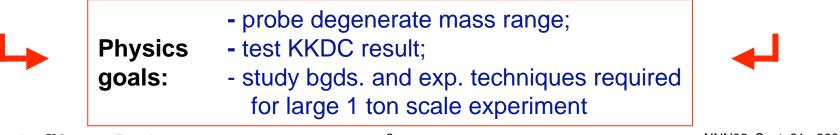
"Relative" Sensitivities

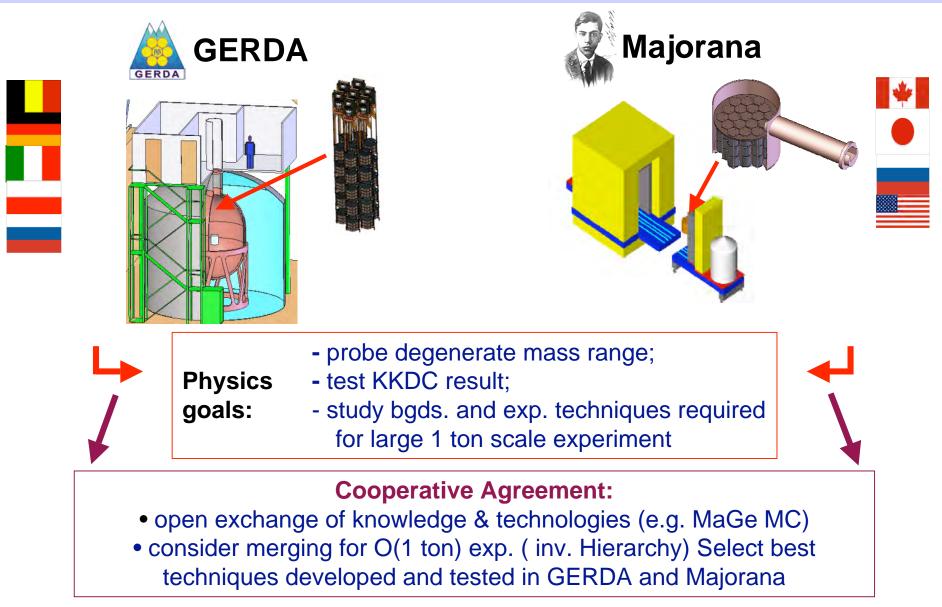
Using Rodin et al. Nucl. Matrix elements


Next-Generation 76 Ge $0\nu\beta\beta$ Experiments

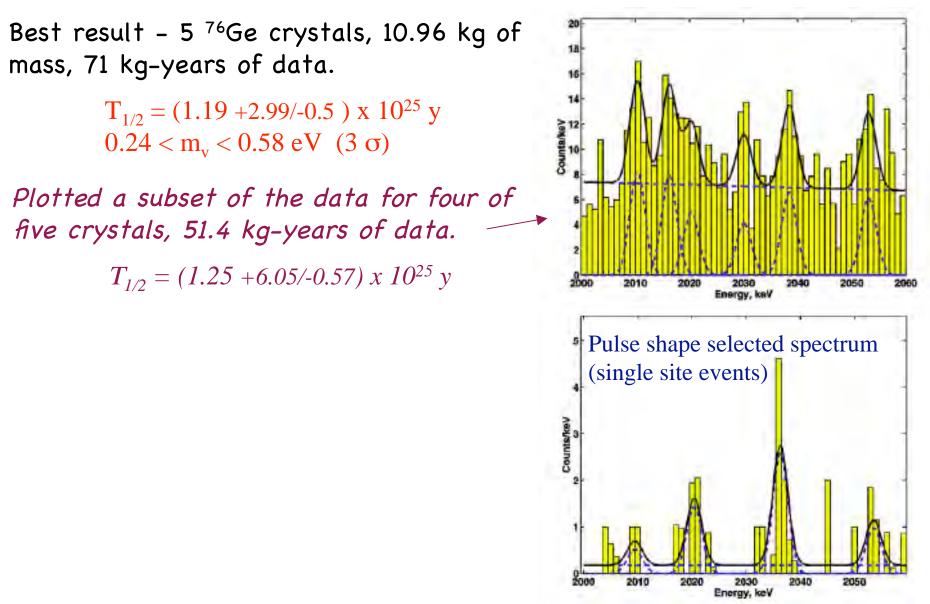
NNN06, Sept. 21, 2006


Next-generation ⁷⁶Ge Projects:




- 'Bare' enrGe array in liquid argon (nitrogen)
- \bullet Shield: high-purity liquid Argon (N) / $\rm H_2O$
- Phase I: ~18 kg (HdM/IGEX diodes)
- Phase II: add ~20 kg new enr. detectors total ~40 kg

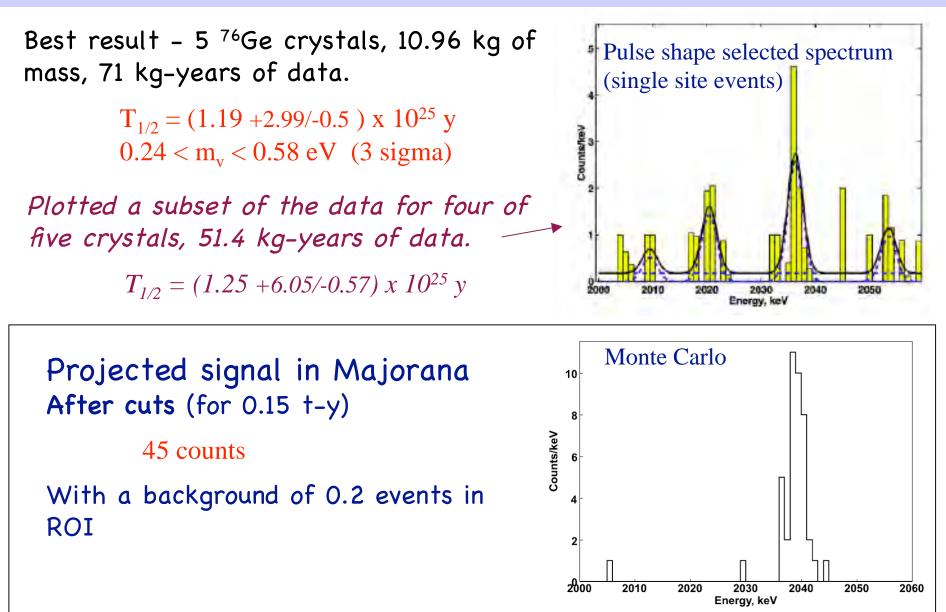
- Modules of ^{enr}Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper / lead
- Staged approach based on ~20-60 kg modules (120 kg)



Next-generation ⁷⁶Ge Projects:

The KKDC Result

Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, *Phys. Lett.* B **586** 198 (2004).



Next-Generation ⁷⁶Ge $0\nu\beta\beta$ Experiments

NNN06, Sept. 21, 2006

The KKDC Result

Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, *Phys. Lett.* B **586** 198 (2004).

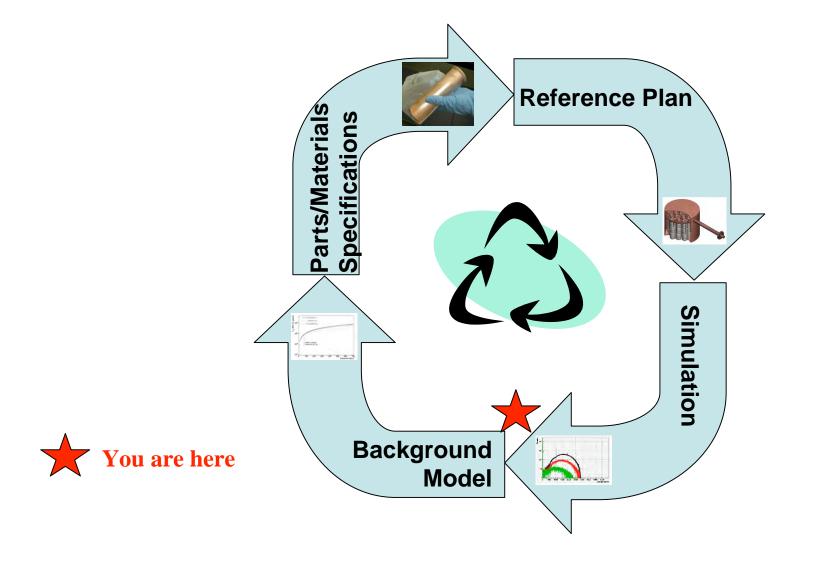
Backgrounds!

- Sensitivity to $0\nu\beta\beta$ decay is ultimately limited by S-to-B.
 - Goal: ~ 60 150 times lower background (after analysis cuts) than previous ⁷⁶Ge experiments (H-M and IGEX).
- Approach
 - Optimize the detector energy resolution (HPGe)
 - Shield the detector from external natural and cosmogenic sources
 - Ultra-pure materials used in proximity to the crystals
 - electroformed Cu, LAr, clean low-mass support structures,
 - development of ultra-senstive ICPMS methods for materials assay
 - Discriminate between single site ($\beta\beta$ -decay) vs. multi-site events
 - Granularity (close-packed crystal arrays)
 - Segmentation (segmented electrodes on individual crystals)
 - Pulse shape analysis
 - Time correlation analysis

Comparison of Background Goals

Expt	Isotope	Backgrounds (after cuts) cnt/kev/t-y	Backgrounds (after cuts) cnt/ROI/t-y	2.8s "ROI" width (keV)	Sigma (keV)	Eo (keV)	Res. At the peak (FWHM)
KKDC	⁷⁶ Ge	60.00	240.00	4	1.386	2039	0.16%
EXO200	¹³⁶ Xe	1.1	87.5	79.2	39.616	2476	3.77%
CUORE	¹³⁰ Te	1	7	7	2.5	2533	0.20%
GERDA	⁷⁶ Ge	1	4	4	1.386	2039	0.16%
Majorana	⁷⁶ Ge	0.4	1.6	4	1.386	2039	0.16%

Notes: KKDC - backgrounds BEFORE cuts is 113.00 cnt/kev/t-y from Physics Letters B 586 (2004) 198–212 KKDC - backgrounds after cuts come from Eur. Phys. J. A 12, 147–154 (2001). The data set included 35.5 kg y and the background index in the energy region between 2000– 2080 keV is (0.06±0.01) events/(kg y keV)


> EXO gives resolution in sigma/E of 1.6% CUORE gives sigma value of 2.5 (larger than calculated from their typical resolution, 2.15)

Ultra-pure materials - Majorana Example

Table 4.1: Component material radioactivity goals for the major contributors to backgrounds in the $0\nu\beta\beta$ - decay region of interest. Note that the column Equivalent Achieved Assay specifies the goal for the component's activity in ²⁰⁸Tl to the measured quantity of ²³²Th. An activity of ²⁰⁸Tl of 0.3 μ Bq/kg would correspond to an activity of ²³²Th of 1.0 μ Bq/kg. We have focused on the Th contamination levels, since it has the more complex chemistry and hence is more difficult to remove.

Location	Purity Issue	Exposure	Activation Rate	Equiv. Achieved Assay	Reference
Germanium	${}^{68}\text{Ge},{}^{60}\text{Co}$	100 d	$1~{\rm atom/kg/day}$		[Avi92]
		Component Mass	Target Purity		
Inner	²⁰⁸ Tl in Cu	2 kg	$0.3~\mu\mathrm{Bq/kg}$	0.7-1.3 $\mu \mathrm{Bq/kg}$	Current work also [Arp02]
Mount	$^{214}\mathrm{Bi}$ in Cu)	$1.0~\mu \mathrm{Bq/kg}$		
Cryostat	²¹⁰ Tl in Cu	38 kg	$0.1~\mu\mathrm{Bq/kg}$	0.7-1.3 $\mu \mathrm{Bq/kg}$	Current work also [Arp02]
	$^{214}\mathrm{Bi}$ in Cu	-	$0.3 \ \mu Bq/kg$		
Cu Shield	²⁰⁸ Tl in Cu	310 kg	$0.1~\mu\mathrm{Bq/kg}$	0.7-1.3 $\mu \mathrm{Bq/kg}$	Current work also [Arp02]
	$^{214}\mathrm{Bi}$ in Cu)	$0.3 \ \mu Bq/kg$		
S	²⁰⁸ Tl in Cu	1 g/crystal	$30 \ \mu Bq/kg$	$1000 \ \mu Bq/kg$	
Small Parts	$^{214}\mathrm{Bi}$ in Cu	i g/ cijotai	$100 \ \mu \mathrm{Bq/kg}$		

An iterative background model

Background "budget" summary: Majorana Example

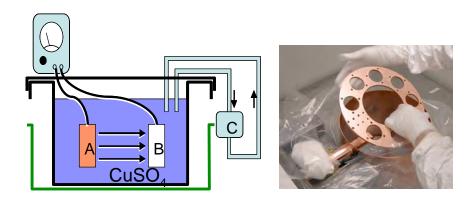
Background Source	Rates for Important Isotopes				Total Est. Background	
		cnts/ROI/t-y			cnts/ROI/t-y	
		68 Ge	60	Co		
Germanium	Gross:	2.54	1.22			
Germanium	Net:	0.02	0.06			0.08
		208 Tl	^{214}Bi		^{60}Co	
Inner	Gross:	0.12	0.	03	0.26	
Mount	Net:	0.01	0.	00	0.00	0.01
Connected	Gross:	0.49	0.48		0.58	
Cryostat	Net:	0.14	0.12		0.00	0.26
Copper	Gross:	1.39	0.55		0.02	
Shield	Net:	0.39	0.	0.11		0.50
Small	Gross:	0.45	0.68		0.34	
Parts	Net:	0.05	0.17		0.00	0.22
Surface	All					0.36
Alphas	surfaces:					0.30
		muons	cosmic activity	gammas	(lpha,n)	
External	Gross:	0.03	1.50	0.05	0.06	
Sources	Net:	0.003	0.21	0.05	0.06	0.32
2 uetaeta						< 0.01
Solar ν						0.01
Atm. ν						0.02
			TOTA	L SUM		1.75

Backgrounds!

- Sensitivity to $0\nu\beta\beta$ decay is ultimately limited by S-to-B.
 - Goal: ~ 60 150 times lower background (after analysis cuts) than previous ⁷⁶Ge experiments (H-M and IGEX).
- Approach
 - Optimize the detector energy resolution (HPGe)
 - Shield the detector from external natural and cosmogenic sources
 - Ultra-pure materials used in proximity to the crystals
 - electroformed Cu, LAr, clean low-mass support structures,
 - development of ultra-senstive ICPMS methods for materials assay
 - Discriminate between single site (ββ-decay) vs. multi-site events
 - Granularity (close-packed crystal arrays)
 - Segmentation (segmented electrodes on individual crystals)
 - Pulse shape analysis
 - Time correlation analysis

Techniques common to both GERDA & Majorana

GERDA and Majorana Background Mitigation strategies


Source	Solution GERDA	Solution Majorana		
γ 's external to crystals from 208 Tl (232 Th), 214 Bi (226 Ra), 60 Co,	Shield: high-purity liquid argon (nitrogen) / water shield	Shield: Electroformed copper, lead		
Front-end electronics	ASIC (77/85° K)	Discrete low-level design		
µ induced prompt signals	Underground location LNGS (3400 mwe); Water Cherenkov µ-veto	Underground location >4500 mwe; plastic scintillator µ- veto		
µ induced delayed signals (e.g. n+ ⁷⁶ Ge→ ⁷⁷ Ge → ⁷⁷ As ^{53s}	Low-Z material shield (Ar/water)	Combination low and high-Z shield: Deep underground location >4500 mwe		
Internal to crystal: cosm. ⁶⁰ Co (t _{1/2} = 5.27 y)	Minimize time above ground after crystal growing $(30d \rightarrow 2.5 \cdot 10^{-3} \text{ cts}/(\text{keV kg y})$	same		
Internal to crystal: cosm. ⁶⁸ Ge (t _{1/2} = 270 d)	Minimize time after end of enrichment; shielded transportation container (180d→12·10 ⁻³ cts/(keV kg y)	same		

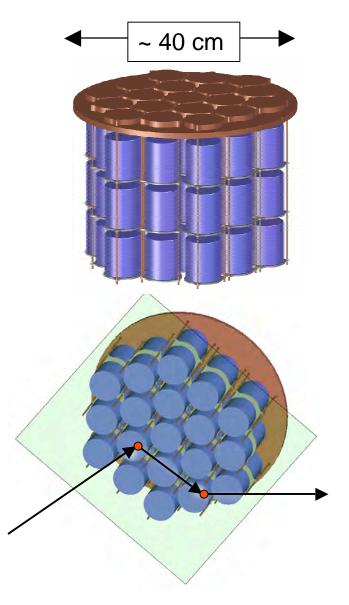
Materials in close vicinity of Ge diodes

GERDA: bare diodes submerged in high-purity liquid Ar (N)

Majorana: diodes housed in vacuum cryostat made of electroformed cupper

Main isotopes of concern in shielding materials:

Goal/achieved: <1µBq/m³ (STP) ²²⁶Rn (²¹⁴Bi) in LN and LAr


Goal: <0.3 μ Bq/kg ²⁰⁸Tl (<1 μ Bq/kg ²³²Th) Achieved: <2-4 μ Bq/kg ²³²Th (ICPMS)

N.B.: shield design has impact on $\boldsymbol{\mu}$ induced backgrounds

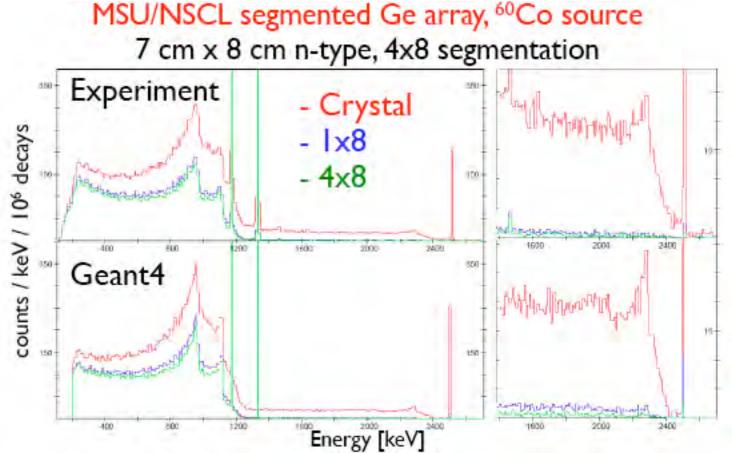
Low-Z shield \Rightarrow LNGS 3400 mwe ok with water Cherenkov μ -veto

Low-Z/Pb/Cu shield & depth >4500 mwe \Rightarrow SNOIab or DUSEL

Background suppression: Granularity

Granularity by close crystal packing

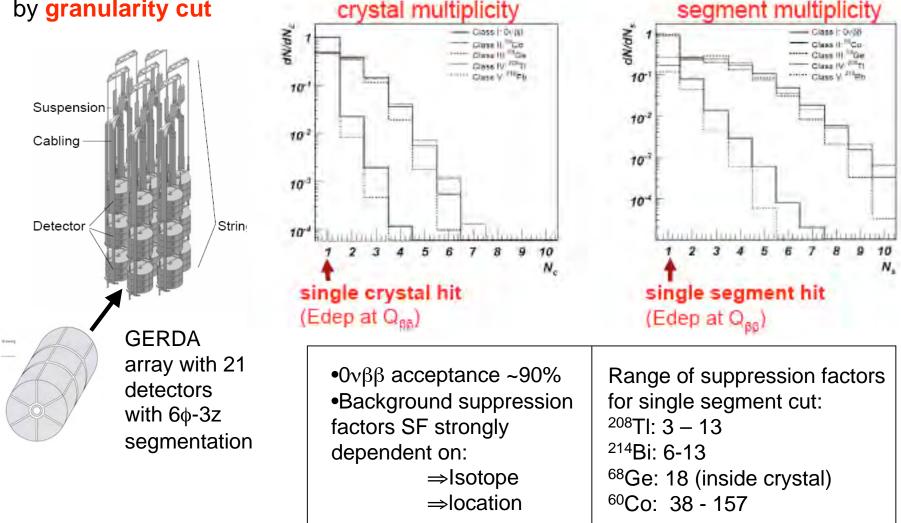
Simultaneous signals in two detectors cannot be $0\nu\beta\beta$


- Effective for:
 - High energy external γ's
 e.g. ²⁰⁸Tl and ²¹⁴Bi
 - Supports/small parts (~5x)
 - Cryostat/shield (~2x)
 - Some neutrons
 - Muons (~10x)

21

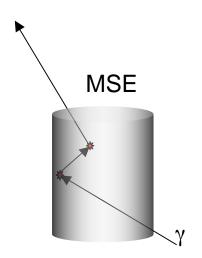
Background suppression: Segmented Crystals

Discrimination of Multi Site Events (MSE) (e.g. Compton bgd.) from Single Site Events (SSE) (e.g. $0\nu\beta\beta$) by: granularity of segmented crystals



Next-Generation ⁷⁶Ge 0vββ Experiments

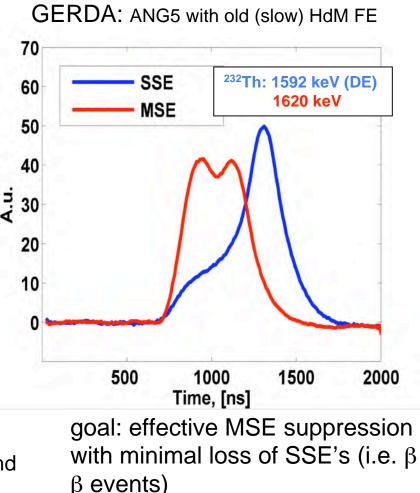
Background suppression: Granularity (crystals and segs.)


MC study (MaGe) of background suppression / 0vßß acceptance of GERDA arrav by granularity cut crystal multiplicity segment multiplicity

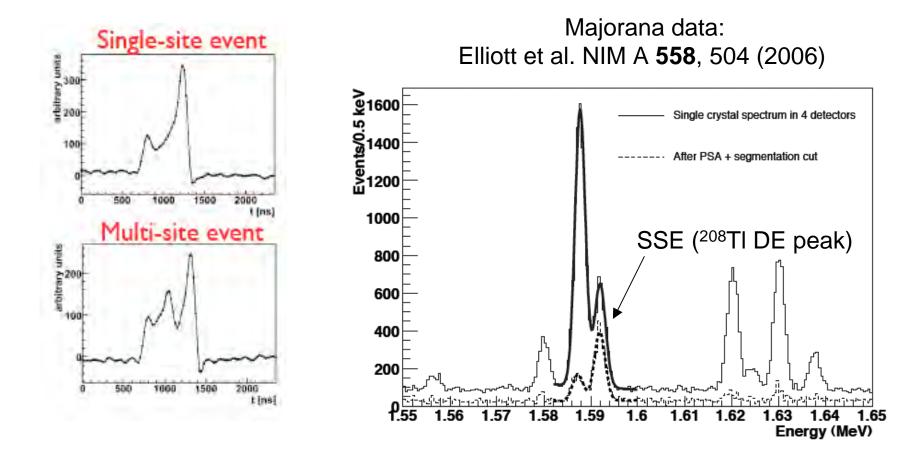
Similar results in Majorana study

Background suppression: PSA

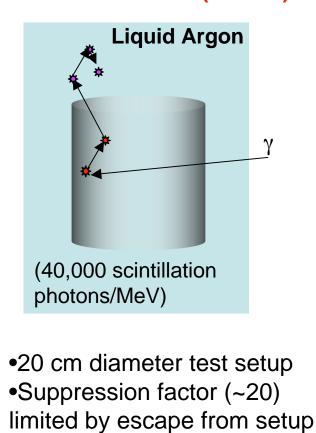
Discrimination of Multi Site Events (MSE) (e.g. Compton bgd.) from Single Site Events (SSE) (e.g. $0\nu\beta\beta$) by: pulse shape analysis

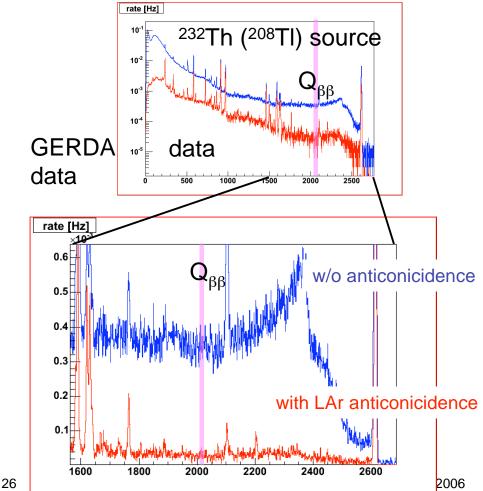


low-background FE electronics to be located close to diodes for high band width



ASIC FE (GERDA); **Discrete low-background** 'true co-axial' det. FE (Majorana) Next-Generation ⁷⁶Ge 0vßß Experiments


Background suppression : Segmentation & PSA


Discrimination of Multi Site Events (MSE) (e.g. Compton bgd.) from Single Site Events (SSE) (e.g. $0\nu\beta\beta$) by: **segmented crystal AND pulse shape analysis**

Background suppression: LAr (GERDA R&D)

Discrimination of Multi Site Events (MSE) (e.g. Compton bgd.) from Single Site Events (SSE) (e.g. $0\nu\beta\beta$) by: **liquid argon scintillation anti-coincidence (LArGe)**

GERDA Progress and Status

- Approved by LNGS with location in Hall A
- Substantially funded by BMBF, INFN, MPG, and Russia in kind
- 18 kg of enriched detectors at LNGS 37.5 kg of new enriched material stored underground
- Underground detector laboratory operational at LNGS
- Preparation for LNGS safety review of stainless steel cryostat
- LNGS Hall A under preparation for start of construction of main infrastructures in 2006

Majorana Progress and Status

- March 2006 external panel review of 120 kg detector
 - essentially ready for CD-1 review;
 - no major outstanding R&D issues
- Preparing for DOE NP Review that will be held in late Nov. or Dec. 2006
 - If successful will then be authorized to proceed through the DOE 413 CD-1 thru CD-3 process
- Exploring segmentation options
 - Highly segmented (6 by 6) or modest segmentation (2 x 3)
 - "modified electrode" detector (extremely good resolution)
- Will implement in a phased approach
 - Examining optimized cryostat module size 10 60 kg.
- Site: SNOIab or DUSEL (depth > 4500 mwe)

Summary

- ⁷⁶Ge detector technology provides intrinsic low-backgrounds, excellent resolution and powerful tools for background suppression and 0vββ event recognition
- GERDA & Majorana have different shield concepts, but common background reduction techniques
- GERDA
 - Funded; main infrastructure construction starting in 2006
 - **Phase I :** background 10 cts / $(t \cdot keV \cdot y)$
 - scrutinize KKDC result
 - Phase II : background 1 cts / (t · keV · y)
 - $T_{1/2} > 2 \cdot 10^{26} \text{ y}$, $< m_v > < 90 290 \text{ meV}$
- Majorana
 - R&D funding; preparing for DOE Panel review
 - Staged approach based on 20-60 kg cryostat modules
 - background 0.4 cts / (t · keV · y)
 - 120 kg mss and 4.5 years, or 0.46 t-y of 76Ge exposure
 - $T_{1/2} >= 5.5 \times 10^{26} \text{ y} (90\% \text{ CL})$
 - <m,> < 100 meV (90% CL) ([Rod06] RQRPA matrix elements) or a 10-20% measurement assuming a 400 meV value.