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Abstract

Finding Excited-State Decays of Germanium-76

Kareem Kazkaz

Chair of the Supervisory Committee:
Professor John F. Wilkerson

Department of Physics

Of all the fermions in the Standard Model of Particle Physics, the neutrinos alone are still lacking

measurements of the fundamental properties of absolute mass and the Majorana/Dirac nature of the

particles. The Majorana experiment is a proposed 76Ge-based search for neutrinoless double-beta

(0νββ) decay, a decay which, if observed, may answer the questions of the neturino’s mass and

nature. Majorana’s sensitivity will also allow for searches of two-neutrino double-beta decays to an

excited state (ES2νββ) of the final nucleus. This latter class of experiments can be used to elucidate

the theoretical nuclear matrix elements that govern a broad array of nuclear interactions.

A GEANT4- and ROOT-based simulation framework called MaGe was used to determine Majo-

rana’s ES2νββ observation efficiency. The reliability of MaGe was tested by comparing a calculated

efficiency against an experimentally measured efficiency using two surrogate signals, each with a

decay signature similar to ES2νββ decays. The surrogate signals come from the decay of 77Ge,

created via neutron activation of a natural germanium, multi-crystal radiation detector. The ratio of

the experimental and simulation efficiencies were 1.17 ± 0.17 (stat.) ± 0.27 (sys.) and 0.96 ± 0.19

(stat.) ± 0.27 (sys.).

MaGe was then used to calculate the sensitivity of a Majorana detector module to the ES2νββ

decays. Depending on the segmentation scheme of the Majorana crystals, the Majorana module will

observe 25 signal counts and 0.009 background counts (strict analysis cuts) or 330 signal counts

and roughly 40 background counts (relaxed analysis cut) over 11 months of live time. These counts

rates assume a half life of 1023 years for a two-neutrino double-beta decay to an excited state of

the final nucleus. A measurement of the ES2νββ half life can be used to test theoretical models of

nuclear double-beta decays, leading to more accurate predictions of neutrino mass if a 0νββ decay

signal is observed.
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ACTIVATED ISOTOPES: Radioactive isotopes created by absorption of a neutron on a nucleus

ACTIVE NEUTRINO: A neutrino that acts according to the left-handed electroweak theory of the

Standard Model of particle physics

CLOVER: A high-purity germanium detector made by Canberra/Urysis consisting of four ger-

manium crystals each with two-fold segmentation

COINCIDENCE: Two or more particles emitted via the same or related processes on a time scale

much shorter than the timing discrimination of a detector

COSMOGENIC ISOTOPES: Radioactive isotopes that are created by cosmic rays. The radioiso-

topes made be created by absorption of a proton or neutron or by breaking up a nucleus

DIRAC PARTICLE: A particle distinct from its charge-conjugate partner

ENRICHED GERMANIUM: Germanium that has been processed to increase its isotopic abundance

of 76Ge to 86%.

EXTERNAL ACTIVITY: Radioactive decays originating outside the active region of a radiation

detector

INTERNAL ACTIVITY: Radioactive decays originating within the bulk of a material

MAGE: The GEANT4- and ROOT-based simulation package cooperatively developed by the

Majorana and GERDA collaborations

MAJORANA PARTICLE: A particle that is self-conjugate under charge transformation

MEGA: The Multi-Element Germanium Array, a high-purity germanium detector developed by

Pacific Northwest National Laboratory, Los Alamos National Laboratory, and the University

of Washington
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MULTI-SITE EVENT: A collection of simultaneous single-site events spatially distributed in a vol-

ume greater than the resolution capabilities of the detector hardware and software

N-HIT: The number of detector elements with energy deposition for any given event

SEGA: The Segmented Enriched Germanium Assembly, an enriched and segmented germanium

detector developed by Triangle Universities Nuclear Laboratory and North Carolina State

University

SEESAW MECHANISM: The theoretical prediction that if the light neutrinos emitted in beta decay

are Majorana particles, every light neutrino will have a heavy neutrino partner

SINGLE-SITE EVENT: A total energy deposition within a detector localized to a volume smaller

than the resolution capabilities of the detector hardware and software

STERILE NEUTRINO: A neutrino that does not interact in a manner specified by the Standard

Model of particle physics

SUM PEAK: A feature in an energy spectrum that is created only by two or more particles de-

positing their full energy in a detector element at the same time
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Chapter 1

THE HISTORY AND FUTURE OF THE NEUTRINO

In the late 19th century, J. J. Thompson used an evacuated glass bulb with two charged electrodes

inside it to create what was then known as a cathode ray. His experiment showed that this cathode

ray carried a negative charge, and postulated that the cathode ray was in reality a stream of particles.

By projecting the beam through appropriately tuned electric and magnetic fields, he was able to

measure the ratio of the charge on these particles to their mass, and discovered their mass was very

small [1]. Today, we know these particles by the name “electron”, and Thompson’s experiment was

written into the history books as the first fundamental particle physics experiment.

Since that time, physicists have made enormous progress in expanding our knowledge of ba-

sic particles. Following Thompson’s 1897 discovery of electrons, the nucleus was discovered in

1909 [2], the proton a decade later [3], and the neutron in 1932 [4]. Particle physics was on a roll.

Unfortunately, there was a stumbling block in the middle of all these discoveries. In 1914

James Chadwick published results from an experiment that measured the energy spectrum of the

beta particles that are emitted as part of their namesake radiation [5]. The theory at the time held

that these beta particles should all be emitted with discrete energies, and Chadwick’s discovery

to the contrary seemed to throw into doubt the law of Conservation of Energy. Since then, there

have been blind alleys, dead ends, alternate explanations, a Desperate Remedy, a rejected theory

that eventually proved correct, evidence, refutations, and finally acceptance of the explanation for

Chadwick’s results.

The particle that lies at the center of the confusion initiated by Chadwick is the neutrino. Neutri-

nos, of all fundamental particles so far observed, are the particles about which the least is known. We

know they are electrically neutral, have exceedingly small mass, and are not an inherent part of the

atom. Because neutrinos interact only via the weak nuclear force, to observe any specific neutrino

would require a detector that is light-years long. Because of these inherent difficulties in detecting

neutrinos, it was 42 years after that 1914 publication of the beta spectrum before researchers at Los

Alamos National Laboratory, working on an experiment dubbed Project Poltergeist [6], confirmed

their observation of the neutrino [7]. It took another five decades after Project Poltergeist for science

to advance to the stage of precision neutrino experiments.

If neutrinos are so hard to observe, how did physicists come to guess at their existence in the
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first place? What other questions about the neutrino have we answered? What questions remain?

How will we fill in some of those gaps in our knowledge? What further questions await us?

1.1 Prediction and evidence of neutrinos

1.1.1 Early history

In 1896 Henri Becquerel found himself the chair of the physics department at the École Polytech-

nique. That year he made an amazing discovery, that uranium salts were able to expose a pho-

tographic plate even though the plate was wrapped with an opaque sheet of paper [8]. The year

before Wilhelm Röentgen had discovered X-rays [9], but this new radiation coming from the ura-

nium seemed to be different from X-rays—the latter were created using a beam of “cathode rays”,

but the uranium could expose the photo plate by itself, without any assistance from a secondary

beam. Evidently, whatever radiation was present in uranium was inherent to the substance itself.

In the following years Becquerel was able to show that the particles emitted in this new kind

of radiation had the same characteristics as electrons. Not yet able to conclusively show that these

particles were indeed electrons, they were given the name beta particles. Little else was known

about beta radiation, and the physics community was slightly confused by these particles. Betas had

mass and charge, so some thought they should behave like alpha radiation, which also has mass and

charge. Some surmised that since betas could penetrate through matter more easily than alphas, that

they would ultimately behave more like X-rays, which are massless and neutral.

One thing that alphas and X-rays had in common, though, were their discrete energy levels.

Surely, thought the physicists of the day, the beta spectrum will also be quantized. Unfortunately,

beta radiation was not quite so simple. J. Chadwick’s paper of 1914 showed a continuous beta spec-

trum, implying that some energy was disappearing. This sparked the question, if the beta particle

doesn’t have all the energy it should, where does the missing energy go? In response, Neils Bohr

questioned the Law of Conservation of Energy. Others, such as Rutherford, proposed fixes [10] that

turned out to be dead ends.

The debate continued for over a decade over whether or not the beta spectrum really was contin-

uous, whether only one beta particle was emitted in each decay, and whether undetected betas were

carrying away excess energy. The debate was put to rest in 1927 when Ellis and Wooster definitively

responded to all these issues [11], in the process measuring the beta spectrum of Radium E (shown

in Fig. 1.1).

There was an additional twist on the problem. Radium E and its decay product were known to

have integer spin, yet the beta particle only has half-integer spin. Any excess energy carried away

by gamma particles would also be integer spin, which means there was either a half integer deficit

or surplus in the reaction. In either case, not only was conservation of energy seemingly violated,
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Figure 1.1: Beta spectrum of Radium E. The spectrum shows that only a small percentage
of beta particles have close to the expected full kinetic energy (about 10.5×105 volts on this
graph). A plurality of betas have a kinetic energy roughly one third the maximum amount.
According to the theory of the day, all beta energies should have had the maximum kinetic
energy. Nowadays, radium E is known as 210Bi, and the missing energy is known to be
carried away by an anti-neutrino. Figure taken from Ellis & Wooster [11].

but so was conservation of angular momentum.

After a few more years of argument and discussion, Wolfgang Pauli sent a letter to the Federal

Institute of Technology in Zürich. Pauli’s 1930 letter included the following1

...considering the ’false’ statistics of N-14 and Li-6 nuclei, as well as the continuous

β-spectrum, I have hit upon a desperate remedy to save the “exchange theorem” of

statistics and the energy theorem. Namely...the possibility that there could exist in the

nuclei electrically neutral particles...which have spin 1/2...The continuous β-spectrum

would then become understandable by the assumption that in β decay [this particle]

is emitted together with the electron, in such a way that the sum of the energies...is

constant.

Interestingly enough, his doubts about the existence of this new particle were similar to those

of many modern scientists. Pauli went on to write ”I admit that my remedy may appear to have a

1This letter was published in Physics Today [12].
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small a priori probability because [these particles], if they exist, would probably have long ago been

seen.”

With a new focus, the physics community set about testing for the existence of this new particle,

eventually named a neutrino by Enrico Fermi. In a way, the continuous beta spectrum already

provided proof of the existence of the neutrino. Many people remained skeptical, however, claiming

that if this ghostly particle were involved in beta reaction, they should be able to induce inverse beta

reactions in a detector far from the neutrino source. This remote detection was finally performed in

1953 by F. Reines and C. L. Cowan [13], and confirmed in 1956 [7] by the same group.

1.1.2 Modern history

Since the Reines and Cowan experiment, scientists have filled in much of their knowledge of the

neutrino. Various experiments have made direct observations of neutrinos, identifying how they

interact with other particles. Neutrino science has progressed to the point where we are not simply

searching for them and measuring their properties, but using them as probes to gather information

about the interior of warming of the Earth [14], the nuclear burning that powers our sun [15], and

the catastrophic energies released in a supernova [16]. What was once a hypothetical conjecture has

now entered a period of precision measurements, and this desperate remedy is taken for granted.

1.2 Properties of neutrinos

What is known today about the neutrino and what questions remain? First the basics:

• There are three active flavors of neutrino: νe, νµ, ντ.

• There are at least three masses of neutrinos: ν1, ν2, ν3. Interestingly, the three masses of

neutrinos do not correspond one-to-one with the flavors of neutrino.

• Neutrinos are neutral, fundamental particles.

• Neutrinos have spin 1/2.

• The νe’s mass is at most about 2.2 eV [17], and probably weighs much less than that. By

comparison, the electron’s mass is 511,000 eV.

• The difference between the masses squared of the ν1 and ν2 (i.e.,
∣∣∣m2

1 − m2
2

∣∣∣) is about 80

meV2 [18].

• The difference between the masses squared of the ν2 and ν3 (i.e.,
∣∣∣m2

2 − m2
3

∣∣∣) is about 2400

meV2 [19].

While the basic information is not difficult to enumerate, there are a few mighty big devils

hiding in all the details. It’s true that there are three active flavors of neutrinos, but those three
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flavors do not have well-defined masses, leading to neutrino mixing. To explain the very light

masses of the neutrinos, a “seesaw” theory has been developed that requires three exceedingly heavy

neutrino partners. One experiment has predicted the existence of what is called a sterile neutrino that

does not interact via the same left-handed weak nuclear force as active neutrinos. We don’t even

have solid experimental evidence as to whether or not neutrinos have distinct antimatter partners

like electrons and positrons (Dirac particles), or if they are their own antiparticles, like photons

(Majorana particles).

1.2.1 Neutrino mixing

For an expanded introduction to the nonintuitive behavior of neutrinos, we take a closer look at neu-

trino mixing. Deeper explorations of other neutrino mystifications and bedazzlements are explored

in Chapters 2 and 3.

Neutrinos exhibit a beautiful complexity governed by quantum mechanics. Part of this com-

plexity is that neutrinos interact with other particles via the weak nuclear force, but when they are

not interacting with another particle they still undergo processes that might induce the neutrino to

change its identify. A neutrino born as a νe might interact later on as a νµ.

This schizophrenia can be written mathematically. We study the case of two-neutrino mixing

here, and later expand to the case of three neutrinos. Consider the two neutrino weak eigenstates νe

and νµ. These neutrinos do not have well-defined masses, but are instead made up of a superposition

of mass eigenstates ν1 and ν2. We can express the weak eigenstates as a function of mass eigenstates

via a single mixing angle, θ12:

 νe

νµ

 =  cos θ12 sin θ12

− sin θ12 cos θ12

  ν1

ν2

 (1.1)

Assume, for the sake of simplicity, that two protons in the sun fuse into a single deuteron, turning

one proton into a neutron, and emitting a positron and a νe. What happens to this neutrino after it

emerges from the sun and travels the 93 million miles of empty space to the Earth? When the

neutrino is in flight (traveling through vacuum, and therefore not interacting with matter), it evolves

according to the Schrödinger equation. The neutrino is created as a pure νe at a time 0, then a time t

later, we have

|νe(t)〉 = e−iHt |νe(t = 0)〉

= e−iHt (cos θ12 |ν1〉 + sin θ12 |ν2〉)

= cos θ12e−iE1t |ν1〉 + sin θ12e−iE2t |ν2〉 (1.2)
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where H is the Hamiltonian operator and E1 (E2) is the energy of the |ν1〉 (|ν2〉) mass eigenstate.

The neutrinos here are free particles, so operating on the states with the Hamiltonian only picks out

the particle’s kinetic energy. We rewrite E1 and E2 using the relativistic energy equation of a free

particle, with the speed of light c set to 1:

E2 = p2 + m2

=⇒ E =
√

p2 + m2

= p

√
1 +

(
m
p

)2

= p

1 + 1
2

(
m
p

)2

−
1
8

(
m
p

)4

+ . . .

 (1.3)

where p is the momentum and m the mass of the particle. Neutrinos have at most about 2 eV of

mass. Solar neutrinos, however, have a momentum over one million times as large as their mass.

We can therefore simplify Eq. (1.3):

E ≈ p

1 + 1
2

(
m
p

)2
= p +

1
2

m2

p
(1.4)

Plugging Eq. (1.4) for the two mass eigenstates into Eq. (1.2) gives

|νe(t)〉 = cos θ12 exp
−i

p +
1
2

m2
1

p

 t
 |ν1〉 + sin θ12 exp

−i
p +

1
2

m2
1

p

 t
 |ν2〉

= exp
−i

1
2

m2
1

p

 t
 (cos θ12 |ν1〉 + sin θ12 |ν2〉 exp

(
−

i
2p
∆m2

12t
))

(1.5)

where ∆m2
12 =

∣∣∣m2
2 − m2

1

∣∣∣. Note that the two mass states have the same momentum p. If we further

assume that E ≈ p and that the neutrinos essentially travel at the speed of light, then the time the

neutrinos are in flight is the same as the distance they travel: t = L (with c set to 1). Thus we have

|νe(t)〉 = exp
−i

1
2

m2
1

p

 t
 (cos θ12 |ν1〉 + sin θ12 |ν2〉 exp

(
−

i
2
∆m2

12
L
E

))
(1.6)

By multiplying Eq. 1.6 by
〈
νµ

∣∣∣ from the left and taking the absolute value squared, we can write
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down the probability that what started life as a νe will have changed into a νµ:

Pνe→νµ = sin2 (2θ12) sin2
∆m2

12

4
L
E

 (1.7)

According to Eq. (1.7), how quickly a νe oscillates into a νµ and back is related to the mass splitting

squared ∆m2
12 and the ratio of energy to distance traveled. The amplitude of that oscillation is set by

the angle θ12.

This formalism can be expanded to the case of three neutrinos. In the three-neutrino mixing

matrix, there are a priori four unknowns: θ12, θ23, θ13, and δ. The θ mixing angles appear in Eq. 1.8

as cnm and snm, which stand for cos θnm and sin θnm. The δ angle allows for CP violation. We use the

Particle Data Group’s convention [20] for the three-neutrino mixing matrix equation:


νe

νµ

ντ

 =


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13



ν1

ν2

ν3

 (1.8)

Values for the mixing angles are available from the same experiments that gave us measurements of

the mass splittings. They give the best fit values as

θ12 = 33.9◦ [18]

θ23 = 45.0◦ [19] (1.9)

θ13 < 10◦ [21]

Note that the value for θ13 is an upper limit, and not a measurement.

1.2.2 Seesaw mechanism and sterile neutrinos

While an exhaustive review of neutrino theory is beyond the scope of this work, we introduce two

more concepts in this Section that demonstrate additional aspects of current neutrino research.

The seesaw mechanism

One interesting aspect of the neutrinos is their very light mass compared to the masses of the other

fundamental particles. One theory predicts that if neutrinos are Majorana particles, then in addition

to the very light neutrinos νe, νµ and ντ, there are three very heavy partners Ne, Nµ, and Nτ. The

masses between the light particles and heavy particles are related by the equation

Mν = MDM−1
N MT

D (1.10)
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Each term in Eq. (1.10) is a 3 × 3 mass matrix. Mν and MN are the matrices of the light and heavy

neutrinos, respectively. MD is a mass matrix with values roughly determined by the mass of the other

quarks and charged leptons, and can therefore range from about 1 MeV to 200 GeV. As can be seen,

Mν and MN are inversely proportional. Plugging in the value of 10 meV for the mass of the light

neutrino and using the mass of the electron (∼1 MeV) as the Dirac mass results in a heavy neutrino

mass of about 105 GeV. This mass scale would require a particle accelerator 100 times as powerful

as Fermilab’s Tevatron. If a value of 250 GeV is used in the Dirac mass term, the heavy neutrino

mass becomes 1012 GeV. Building particle accelerator to probe that mass scale is ludicrously beyond

today’s technology, so one of the current avenues of theoretical neutrino research is how to test for

the existence of the seesaw mechanism.

While the theory behind neutrinoless double-beta (0νββ) decay will be discussed in the next

chapter, we will address how it might relate to the seesaw mechanism here. In 0νββ decay, the most

prevalent theory suggests that a light neutrino is emitted from one neutron within a nucleus and is

absorbed by another neutron in the same nucleus. The resulting decay nucleus may be in the ground

state or in an excited state. It might be possible, however, for a heavy neutrino to be exchanged

by the neutrons instead of a light neutrino. Measuring how often the decay proceeds to the ground

state of the decay nucleus versus an excited state might elucidate the nature of the particle traveling

between the neutrons [22].

Finally, one tantalizing aspect of the seesaw mechanism is that it could explain the apparent

matter/anti-matter imbalance in the universe. Heavy Majorana neutrinos can decay via lepton-

number-violating processes, leading to an overabundance of leptons over anti-leptons. This over-

abundance can create a prevalence of baryons over anti-baryons [23]. Neutrinos may actually ex-

plain how the matter around us came to exist.

Sterile neutrinos

At the beginning of this section we described the known properties of the neutrinos. Those prop-

erties include measurements of the neutrino mass splittings, and were found to be 80 meV2 for∣∣∣m2
1 − m2

2

∣∣∣ and 2400 meV2 for
∣∣∣m2

2 − m2
3

∣∣∣. In 2001 an experiment called the Liquid Scintillator Neu-

trino Detector (LSND) found evidence for a third mass splitting somewhere between approximately

0.2 and 10 eV2 [24]. This result might be explained by the existence of what are called sterile

neutrinos.

Sterile neutrinos are neutrinos that do not interact via the left-handed weak nuclear force spec-

ified by the current Standard Model of particle physics. The Model stipulates that all neutrinos

interact in a fundamentally left-handed manner, and all anti-neutrinos in a right-handed manner. It

could be that the sterile neutrino is simply a right-handed neutrino. They could make their presence

felt by participating in neutrino oscillations—a process similar to the one by which a νe may be
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observed later to be a νµ, but not necessarily through direct Standard Model interactions.

LSND’s results are currently being tested by an experiment at Fermilab called MiniBOONE [25].

If MiniBOONE confirms LSND’s results, it would call for another drastic revision in how the Stan-

dard Model of particle physics treats neutrinos.

1.3 The Majorana Experiment

The current work is performed under the auspices of a proposed double-beta decay experiment

called Majorana. Two-neutrino double-beta (2νββ decay, although it is very rare, is allowed in the

Standard Model, and has been observed in 11 isotopes. Neutrinoless double-beta decay (0νββ)

decay, however, is not allowed by the Standard Model, and that is the focus of Majorana. All 0νββ

decay experiments have two primary goals: determine whether the neutrino is its own anti-particle,

and if so, determine the absolute mass of the neutrino.

The isotope that Majorana will use to study double-beta decays is 76Ge. Germanium crystals

can be used to make radiation detectors, so the idea behind the experiment is to make radiation

detectors enriched with 76Ge. The idea is that the nuclei in the detector will decay and provide the

0νββ signal. Majorana is conceived of as a modular detector, with each module using about 60 kg of

enriched germanium crystals (86% 76Ge). The crystals are in a close-packed configuration, and are

segmented to make each individual detector act as an array of smaller detectors. The current plans

involve one, two, or three modules, depending on the availability of funding.

Double-beta decays are the rarest events ever experimentally observed. The half-life of 76Ge via

2νββ decay is around 1021 years, or 100 billion times the age of the universe itself. This means that

if a lump of 76Ge were created in the Big Bang and it started decaying away, the lump would still

be 99.999999% 76Ge. By contrast, the half-life of 0νββ of 76Ge is at least 10,000 times as long as

that of two-neutrino double-beta decay. At that rate, a 1 kilogram lump of 76Ge would have a single

nucleus decay via 0νββ about once every two years.

The low rate of 0νββ decays puts any such search for them in the low-background category. To

be able to differentiate the signal from background requires the background levels be exceedingly

low. For this reason, the Majorana detector would have to be built underground so that the Earth

can shield the instruments from cosmic rays, and heroic efforts must be undertaken to reduce or

identify all background radiation present in the environment near the detector. The close-packing

and segmentation mentioned above are used to identify background radiation.

The Majorana collaboration has several detectors that are being used to analyze different aspects

of the proposed Majorana experimental design. One detector at Los Alamos National Laboratory

is used to study the effects of segmentation and pulse shape analysis in natural (i.e., unenriched),

segmented germanium detectors in a close-packed array [26]. A detector at Triangle Universities

Nuclear Laboratory, called the Segmented Enriched Germanium Assembly (SEGA), is used to study
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background-reduction methods of a highly-segmented single enriched detector [27]. A third detec-

tor under construction at Pacific Northwest National Laboratory and the Waste Isolation Pilot Plant,

called the Multi-Element Gamma Assay (MEGA) will be used to study, among other topics, coinci-

dences and construction issues using a close-packed array of natural, unsegmented detectors [28].
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Chapter 2

DOUBLE-BETA DECAY

As introduced in the previous chapter, the Majorana experiment studies double-beta decays to

determine whether the neutrino is its own antiparticle. Just what is double-beta decay anyway? Why

were scientists not able to directly observe the decay until 1987? What might double-beta decays

be able to teach us about neutrinos, and how?

2.1 Beta Decay

In order to explain double-beta decay, it first makes sense to understand regular beta decay. An

example of beta decay is when a neutron turns into a proton and ejects an electron and electron

anti-neutrino:

n→ p + e− + νe (2.1)

Fig. 2.1 shows a cartoon of this process. This is actually only one form of beta decay. We can move

particles from one side of the equation to the other if we turn the particle into its anti-particle. For

instance, moving the antineutrino to the other side of the equation and reversing the arrow gives

p + e− → n + νe

This electron capture reaction describes the nuclear reaction that occurs when a sun collapses into a

neutron star. The equation

νe + p→ e+ + n

describes the fundamental reaction in the 1953 Cowan and Reines experiment that first observed

neutrinos far from their source [13].

For some isotopes, it’s possible for a proton within a nucleus to decay, turning into a neutron

and emitting a positron and electron neutrino. This is referred to as β+ decay:

p→ n + e+ + νe

For this chapter, the phrase “beta decay” will always refer to a decay that emits an electron, and β+
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n e-, p, !e

Figure 2.1: Cartoon of neutron decay. The neutron, composed of two down quarks and an
up quark, turns into a proton composed of two up quarks and a down quark. An electron and
electron anti-neutrino are ejected. The half life of a bare neutron is a little over 10 minutes.

decay will, when necessary, be explicitly denoted.

2.1.1 Calculating the half life of the bare neutron

Because it will aid in the discussion of the half life of an isotope that undergoes double-beta decay,

we take some time to discuss the simpler case of single-beta decay. The simplest single-beta decay

known is the decay of a bare neutron.

The half life of a particle can be calculated using Fermi’s Golden Rule1:

dΓ =

〈
|M|2

〉
2~ m1

(
d3−→p2

(2π)3 2 E2

) (
d3−→p3

(2π)3 2 E3

)
...

(
d3−→pN

(2π)3 2 EN

)
(2π)4δ4(p1 − p2 − p3 − ... − pn) (2.2)

where particle 1 decays into particles 2 through N. M is called the nuclear matrix element (NME),

and mx, −→px, px, and Ex are the mass, 3-momentum, 4-momentum, and energy of particle x. Finally,

δ4(...) is a four-dimensional Dirac delta function, and as in the previous chapter the speed of light c

is set to 1. Setting aside the nuclear matrix element term, the rest of the equation is the phase space.

dΓ is the differential decay rate, and before it is integrated it describes the energy spectrum of the

outgoing particles. When integrated, Γ gives the inverse half life of the particle.

The neutron, as described above, decays into three particles, and its differential decay rate is

given by

dΓ =

〈
|M|2

〉
2~ mn

(
d3−→pν

(2π)3 2 Eν

)  d3−→pp

(2π)3 2 Ep

 ( d3−→pe

(2π)3 2 Ee

)
(2π)4δ4(pn − pν − pp − pe) (2.3)

where the neutrino, proton, and electron are explicitly labeled (see the Feynman diagram, Fig. 2.2).

1A concise derivation of Fermi’s Golden Rule is found in Krane [29].
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Figure 2.2: Feynman diagram of neutron decay. The pn and q are 4-momenta. With a few
approximations, the half life of the neutron is calculated to be within 6% of the experimental
value (see Chapter 10 of Griffiths [30]).

We use the Feynman rules to calculate M. Referring to Fig. 2.2, the leptonic vertex contributes

a factor of

−igW

2
√

2
γµ

(
1 − γ5

)
(2.4)

where gW is the weak coupling constant, and γµ and γ5 refer to the Dirac matrices2. The
(
1 − γ5

)
construction is the mathematical expression of the inherent left-handedness of the weak interaction.

The hadronic vertex contributes a factor of

−igW

2
√

2
γµ

(
gV − gAγ

5
)

Vud (2.5)

In Eq. (2.5), gV and gA refer to the vector and axial vector coupling constants, and basically

account for the fact that the neutron and proton are not fundamental particles, but are composite

particles made of up and down quarks. Note again the basic left-handed interaction, where the gV

and gA pull ”double duty” describing the strength of the left-handedness. The Vud term is present

because of quark mixing, and is equal to cos θc, where θc is the Cabibbo angle (θc ≈ 12.8◦).

Finally, the propagator contributes a term

2See any particle physics textbook for a discussion of the Dirac matrices.
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−i
(
gµν −

qµqν
M2

W

)
q2 − M2

W
−−−−−−−−→
M2

W � q2

igµν
M2

W

(2.6)

where q is the momentum of the propagator and MW is the mass of the W boson. The momentum of

the outgoing particles is on the order of the mass difference between the neutron and proton, which is

about 1 MeV. The W− has a mass of about 80 GeV, making the approximation valid (q2 ≈ 10−10M2
W).

Putting together the terms from Eqs. (2.4), (2.5), and (2.6), we get the following expression for

the nuclear matrix element of the bare neutron decay:

M =
Vud

8

(
gW

MW

)2 [
u(1)γµ

(
gV − gAγ

5
)

u(3)
] [

u(2)γν
(
1 − γ5

)
v(4)

]
(2.7)

where u(1) represents the incoming neutron, and u(2), u(3), and u(4) represent the outgoing anti-

neutrino, proton, and electron, respectively. After some algebra, we obtain

〈
|M|2

〉
=

V2
ud

2

(
gW

MW

)4 {
(gV + gA)2 (p1 · p2)(p3 · p4)

+ (gV − gA)2 (p1 · p4)(p2 · p3)

− (g2
V − g2

A) mpmn (p2 · p4)
}

(2.8)

If we work in the rest frame of the neutron (−→p1 = 0), Eq. (2.8), simplifies to

〈
|M|2

〉
=

V2
ud

4

(
gW

MW

)4 {
(gV + gA)2E2(a − 2mnE2)

+ (gV − gA)2E4(a − 2mnE4)

− (g2
V − g2

A)mpmnc2(2m2
n − a − 2mnE3)

}
(2.9)

where a = m2
n − m2

p + m2
e . At this point, Eq. (2.9) gets put back into Eq. (2.3), and the integration is

performed. The integration gets to be somewhat involved, but is covered in detail by Griffiths [30].

As is hopefully becoming apparent, the calculation of the nuclear matrix elements can be a

lengthy process, even when working with the simplest beta decay possible. What is actually heart-

ening about the foregoing process is that it is, with a few simplifications, directly and analytically

calculable. We will find that with double-beta decays, working with larger nuclei instead of a single

nucleon greatly complicates the calculation.
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2.1.2 Beta decay spectrum

Going back to Eq. (2.3), we can focus on the phase space part of the equation to obtain the ba-

sic energy spectrum of beta particles involved in beta decay. Performing the angular integrations,

dropping all constant coefficients, and assuming the recoiling proton has negligible momentum, we

rewrite the phase space as

dN ∼ −→p 2
e d−→p e

−→p 2
ν d−→p ν (2.10)

where, as in Eq. (2.3), −→p x is the 3-momentum of particle x. Because the proton is assumed to be at

rest in the lab frame, pν can be expressed in terms of the electron parameters. Assuming the neutrino

is moving relativistically, we can use the approximation pν ≈ Q− Te, where Te is the kinetic energy

of the electron and Q is the total kinetic energy of the decay particles, in this case approximately

mn − mp − me. We can also write down an expression for pe in terms of Te:

pe =

√
E2

e − m2
ec4

=

√
(Te + me)2 − m2

e

=

√
T 2

e + 2Teme (2.11)

Additionally, from Eq. (2.11) we have (again, dropping constant coefficients)

dpe =
Te + me

pe
dTe (2.12)

Putting all of these expressions into Eq. (2.10), we get

dN = pe (Te + me) (Q − Te)2 dTe

=

√
T 2

e + 2Teme (Te + me) (Q − Te)2 dTe (2.13)

A plot of Eq. (2.13) using the endpoint energy of the neutron decay (782 keV) is shown in Fig. 2.3.

The strongest correction to the shape of the beta spectrum comes in the form of the Fermi

function, which alters the energy spectrum based on the Coulomb interactions between the outgoing

beta particle and the decay nucleus. In e− decay, the beta energy is shifted downward because the

attractive force between the positive nucleus and the negative beta slows down the outgoing particle.

Conversely, in e+ decay, the Coulomb repulsion between positive charges of the decay particles adds

energy to the outgoing beta, shifting the energy upwards. This effect can be seen clearly in the decay
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Figure 2.3: Simple neutron beta spectrum. Secondary effects such as relativistic Coulomb
interactions with the decay proton and proton recoil are not accounted for in this curve.
Compare to Fig. 1.1.

Kinetic Energy (keV)
0 100 200 300 400 500 600 700

dN
 / 

dE

0

0.2

0.4

0.6

0.8

1

 spectrum+ spectrum, Dashed = e-Cu, Solid = e64Beta spectra of 

Figure 2.4: 64Cu spectra. The Coulomb attraction and repulsion of the outgoing e− or e+

particles, respectively, alters the basic shape of the beta spectrum shown in Fig. 2.3. Both
curves were normalized to have a maximum value at 1. Curves recalculated from graphs by
J. R. Reitz [31].
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Figure 2.5: Neutron beta spectrum with massive neutrino. The two most striking features
of the solid curve near the endpoint are the suppressed endpoint relative to the massless
neutron case and the slope approaching −∞. This graph is enhanced by a factor of 109

relative to that shown in Fig. 2.3. Like Fig. 2.3, though, the curves in this Figure do not take
into account the Coulomb interactions nor the proton recoil.

of 64Cu, which decays via both e− and e+ emission. Fig. 2.4 shows the e− decays having a lower

average energy than the e+ decays.

A second correction to the beta decay spectrum, much smaller though much more closely related

to the subject at hand, comes from the non-zero mass of the neutrino. Rewriting the beta spectrum

equation without the simplification of zero neutrino mass gives the equation

dN =
√

T 2
e + 2Teme (Te + me) (Q − Te)

√
(Q − Te)2 − m2

νdTe (2.14)

Plugging in the Q value for neutron decay and assuming mν = 1 eV results in the solid curve shown

in Fig. 2.5. Not only is the endpoint energy of the spectrum suppressed, but the slope of the curve

at the endpoint is very highly negative, as opposed to the massless neutrino case where the slope

approaches zero at the endpoint energy.

There are experiments that attempt to directly measure the mass of the neutrino by looking for a

deviation in the beta decay spectrum at the end point energy (e.g., the differences shown in Fig. 2.5).

Examples of these experiments are the completed Mainz [17] and Troitsk [32] experiments, with a

next-generation effort being KATRIN [33]. Rather than examining the beta spectrum of neutrons,

though, these experiments study the tritium spectrum. One reason for this choice is the increased

number of counts near the endpoint energy of the tritium beta spectrum over that of neutron endpoint
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region. Neutrons have an endpoint energy of 782 keV, and the proportion of beta particles above

781.999 keV is only about 1 in 1018. By contrast, the endpoint energy of tritium is about 18.6 keV,

and the proportion of beta particles above 18.599 keV is about 1 in 1013. Thus for the same number

of primary decays, there will be more counts observed near the endpoint of the tritium spectrum.

2.1.3 Beta decay of nuclei

The beta decay of a neutron is the simplest form of hadronic beta decay. The equations become more

complicated when considering beta decay from heavier nuclei. Primakoff and Rosen examined the

case of single-beta decay from nuclei [34], and developed an equation for calculating the half life

for the decay:

T−1
1/2 ≡ ξ

∫ Q

0
F (±Z,Te)

√
T 2

e + 2Teme(Te + me)(Q − Te)2(me + b/(Te + me))dTe (2.15)

where, as before, me is the mass of the electron, Te is the kinetic energy of the outgoing beta, and

Q is the summed maximum kinetic energy of all decay particles. Eq. (2.15) introduces the terms F

(the ”Fermi factor”) and Z, the number of protons in the final nucleus3. Simplified, the factors b and

ξ are given by

b = ±
2
ξ
<

{
|MF |

2
[
FS F∗V

(
1 + εS ε

∗
V

)]
+ |MGT |

2
[
FT F∗A

(
1 + εT ε

∗
A

)]}
(2.16)

and

ξ = |MF |
2
[
|FS |

2
(
1 + |εS |

2
)
+ |FV |

2
(
1 + |εV |

2
)]
+

|MGT |
2
[
|FT |

2
(
1 + |εT |

2
)
+ |FA|

2
(
1 + |εA|

2
)]

(2.17)

In Eqs. (2.16) and (2.17), the Fx and Fxεx are parity conserving and non-conserving nucleon-lepton

coupling constants. In this notation, x takes on the value of S for scalar, V for vector, T for tensor,

and A for axial-vector couplings.

What we would like to focus on are the |MF |
2 and |MGT |

2 terms. The nuclear matrix element of

Eq. (2.7) has been split into two parts: the Fermi (MF) and Gamow-Teller (MGT ) matrix elements.

In a Fermi transition, the outgoing beta and neutrino have their spins anti-aligned, so that there is

no change in the total angular momentum of the nucleus. In a Gamow-Teller transition, the beta

and neutrino have their spins aligned, resulting in a decay nucleus whose angular momentum differs

3The positive value of Z in the Fermi factor is used for β− decay, and the negative for β+ decay.
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Figure 2.6: Energy levels of A = 76 nuclei. Single-beta decay of 76Ge to 76As is energeti-
cally forbidden, but double-beta decay to 76Se is allowed. Figure adapted from [35].

from that of the parent nucleus by 1 unit.

Primakoff and Rosen go on to define these separated nuclear matrix elements as

|MF |
2 =

∣∣∣∣∣∣∣
〈
Ψ∗f

∣∣∣∣∣∣∣
A∑

n=1

τ±n

∣∣∣∣∣∣∣Ψi

〉∣∣∣∣∣∣∣
2

(2.18)

and

|MGT |
2 =

∣∣∣∣∣∣∣
〈
Ψ∗f

∣∣∣∣∣∣∣
A∑

n=1

τ±n
−→σn

∣∣∣∣∣∣∣Ψi

〉∣∣∣∣∣∣∣
2

(2.19)

where n refers to the nth nucleon, τ+ is the neutron→ proton and τ− the proton→ neutron operators,
−→σ is the Pauli spin operator, and Ψi and Ψ f refer to the initial and final nuclei wave functions,

respectively.

Calculating the values of these nuclear matrix elements is a difficult process, and beyond the

scope of this work. There is, however, additional discussion of their calculation in Chapter 3.

2.2 Two-Neutrino Double-Beta Decay

In some cases, it is possible for two neutrons within a nucleus to simultaneously beta decay. This

can happen when, given a nucleus with Z protons, the Z ± 1 nucleus is at a higher energy level,

but the Z ± 2 nucleus is at a lower energy level than the parent nucleus. Fig. 2.6 shows an example
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Figure 2.7: Two neutrino double-beta decay. The 2νββ half life is on the order of 1018 −

1024 years, depending on the isotope. Compare this to the single-beta decay half life of
the bare neutron, 10 minutes. The four weak vertices combined with the low-momentum
propagators greatly lengthen the half life of this reaction.

of this energy relationship for 76Ge. In this example, 76Ge cannot spontaneously undergo single

beta decay to 76As because the latter nucleus is at a higher energy level–such a decay would violate

conservation of energy.76Ge can, however, double-beta decay to 76Se.

In this double-beta decay example, the two decay protons remain embedded in the nucleus, and

the two electrons and two electron anti-neutrinos are ejected (see Fig. 2.7(a)):

A
Z X → A

Z+2X + 2e− + 2νe (2.20)

There are additional processes that are all considered to be part of ”double-beta decay”, just as

there are multiple forms of ”beta decay”. These other processes involve a proton within a nucleus

becoming a neutron by either of two methods: emission of a positron or capture of an atomic

electron. These double-beta decays are referred to as 2νβ+β+, 2νβ+EC, or 2νECEC:

A
Z X → A

Z−2X + 2e+ + 2νe

A
Z X + e− → A

Z−2X + e+ + 2νe

A
Z X + 2e− → A

Z−2X + 2νe

Thus far, most of the isotopes observed to undergo double-beta decay do so via 2νββ decay. 130Ba

is the only isotope experimentally observed to undergo 2νECEC decay [36].

2.2.1 The 2νββ Hamiltonian

By using the 2νββ decay Feynman diagram (see Fig. 2.7(b)), we can develop an equation to calculate

the rate of the reaction. The procedure is covered in detail by Doi, Kotani, and Takasugi [37]. In
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their language, the generalized Hamiltonian for two-neutrino double-beta decay is

HW =
GVud
√

2

{
eγρ (1 − γ5) νeLΨτ

+
[
gVγρ − gAγργ5 + gW iσρνQν + gPQργ5

]
Ψ

+ χ eγρ (1 − γ5) ν̃eLΨτ
+
[
g′Vγρ + g′Aγργ5 + g′W iσρνQν − g′PQργ5

]
Ψ

+ η eγρ (1 + γ5) ν̃′eRΨτ
+
[
gVγρ − gAγργ5 + gW iσρνQν + gPQργ5

]
Ψ

+ λ eγρ (1 + γ5) ν′eRΨτ
+

[
g′Vγρ + g′Aγργ5 + g′W iσρνQν − g′PQργ5

]
Ψ
}

+ Hermitian conjugate (2.21)

Eq. 2.21 is the most general Hamiltonian equation possible for double-beta decay. It allows for

both right- and left-handed weak interactions, which explains the presence of the (1 ± γ5) terms.

The hadronic current includes both weak magnetism (iσρνQν) and nuclear recoil (Qρ) terms, with

strength parameters specified by gW and gP, respectively. As for the rest of the terms, the χ, η,

and λ terms denote the relative strength of the right-handed current mixing in either the leptonic or

hadronic vertices, and the Ψ terms denote the doublet state of the nucleons involved in the decay. In

Eq. (2.21), theVud term is explicitly shown, whereas in [37] it is absorbed into the gV , gA, gW , and

gP strength parameters. The rest of the constant coefficients are replaced by G.

Turning the Hamiltonian in Eq. (2.21) into a nuclear matrix element is covered in Appendix B

of [37]. Part of the difficulty difficulty of this theoretical treatment lies in the fact that in addition to

the parent and final nuclei, there is an intermediate virtual nucleus. For example, the calculation of

the double-beta decay rate of 76Ge must pass through the virtual 76As nucleus before transitioning

to the 76Se nucleus. This intermediate nucleus has many energy levels through which the decay can

proceed, and they must be taken into account individually when calculating the half life.

2.2.2 2νββ Nuclear Matrix Elements

In the case of 2νββ decay, when one nucleon decays the beta and neutrino can come out with their

spins parallel or anti-parallel. In the former case, the Gamow-Teller transition, only the states of the

intermediate nucleus with one unit of angular momentum difference from the parent nucleus can

contribute to the decay. In the latter case, the Fermi transition, only the states of the intermediate

nucleus with the same angular momentum as the parent nucleus contribute. The inverse half life of

each Gamow-Teller and Fermi transition must be summed to obtain the final inverse half life. Thus

Fig. 2.6 was actually a simplistic diagram, and Fig. 2.8 shows a more subtle version of the process.

In Fig. 2.8, the spin/parity states of the initial and final nuclei are both 0+. Doi et al. describe

the nuclear matrix elements for this initial ground state to final ground state transition. They involve

summing over each intermediate state:
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Figure 2.8: ββ transition of 76Ge. Many energy levels of the intermediate nucleus contribute
to the decay. Spin and parity of each energy level is shown next to the level itself. Note that
the lowest level of 76As does not contribute to the decay, as it is not in a compatible spin
state.

M ∼

∣∣∣∣∣∣∣∑a

M(2ν)
GTa −

(
gV

gA

)2

M(2ν)
Fa

 Ka

∣∣∣∣∣∣∣
2

(2.22)

Eq. (2.22) is a second-order perturbation, and hidden in the Ka terms is the energy denominator:

Ka = 2me
(Ea − Mi) +

(
Ea − M f

)
+ (T1 − T2)[

(Ea − Mi) +
(
Ea − M f

)
+ (T1 − T2)

]2
− (ω1 − ω2)2

(2.23)

where Ea is the energy of the ath intermediate nuclear state, Mi and M f are the mass of the initial

and final nuclei (i.e., the energy of the nuclear ground states), and Tn and ωn are the kinetic energy

of the nth decay beta and neutrino, respectively. Because the values of the εn and ωn run from 0 to

Mi − M f − 2me, it is not possible to simplify Eq. (2.23) in a general fashion.

The Gamow-Teller and Fermi elements in Eq. (2.22) are given by

M(2ν)
Fa ≡

〈
0+f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n

τ+n

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ Na(0+)

〉 〈
Na(0+)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑m

τ+m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 0+i

〉
(2.24a)

M(2ν)
GTa ≡ −

〈
0+f

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑n

τ+n
−→σn

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ Na(1+)

〉 〈
Na(1+)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∑m

τ+m
−−→σm

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ 0+i

〉
(2.24b)

where the τ+ and −→σ are isospin-raising and spin operators, respectively, and are summed over the
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n participating neutrons. The Na are the intermediate nuclear states. The Fermi matrix elements

are explicitly summed over the 0+ intermediate states, and the Gamow-Teller matrix elements are

explicitly summed over the 1+ intermediate states4.

2.2.3 The 2νββ half life equation

To calculate the final half life of 2νββ decay, the matrix elements must be folded together with

the phase space factors. Haxton and Stephenson [38] performed this calculation and obtain, after

simplification, the partial differential cross-section

dΓ ∼ |M2ν|2 p2
e,1 p2

e,2 p2
ν,1 p2

ν,2 dpe,1 dpe,2 dpν,1 dcosθ (2.25)

where pe,x and pν,x are the momenta of the xth electron and neutron, respectively, and θ is

the angle between the two outgoing beta particles. pν,2 is a function of pe,1, pe,2, and pν,1 (the

nuclear recoil is neglected here). Totaling up the powers of momentum over which the integration

is performed, the inverse half life Γ goes as Q11.

2.2.4 Experimental values of 2νββ decay

Earlier in this section the half life of the decay was listed as being between 1018 and 1024 years.

Barabash compiled results from various experiments and combined them to obtain recommended

averages of the decay half lives [39]. Those results are reproduced in Table 2.1.

2.3 Zero-Neutrino Double-Beta Decays

With a basis in understanding single-beta decay and two neutrino double-beta decay, we turn our

attention at last to zero neutrino double-beta decay. In Section 1.3 we mentioned that a search for

0νββ decay might answer the questions

• Is the neutrino its own antiparticle?

• If so, what is the mass of the neutrino?

What exactly is 0νββ decay, and why might it answer these questions? To start with, Fig. 2.9

shows a cartoon and Feynman diagram of this process. Note in the Feynman diagram that what was

4At this point, someone may wonder why the summation does not also include the 1− intermediate states. In a nuclear
transition, when spin changes by 0 or 1 and the parity does not change, the transition is an ”allowed” transition. A
transition where the spin changes by 0, 1, or 2 and the parity does change is a ”first-forbidden” transition, and happens
much less frequently. Thus the decay occurs primarily via the intermediate 0+ and 1+ states, with the other channels
suppressed.
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Table 2.1: Experimental values of double-beta decay halflives for eleven isotopes. The uncertain-
ties combine statistical and systematic effects. All decays are 2νββ except that of 130Ba, which is
2νECEC. See Barabash [39] for details of which results were included in the half life estimations.

Isotope Double-beta T1/2 (yr)
48Ca

(
4.2+2.1
−1.0

)
× 1019

76Ge (1.5 ± 0.1) × 1021

82Se (0.92 ± 0.07) × 1020

96Zr (2.0 ± 0.3) × 1019

100Mo (7.1 ± 0.4) × 1018

116Cd (3.0 ± 0.2) × 1019

128Te (2.5 ± 0.3) × 1024

130Te (0.9 ± 0.1) × 1021

150Nd (7.8 ± 0.7) × 1018

238U (2.0 ± 0.6) × 1021

130Ba (2.2 ± 0.5) × 1021

emitted as an anti-neutrino (ν1 in Fig. 2.7(b)) must be absorbed as a neutrino. The only way this can

happen is if ν = ν.

How does 0νββ decay contain information about the neutrino mass? There is an extra twist, so

to speak, on the requirements of the neutrino for the process shown in Fig. 2.9(b) to happen. The

Standard Model of particle physics requires the anti-neutrino emitted from one neutron be right-

handed, but it must be absorbed as a left-handed neutrino by the second neutron.

When a particle switches from being left-handed to right-handed, it undergoes what’s called a

”helicity flip”. It it possible to change the helicity of a particle by boosting to a frame of reference
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Figure 2.9: Zero neutrino double-beta decay. The neutrino is emitted from one neutron
within the nucleus and absorbed by another (compare to Fig. 2.7). The 0νββ half life lower
limits are several orders of magnitude longer than the 2νββ half lives.
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faster than the particle itself in the laboratory rest frame. Fig. 2.10 demonstrates this phenomenon.

The relationship between neutrino mass and the half life of neutrinoless double-beta decay is there-

fore causally connected:

1. The more massive a ν is for a given total energy, the slower it is moving in the lab frame.

2. The slower a neutrino is moving in the laboratory, the ”easier” it is for another particle, in this

case a neutron, to be traveling faster than it.

3. The easier it is for a particle to be moving faster than the neutrino, the easier it is for the

neutrino’s helicity to flip, in the frame of reference of that faster particle.

4. The easier it is for the helicity to flip, the more often the 0νββ interaction can occur.

5. The more often the interaction occurs, the lower the half life.
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Figure 2.10: Dramatic re-enactment of a helicity flip. In the situation on the left, a drill is
rolling toward a miner. The drill is spinning counter-clockwise as the miner sees it. This
makes the drill a right-handed drill. After self-preservation kicks in, the drill is moving
away from the miner from the miner’s point of view, yet is still spinning counter-clockwise.
The drill’s helicity has flipped.

Of course, if a neutron is receding from a neutron (as implied in Fig. 2.10), the two will never

interact. In 0νββ decay, therefore, after one neutron decays and emits an anti-neutrino, the second

neutron actually has to slam into the anti-neutrino from behind.

This description is a bit misleading in that the decay itself does not occur in such distinct, macro-

scopic steps, as all events are occurring at the quantum level. Expressed in the language of quantum

mechanics, we would simply say that because neutrinos have mass, they exist as a superposition of

helicity eigenstates, and that the ”absorbing” nucleus only interacts with the left-handed eigenstate

of the mediating neutrino. The preceding description may be used, however, as a kind of illustrative

cartoon to help reconcile the momenta necessary in the helicity flip.



26

2.3.1 The 0νββ Rate Equation

With the basic conception of neutrino eigenstates, mixing angles, phase space, and nuclear matrix

elements, we are ready to pick apart the equation linking the neutrino mass to the rate of neutrinoless

double-beta decay:

1
T 0ν

1/2

= G0ν (Eo,Z)
∣∣∣M0ν

∣∣∣2 ∣∣∣∣〈mν,ββ

〉∣∣∣∣2 (2.26)

where M0ν is the nuclear matrix element term, and the last term is the effective Majorana mass of

the electron neutrino. The G0ν term is the calculable phase space factor which Rodin et al. evaluate

at 0.30 × 10−25yr−1 for 76Ge [40].

0νββ nuclear matrix elements

Similar to Eq. (2.22), the nuclear matrix element in Eq. (2.26) is given by

M0ν = M0ν
GT −

(
gV

gA

)2

M0ν
F (2.27)

where MGT and MF are the usual Gamow-Teller and Fermi nuclear matrix elements, and gV and

gA the vector and axial-vector strength couplings. The expressions for MGT and MF are more

complicated than those given in Eqs. (2.24) because, as shown in Fig. 2.9(b), the neutrino is now a

propagator between the two nuclei. This means that the nuclear matrix elements are now not only

related to the energies of the initial, intermediate, and final states, but they also include a neutrino

potential and an extra integration over the allowed values of its momentum. There are many articles

that go into the detail of the 0νββ decay half life calculation ([37] [38] [41] [42] [43], just to cite a

few).

Another extra complication in the calculation of the 0νββ decay NMEs versus those of 2νββ

decays is the fact that the neutrino propagator is virtual. Because of this, there are no longer any

restrictions on spin or parity with regards to which intermediate states are included in the calculation.

Referring to Fig. 2.8, the ground state of 76As participates in the decay, along with other states

excluded in 2νββ decay. Thus the nuclear matrix elements in 0νββ are actually greater than those in

2νββ. What, then, causes the 0νββ half life to be so much greater than in the 2ν case? There are two

parts to that answer. One, the ratio of phase space for 0ν decays to 2ν decays in the case of 76Ge is

about 10−7 [37]. Additionally, referring to Eq. (2.26), the very small Majorana mass of the neutrino,

if it exists, may also serve to increase the 0νββ half life.

The calculation of the nuclear matrix elements of Eq. (2.27) is not possible to perform analyt-

ically. Over the past few decades, two methods of calculating the matrix elements, known as the

Shell Model and the Quasiparticle Random Phase Approximation (QRPA) have been used most
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often for performing these calculations. These methods and their results will be discussed in the

next chapter. For now, however, we simply make the additional note that in the case of 0νββ decay

(see [38])

dΓ ∼ |M0ν|2 T1 T2 pe,1 pe,2 dT1 dcosθ (2.28)

where the terms are as before. Totaling up these powers of energy and momentum shows that in

the case of 0νββ decay, the inverse half life Γ goes as Q5.

Absolute neutrino mass

The neutrino mass term in Eq. (2.26) incorporates the neutrino mass mixing matrix:

∣∣∣∣〈mν,ββ

〉∣∣∣∣ =
∣∣∣∣∣∣∣∑i

λCP
i mi

∣∣∣UL
ei

∣∣∣2∣∣∣∣∣∣∣ (2.29)

In this equation, the λCP
i are the potential CP-violating terms, mi are the neutrino eigenmasses, and

the UL
ei are the matrix values relating the neutrino mass eigenstates to the electron neutrino. The

neutrino mixing matrix given in Eq. (1.8) is intended for use with Dirac neutrinos–if neutrinos and

anti-neutrinos are distinct particles. In the case of Majorana neutrinos, there is an extra term that

must be included to allow for CP-violation:


νe

νµ

ντ

 =


c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13




eiα1/2 0 0

0 eiα2/2 0

0 0 1



ν1

ν2

ν3


(2.30)

Using Eq. (2.30), we can write down the mass of the electron neutrino in terms of the masses of ν1,

ν2, and ν3:

∣∣∣∣〈mν,ββ

〉∣∣∣∣ = ∣∣∣m1c2
12c2

13 + m2s2
12c2

13ei(α2−α1) + m3s2
13e−i(2δ+α1)

∣∣∣ (2.31)

Using the values of the mixing angles from Eq. (1.9), we can rewrite the mass of the electron

neutrino as

∣∣∣∣〈mν,ββ

〉∣∣∣∣ = ∣∣∣0.70 m1 + 0.30 m2 ei(α2−α1)
∣∣∣
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Neutrino mass hierarchy

Note that in Section 1.2.1 the difference between the squares of the masses is listed, but that the

difference is actually the absolute value of that difference. Solar neutrino measurements provide

evidence that m1 is less than m2, but there is no experimental evidence whether m2 is greater or

less than m3. This leads to two possible neutrino mass hierarchies, normal (m2 < m3) and inverted

(m2 > m3), shown in Fig. 2.11.
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Figure 2.11: Neutrino mass hierarchies. m1 is less than m2 by convention, but m2 may be
less than m3, which leads to the normal hierarchy, or m2 may be greater than m3, leading to
the inverted hierarchy.

Using the measurements of the mass splittings from Section 1.2.1, we can develop an equation

relating the mass of the lightest mass eigenstate (m1 in the normal hierarchy, m3 in the inverted

hierarchy) to the mass of 〈mν,ββ〉. Even within each hierarchy, though, there is a spread of values for

〈mν,ββ〉 because of the relative phases of the CP angles α1 and α2. If α1 = α2, the mass of 〈mν,ββ〉 is

maximal. If α1 = α2 + π, the mass of me is suppressed5. Fig. 2.12 shows the mass space graph with

a spread in values assuming the full range of CP-violating angles.

Fig. 2.12 is only applicable if a signal is observed. If the next generation of 0νββ searches puts

an upper limit on the mass of the νe at, for example, 10 meV, that does not necessarily rule out the

inverted hierarchy, as the absence of a signal could be because neutrinos are Dirac particles. Another

caveat concerning Fig. 2.12 is that is does not include uncertainties on either the mass splittings or

the mixing angles. If these errors are included in the graph, the degenerate region grows (see, for

example, page 2107 of [44]).

Analysis of cosmological data can put a model-dependent upper limit on the sum of the neutrino

masses m1+m2+m3. Over the past few years as more data has become available, the upper limit on

the neutrino mass sum has steadily decreased from 2500 meV in 2002 [45] to 170 meV today [46].

5In the normal hierarchy, it’s possible for the mass of me to be suppressed all the way down to zero, if α1 = α2 + π and
m1 ∼ 4.25meV.
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By comparison, the KATRIN experiment [33], a direct search for neutrino mass using the beta decay

of tritium, is anticipated to have a lower limit sensitivity to the mass of the lightest mass eigenstate

of about 200 meV in the case of the normal hierarchy, and 194 meV in the case of the inverted

hierarchy.

2.3.2 Differentiating 2ν and 0ν double-beta decay

After all this discussion of the various forms of double-beta decay, we have yet to describe the

signal that 0νββ decay searches look for. Essentially, all such experiments measure the energy of

the outgoing beta particles. In the case of 2νββ decay, the betas share the available kinetic energy

with the neutrinos, resulting in a continuum of beta energies. With 0νββ decay, however, there are

no outgoing neutrinos, so adding the energy from the beta particles results in a single total energy.

This ”single total energy” is seen as a sharp spike at the Q value of a double-beta decay spectrum.

Fig. 2.13 shows the comparison of the spectra. (Incidentally, this is essentially the same peak that

early particle physicists were expecting to see in the first few decades of the 20th century and, having

seen the continuum of beta energy, eventually led to the discovery of the neutrino. It seems neutrino

physics has come full circle.)

In any given ββ experiment, the presence of a statistically significant peak at the endpoint energy

indicates that the neutrino is a Majorana particle. The size of the peak determines the half life of the

decay, and is proportional to the effective Majorana mass of the neutrino involved in 0νββ decay.

Using germanium to search for 0νββ decay

To give the current theory discussion an experimental context, we will discuss briefly how to observe

0νββ decay of 76Ge. There is a large body of work built up around using large germanium crystal

diodes as radiation detectors. The idea, therefore, is to construct such detectors out of germanium

enriched in 76Ge. We can construct a large array of such crystals, and wait for the detector itself to

decay and provide the signal. Because the decays are internal to the detector, and beta particles in

the MeV range do not travel far in germanium (on the order of a couple millimeters, which should be

compared to the size of a germanium crystal with a typical dimension of about 8 cm), the efficiency

for observing a 0νββ decay is close to 100%.

2.3.3 Half life limits

Table 2.1 shows the values of 2νββ decay for eleven isotopes. How do the experimental results

of 0νββ searches compare in half lives? In a recent review of double-beta decay [47], Elliott and

Engle compile results from various experiments, and their data is reproduced in Table 2.2. Note
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Figure 2.12: Phase space of neutrino mass hierarchy. In the normal hierarchy m1 is the
lightest mass eigenstate, and in the inverted hierarchy m3 is the lightest. This figure is
applicable only if a 0νββ signal is observed.
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Figure 2.13: Comparison of 2ν and 0ν double-beta spectra. For these Figures, the 0νββ
half life was assumed to be 105 times the 2νββ half life. The energy resolution is assumed
to be σ = 0.1% at the endpoint energy (a resolution typical of germanium-based radiation
detectors). In the figure on the left the 0νββ spectrum is exaggerated by a factor of 100 to
allow it to be seen on the same scale as the 2νββ decay spectrum.
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that the lower limits on the half lives are on the order of 10 to 10,000 times as long as the half life

measurements of the corresponding 2νββ decays.

Table 2.2: Experimental values of 0νββ decay halflives for nine isotopes. See [47] for experimental
details.

Isotope Double-beta T1/2 (yr)
48Ca > 1.4 × 1022

76Ge > 1.9 × 1025

82Se > 2.7 × 1022

100Mo > 5.5 × 1022

116Cd > 1.7 × 1023

128Te > 7.7 × 1024

130Te > 5.5 × 1023

136Xe > 4.4 × 1023

150Nd > 1.2 × 1021

2.3.4 Observation of 0νββ decay?

In 2001, a subset [48] of the Heidelberg-Moscow experiment [49] published a claim of having

observed neutrinoless double-beta decay in 76Ge. Their claim sparked a number of critical articles

([50] [51] [52]). These criticisms elicited several responses ([53] [54]). The specific controversy

revolved around the claimed statistical significance of the peak at the 0νββ end point of 2039 keV

(see Fig. 2.14).

In 2004 an updated paper was published claiming a 4.2σ peak at 2039 keV [55]. The resulting

0νββ decay half life of 76Ge was measured to be 1.19+2.99
−0.5 × 1025 years (3σ error bars), with a

corresponding neutrino mass of 0.44+0.14
−0.20 eV (3σ error bars) using the matrix element calculation

from Staudt et al. [56]. Fig. 2.15 shows the graph with the claimed 4.2σ peak with the Gaussian

fit removed, and Fig. 2.16 shows the original graph with the curves left in place. Fig. 2.15 was

included in this work so that the reader may look at the data with a less-biased eye than is possible

with Fig. 2.16.

The practical ramification of the reported observation of 0νββ decay is that the claim must be

tested to an appreciably higher statistical significance than available from the Heidelberg-Moscow

experiment. The Majorana experiment is proposing to build a modular, scalable detector that can

first test the claim, and, if warranted, incorporate additional modules to increase the sensitivity to

the 0νββ signal to ∼ 1027 years.
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Figure 1. Sum spectrum of the 76Ge detectors Nr. 1,2,3,4,5 over the period August 1990
to May 2000, (54.981kgy) in the energy interval 2000 - 2080keV, around the Qββ value
of double beta decay (Qββ = 2039.006(50)keV). The curve results from Bayesian inference
in the way explained in the text. It corresponds to a half-life T0ν

1/2
=(0.80 − 35.07) × 1025

(95% c.l.).
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Figure 2. Sum spectrum of the 76Ge detectors Nr. 1,2,3,5 over the period August 1990 to
May 2000, 46.502kgy. The curve results from Bayesian inference in the way explained in
the text. It corresponds to a half-life T0ν

1/2=(0.75 - 18.33)× 1025 y (95% c.l.).

all data as background. This is the lowest value obtained in such type of

KK-Evid-InJ˙ModLettA: submitted to World Scientific on January 24, 20024

Figure 2.14: First report of 0νββ observation. The authors of this paper [48] report a peak
significance of either 2.2σ or 3.1σ, depending on the statistical analysis used. Analysis of
the peak performed by others reduces the peak significance to at most 1.5σ [52]. The data
here represents 55.0 kg · yr of data.

Figure 2.15: Second report of 0νββ observation (edited graph). The authors report the peak
at 2039 keV has a significance of 4.2σ [55]. This data represents 71.7 kg · yr of data. This
graph has had the fit background and peaks removed. The original can be seen in Fig. 2.16.
The present graph is adapted from Klapdor-Kleingrothaus et al. [55].
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Figure 2.16: Second report of 0νββ observation (original graph). See Fig. 2.15 and text for
details. Figure taken from Klapdor-Kleingrothaus et al. [55].
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Chapter 3

TESTING THE NUCLEAR MATRIX ELEMENT CALCULATIONS

In Chapter 2 we discussed the theory behind β, 2νββ, and 0νββ decay. In the latter two decays,

the most challenging aspect of calculating the half life is the evaluation of the nuclear matrix element

governing the decay. The two most commonly used methods of performing these evaluations, in the

cases of ββ decays, are the Shell Model, and the Quasi-particle Random Phase Approximation, or

QRPA.

Both the Shell Model and QRPA calculations take advantage of the fact that the nuclear ioniza-

tion energy falls along a shell pattern as a function of the number of nucleons in a nucleus. Figure 3.1

shows this pattern. While this pattern does have overall motivation by the Shell Model itself, the

relative energy level spacings have been measured experimentally, and are thus in a sense directly

applicable to QRPA calculations. Within this shell pattern are “magic numbers” for nucleons that

result in the outermost nucleon being more tightly bound than if one more nucleon is added. As

Fig. 3.1 shows, the first few of these numbers turn out to be 2, 8, 20, 28, and 50.

This nuclear shell structure can help provide guidance for truncating the number of states a

nucleon is allowed to occupy, thereby making both Shell Model and QRPA calculations much more

tractable than if the nucleus were permitted to occupy any energy state above the ground state.

3.1 The Shell Model

In the Shell Model1, each nucleon has an individual wave function classified by its isospin, angular

momentum (both spin and orbital), and energy. Separating out the radial and angular components,

the nucleon wavefunction takes on the form

ψnl jm(r, θ, φ) =
1
r

Rnl j(r)Ynlm(θ, φ) (3.1)

where the function R(r) must be solved in the Schrödinger equation, and Y(θ, φ) is a function of

spin and angular momentum coordinates as well as spherical hamonics. r is the radial coordinate of

the nucleon, and n, l, j, and m denote its quantum numbers. This nucleon then moves in a central

potential with a residual nucleon-nucleon interaction:

1The following treatments of both the Shell Model and the QRPA come primarily from deShalit and Feshbach [57],
with other contributions stated where appropriate.
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Figure 3.1: Energy levels in the nuclear shell model. The dashed lines show the divisions
between the shells, and the numbers in circles are the total number of nucleons needed to
fill the associated shell (i.e., the magic numbers). Both protons and neutrons follow the
shell pattern. The energy scale is representative. This shell structure is shown in any text
on nuclear theory. See, for example, de Shalit and Feshbach [57].

H =
A∑

i=1

[Ti + Ui] +
A∑

i< j=1

νi j (3.2)

where H is the Hamiltonian, A is the number of nucleons, Ti is the kinetic energy of the ith nucleon,

Ui is the central potential, and νi j is the nucleon-nucleon potential. Both Ui and νi j are scalar

functions of the variables that denote the state of the nucleon. Finally, νi j is ”residual” in that it

is small compared to Ui, and can therefore be treated as a perturbation on the central potential.

Three-body interactions are not considered.

The Ui depends on the nucleon’s radial coordinate ri, momentum pi, angular momentum σi,

and isospin τi3. Specifically, because the treatment must be independent of orientation, the central

potential can only depend on scalar parameters based on the four variables listed, and the resulting

scalars must conserve parity. Thus the only terms that may show up in the potential are r2
i , p2

i , and

σi · (ri × pi). This last term is referred to as the ”spin-orbit” potential, and is separated from the

rest of the central potential Ui. Because of the Coulomb repulsion between protons, the isospin is

incorporated into the central potential in the form of (1/2)(1 + τi3)Vc(ri), with τi3 = 1 for protons
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(a) Central potential (b) Spin-orbit potential

Figure 3.2: Shell Model nuclear potentials. Within the bulk of the nucleus (radius r <

R − b, where R is the nuclear radius and b is the range of nucleon-nucleon interaction)
a nucleon feels a constant interaction on all sides, making the central potential flat. The
central potential then must increase at the nuclear radius to keep the nucleon bound. In
the spin-orbit potential, the nucleon again feels a potential at the nuclear surface, but this
potential does not bind the nucleon. Figures taken from [57].

and -1 for neutrons.

The equation of the central potential must have the following characteristics. Assume the maxi-

mum nucleon-nucleon interaction range is a distance b. If a nucleon is moving through the bulk of

the nucleus (i.e., at a radius less than R − b, where R is the radius of the nucleus itself), it feels an

equal interaction on all sides. Ui must therefore be flat from r = 0 to r = R − b. Outside r = R − b,

the potential must rise to keep the nucleons bound within the nucleus. If the nucleon is greater than a

distance b from the outermost nucleon (i.e., r > R+ b), it must again feel no force, and the potential

must again be flat. The spin-orbit potential must also be flat within the bulk of the nucleus, but may

”turn on” in the vicinity of the nuclear radius. These qualitative arguments give rise to a central and

spin-orbit potentials shown in Figs. 3.2.

In the case of 76Ge, there are 32 protons and 44 neutrons. Thus the magic number = 28 shell is

filled for both nucleon types. In the ground state of the nucleus, the protons fully occupy the 2p3/2

state, while the 1f5/2, 2p1/2, and 1g9/2 states are empty. Within a full Shell Model calculation these

four protons can occupy any state that is not already occupied, resulting in 31 possible states. Each

one of those states must be explicitly identified in the calculation. In the case of the neutrons, there

are 16 particles, which results in 60 possible states. Thus there are 1860 total possible states for
76Ge. 76As has 33 protons and 43 neutrons, giving 3330 possible combinations, and for 76Se (34

protons, 42 neutrons), there are 5160 possible combinations. A full Shell Model calculation of the

ββ decay of 76Ge would therefore have to incorporate almost 32 billion states.

One of the earliest Shell Model calculations of the half life of double-beta decay of 76Ge was a

truncated calculation performed by Haxton, Stephenson, and Strottman in 1981 [62]. The truncation

was performed by allowing only four nucleons to be promoted to the 1g9/2 subshell, and the proton
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and neutron states were considered independently. They obtained the result

T 0ν
1/2 = 4.42 × 1012

(
me

〈mν,ββ〉

)2

years (3.3)

Plugging the lower limit of the half life from Table 2.2 into this expression gives an upper limit on

〈mν,ββ〉 of 0.25 eV.

Fifteen years later, Caurier et al. performed a large-scale Shell Model calculation of 76Ge 0νββ

decay [42]. This calculation was also truncated by allowing only four nucleons to be promoted to

the 1g9/2 subshell. While in the Haxton et al. calculation the proton and neutron configurations

were considered separately, though, in the Caurier et al. calculation the proton and neutron states

were considered jointly, leading to a much greater total number of configurations. In addition, the

nuclear potentials used were updated in the intervening time with phenomenological fits to more

recent experimental results. The result from 1996 is

T 0ν
1/2 = 3.13 × 1013

(
me

〈mν,ββ〉

)2

years (3.4)

Based on this calculation, the upper limit on the effective Majorana mass of the electron neutrino is

0.66 eV.

Computing power has of course increased greatly over the past decade, and there is currently a

proposal in preparation to perform a full double-beta decay Shell Model calculation of 76Ge (i.e.,

with no truncation of the state space) as a test case in studying supernovae [63] via the SciDAC

program [64].

3.2 The Quasi-particle Random Phase Approximation (QRPA)

The description of QRPA begins with an explanation of the Random Phase Approximation. The

quasi-particle modification will follow.

Assume there is a nucleus in a ground state, with an operator Ω† that promotes the nucleus to an

excited state:

|E〉 = Ω†|Eo〉 (3.5)

We make a second assumption that the energy spacings of the nucleus are all roughly equal to

~ω, so that the energy levels take on the values Eo (for the ground state), Eo + ~ω, Eo + 2 ~ω, and

so on. To obtain an excited state of the nucleus, the commutator of the Hamiltonian operator Ĥ with

Ω† must satisfy the equation

[Ĥ,Ω†] = ~ωΩ† (3.6)
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so that, as expected,

Ĥ|E〉 = ĤΩ†|Eo〉

= (~ωΩ† + Ω†Ĥ)|Eo〉

= (~ω + Eo)Ω†|Eo〉

= (~ω + Eo)|E〉 (3.7)

The creation operator Ω† can be applied to the ground state n times to obtain the nth-excited

state of the nucleus. Thus Eq. (3.6) can be expanded to

[Ĥ, (Ω†)n] = n~ω(Ω†)n (3.8)

We may try to find a solution to Eq. (3.8) of the form

Ω† =
∑
m,i

Xmia†mai + Y∗ama†i (3.9)

where a† and a are now the creation and annihilation operators for an individual nucleon in either

an occupied state (denoted by index i) or unoccupied state (denoted by index m). They also obey

the anti-commutation relations

{ak, ak′} = {a
†

k , a
†

k′} = 0 {ak, a
†

k′} = δkk′ (3.10)

We may compare Eqs. (3.9) and (3.8), and recognize that successive applications of Ω† will

result in terms with multiple pairs of nucleon creation and annihilation operators, such as (in the

case n = 2 in Eq. (3.8)) a†pa†qaras. This expression, involving simultaneous promotion of two

nucleons, can be simplified via an approximation

a†pa†qaras → a†qar〈a†pas〉 − a†qas〈a†par〉 − a†par〈a†qas〉 + a†pas〈a†qar〉 (3.11)

This approximation, where an average effect is taken for any pair of creation and annihilation

operators, is itself the Random Phase Approximation.

We now address the relevance of the term “quasi-particle”. Consider a nucleon in a state |k〉. It

will have the same linear and angular momentum effects on the nucleus as a hole in a time-reversed

state | − k〉. A new operator basis may be constructed in the following way

αk = Ukak − Vka†
−k α−k = Uka−k + Vka†k

α†k = Uka†k − Vka−k α†
−k = Uka†

−k + Vkak
(3.12)

These new creation and annihilation operators obey the same anti-commutation relations shown in
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Eqs. 3.10, which places a restriction on Uk and Vk such that

U2
k + V2

k = 1 (3.13)

Applying this new creation operator to the vacuum, α†k |0〉 results in a nucleon that exists as a super-

position of a particle-hole pair, where the hole is in a time-reversed state, with the overall effect on

the nucleus remaining about the same as that of a single nucleon in a state |k〉. This superposition is

what gives rise to the term quasi-particle. QRPA makes use both of these superposition of creation

and annihilation operators as well as the averaging shown in Eq. (3.11).

The quasi-particle random phase approximation was developed by Halbleib and Sorensen in

1967 [65], and it was first applied to 76Ge 0νββ decay in 1989 [47]. Since the creation of QRPA,

there have been a Bacchinalic proliferation of variations and extensions to the theory, an overview of

which can be found in any number of double-beta decay review articles ( [44] [47] [66] [67] [68]).

At its heart, the random phase approximation is used to describe collective motion of nucleons

within a nucleus. Depending on which version of QRPA is being used, there are varying phe-

nomenological parameters that must be adjusted to fit experimental data. There has been some

debate over which classes of experimental results (e.g., single-beta decay [69] versus double-beta

decay [70]) should be used to set these parameters. The number of variables and parameters within

any given flavor of QRPA is also great enough that seemingly similar calculations by various groups

have still led to different results. Fig. 3.3 shows the results of various QRPA-based calculations over

a span of 14 years. Unfortunately, there does not seem to be much of a convergence as the theory

has progressed.

Rodin et al. published a paper in February of 2006 detailing 13 variable parameters for which

different choices may lead to different results [70]. Given this variability, a spread in NME calcu-

lations is to be expected. The authors of this paper argue that the historical differences in QRPA

results is based more on parameter choice rather than on physical characteristics in the theory itself,

and suggest future papers explicitly list their assumptions when making calculations.

The results for 0νββ decay of 76Ge from [70] are

T 0ν
1/2 = 2.19 × 1013

(
me

〈mν,ββ〉

)2

years (3.14)

for gA = 1.25, corresponding to an upper limit on the electron neutrino mass of 0.55 eV based on

the 0νββ half life of 1.9 × 1025 years. A second result assuming a phenomenologically-quenched

Gamow-Teller matrix element, introduced by lowering gA to 1.00, is

T 0ν
1/2 = 2.38 × 1013

(
me

〈mν,ββ〉

)2

years (3.15)
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Figure 3.3: Values of 〈mν,ββ〉 from QRPA calculations. The cluster of values with a range,
as opposed to single values, were all performed during 2001. Data taken from Elliott &
Engle [47], which contains details on references.

This corresponds to an upper limit on the electron neutrino mass of 0.57 eV.

3.3 Comparing the Shell Model and the QRPA

These two theoretical methods, the Shell Model and QRPA, if they are to be considered viable,

should agree with the experimentally measured half lives of 2νββ decays. Unfortunately, as both

of these methods are approximations, the danger exists that they can be fine-tuned to reproduce

such half lives. (Although, to be fair, the potential for such fine-tuning is greater in QRPA than in

the Shell Model.) To have an increased measure of confidence in these methods, it behooves us to

provide additional data to act as a test.

In this case, ”additional data” is not only measurements of the 2νββ half life for a multitude of

isotopes, although that is certainly necessary. We would also like to obtain multiple measurements

for a single isotope. At the risk of pedantry, two possible measurements per isotope would be the

half life of 2νββ and 0νββ, the former of which we already have for a number of isotopes and the

latter of which might not be possible to obtain at all.

What additional signal can we use as a test of the nuclear matrix element calculations? The

answer to this comes in the form of yet another form of ββ decay: zero-neutrino and two-neutrino

double-beta decays to excited states of the final nucleus, referred to either as ES0νββ or ES2νββ

decays. Adding complexity to the decay structure, Fig. 3.4 shows a modification of Fig. 2.6.

Excited-state ββ decays have been observed in two isotopes: 100Mo and 150Nd. As discussed in
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Figure 3.4: ββ decay of 76Ge to excited states of 76Se. The decay is shown to occur between
the ground state of 76Ge and the first excited 0+ state of 76Se.

Section 2.3.1, the phase space portion of the 2νββ inverse half life calculation goes as Q11. In the ββ

decay of 100Mo, Q = 3034 keV to the ground state, and Q = 1904 keV to the excited state. The ratio

of these values raised to the 11th power would imply that the half life of the decay to the excited

state would be 168 times larger than the half life of the decay directly to the ground state. The half

life of the ES2νββ decay is 6.1+1.8
−1.1 · 1020 years [58]. Compare this to the half life of the decay to the

ground state of (7.1± 0.4) · 1018 years (see Table 2.1). Taking a ratio of these half lives gives a value

of 86. This implies that the squared value of the nuclear matrix element for the 0+0 → 0+1 transition

is 168 / 86 = 1.96 times as large as the squared nuclear matrix element for the 0+0 → 0+0 transition2.

Suhonen and Civitarese have calculated the nuclear matrix elements for the 2ν ground- and

excited-state transitions for 110Mo using a single-particle estimate in a QRPA calculation [59]. They

get a squared-NME ratio of (0.016/0.011)2 = 2.11. This ratio is only 7% away from the expected

ratio, and thus seems to be a reasonably accurate calculation compared to the historical spread in

QRPA calculations (more on this in Section 3.2). Unfortunately, their ground-state transition nuclear

matrix element is a factor of 10 lower than the experimentally measured value, casting doubt on the

validity of simply taking a ratio. S̆imkovic, Domin, and Semenov performed a separate calculation

of the 100Mo nuclear matrix elements, also using a QRPA calculation but assuming single-state

dominance3 [60]. Their ratio ends up being (0.222/0.352)2 = 0.89. This ratio is still within a factor

2The notation ”Jπn ” refers to the state of the nucleus, where J is the spin state, π refers to the parity, and n is the nth

excited Jπ state. For example, 0+1 refers to the first excited state with positive parity and an angular momentum of zero.

3Single-state dominance is the hypothesis that the lowest-lying state of the intermediate nucleus contributes the ma-
jority of the nuclear matrix element, and thus including higher-energy states in the calculation will change the final
result relatively little.
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of two of the expected value.

In the 150Nd case, the 0+0 → 0+1 2νββ transition has a half life of
(
1.4+0.4
−0.2(stat) ± 0.3(sys)

)
· 1020

years [61], which is ∼ 18 times the half life of the ground state transition. The phase space ratio

value is (3367/2626)11 = 15.4. The ratio of squared nuclear matrix elements should therefore be

1.17. Suhonen and Civitarese, in the same work as the prior ratio calculation ([59]), calculate the

ratio for 150Nd to be (0.179/0.141)2 = 1.61. Once again, however, their predictions for the ground-

state NME differs from the experimentally-measured values, this time by a factor 6.4 times higher.

3.4 Using excited state decays to test nuclear matrix elements

As we have seen, there is a fair amount of uncertainty in the calculations of the nuclear matrix

elements. In the Shell Model, the issue is how large a space to include in the calculation–in

other words, what is the proper compromise between accuracy and ability to carry out the calcula-

tions? As far as QRPA calculations go, there are many choices of methods, approximations, and

phenomenologically-fit parameters incorporated into every calculation. Which combination is best?

And is that the combination that produces the most robust results for expansion on ββ predictions?

How do we test the NME calculations? One way would be to compare the results to the half

life measurements of 2νββ decay, but that has limited use because, philosophically speaking, we

can fit any number of curves through a single data point. To really solidify the theory would require

one data point to lock down parameters and validate assumptions, but then once those decisions are

made, the theory must be used to predict or explain, at the very least, a second data point. At the

beginning of this chapter, we made the argument that a good measurement would be the half life of

2νββ decays to excited states of the final nucleus.

3.4.1 The excited-state (ES) signal

Now that we know we are looking for ES2νββ decays, how do we identify them? Referring to

Fig. 3.4, we see that 76Ge emits two betas and two neutrinos simultaneously and decays to the first

excited 0+ state of 76Se. The half lives of the 0+1 and 2+1 states are 5 picoseconds and 2 picoseconds,

respectively. Given these extremely short lifetimes, the final signature as seen by a detector would

be two beta particles simultaneous with two gammas. In the case of 76Ge, the beta particles would

have an endpoint energy of 917 keV, and the cascade gammas would have energy of 563 keV and

559 keV.

This multi-particle coincidence is both a blessing and a curse. It is curse because the efficiency

for observing such a decay, with multiple gammas, is much lower than observing just two beta

particles. It is a blessing because the background for this coincidence should be exceedingly low.

The signal/background ratio of course depends on the geometry of the detector. Predictions of
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efficiency in the Majorana detector will be made in Chapter 8.

3.4.2 Verifying Monte Carlo performance

To predict the efficiency of any given detector to observe this ES2νββ decay requires a Monte Carlo

simulation. This raises the question of how to test the simulation for accuracy. We cannot compare

the MC results to theoretical calculations because it is the accuracy of the theoretical calculations

themselves that are the goal of the experimental effort.

To test the simulation, we might be able to find an event that mimics the ES2νββ decay to

test the simulation. Within a germanium detector, a beta particle with 1 MeV of energy will only

travel between 1 and 2 millimeters before losing all its kinetic energy, while gamma rays of similar

energy tend to Compton scatter a few times before the photoelectric effect removes their remaining

energy. (For direct comparison, the attenuation length of a 1 MeV γ in germanium is roughly 2.5

cm.) Because of this, a 76Ge ES2νββ decay within a germanium detector array actually appears

as a triple, not quadruple, coincidence: the two betas appear as a single energy deposition, and the

gammas each provide an extra tag. This β-γ-γ triple coincidence is what the surrogate signal needs

to mimic.

3.4.3 Finding a surrogate signal

In looking for a nuclear event that mimics betas and gammas, we have a number of limitations on

the candidate interactions beyond the β-γ-γ requirement. First, the signal should be homogeneously

distributed throughout the detectors, requiring the decays be internal to the germanium crystals

themselves. This requirement precludes the use of external sources to mimic an ES2νββ signal.

Second, we do not want the decay to involve emission of β+ particles. A priori they would be

a wonderful source for the surrogate signal, since the annihilation gammas are relatively close in

energy to the ES2νββ decay cascade gammas. Unfortunately, any process that produces positrons,

including high energy gammas and cosmic rays, would be a background as the positrons would

annihilate with an electron, resulting in an annihilation gamma unrelated to the signal of interest.

Third, the particles emitted in the surrogate decay must be emitted “simultaneously”. This

word is in quotes because events that occur within roughly 0.2 µs of each other will be seen as a

simultaneous by a germanium detector. The actual limitation, then, is to reject decay schemes with

half lives on the order of 0.2 µ s.

Finally, the results must be statistically meaningful. If a surrogate signal is found but cannot be

seen above background levels, it is still of no use.

Summarizing the restrictions:

1. Triple coincidence: β-γ-γ
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Table 3.1: Properties of natural germanium. Natural abundances and cross-sections come from [87].
The thermal neutron capture cross section for natural germanium is (2.30 ± 0.07) barns.

Isotope
Natural

Abundance

Thermal neutron
capture cross-

section (b)

Percentage of neutron
captures relative to
natural germanium

70Ge 20.84(87)% 3.45(16) (31.31 ± 2.14)%
72Ge 27.54(34)% 0.95(11) (11.39 ± 1.37)%
73Ge 7.73(5)% 14.4(4) (48.47 ± 1.96)%
74Ge 36.28(73)% 0.53(5) (8.372 ± 0.842)%
76Ge 7.61(38)% 0.14(2) (0.464 ± 0.071)%

2. Homogeneously distributed throughout the germanium crystals

3. No β+ emission

4. Simultaneous decay particles

5. Plentiful

Two methods of creating radioactivity with a germanium detector are via cosmogenic and neu-

tron activation. What choices of surrogate signal do natural germanium detectors provide?

Cosmogenic activation of germanium detectors

We used the COSMO [75] program to find spallation products within natural germanium that follow

the restrictions in the list above. Natural germanium is made up of five isotopes (see Table 3.1). The

detector we will be using to search for the surrogate signal is a CLOVER detector (described in

detail in Chapter 4) at Los Alamos National Laboratory. The relevant detector characteristics for

the current purposes is that the detector is made of 4 crystals, each about 750 grams of natural

germanium, and it is located roughly 7200 feet above sea level.

The COSMO code assumes a cosmic ray flux at sea level, and the flux therefore had to be

adjusted to the altitude at Los Alamos, or roughly nine times the cosmic ray flux at sea level [76].

Having modified COSMO accordingly, we calculated the production rate of various radioisotopes

in the CLOVER detector, with the results shown in Table 3.2.
74As decays via both β+/EC and β− decay with branching ratios of 66% and 34%, respectively.

We want to avoid β+ decays, but the β− branch does not contain a triple coincidence. We therefore

cannot use 74As. 68Ge decays via EC to 68Ga, which decays via β+/EC, making this decay chain

also unusable. 58Co is yet another β+ emitter.
60Co provides a wonderful triple coincidence, with the beta endpoint being 318 keV, and two
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Table 3.2: COSMO predictions for activity in the CLOVER detector. The original COSMO flux
was enhanced to match the flux at the altitude of Los Alamos. These radioisotopes have the highest
creation rates within natural germanium.

Isotope Creation rate in the CLOVER detector (day−1)
74As 163
68Ge 87
58Co 35
60Co 12

simultaneous gamma rays at 1173 keV and 1332 keV. Unfortunately, the steady-state 60Co rate is

only 12 events per day in the CLOVER. A typical photopeak efficiency of a 1 MeV gamma ray is

roughly 5%, making the efficiency for observing this event less than one in 1000, assuming both

gamma rays have to exit the crystal in which the decay occurred. Assuming we would want an

uncertainty in the peak area of 10%, we would require at least 100 captured events. This means the

CLOVER detector would have to accumulate data for over 6 years. This data rate is already very

low, but compounding the low rate is the fact that the CLOVER was delivered to Los Alamos circa

2002, which means the 60Co signal is at roughly 1/3 of maximum, as prior to 2002 it was not at Los

Alamos altitude. The 60Co rate would simply be too low to use.

Based on the foregoing analysis, cosmogenic activation of the CLOVER detector is not a viable

method for obtaining a surrogate ES2νββ signal.

Neutron activation of germanium detectors

Referring to Table 3.1, neutron activation of natural germanium creates the radioisotopes 71Ge,
75Ge, and 77Ge. Might we be able to use one of these isotopes to obtain our surrogate signal? 71Ge

decays via EC, so there is no triple coincidence. 75Ge decays via β− emission, but the branching

ratio of a useable triple coincidence is only one in one thousand. In addition, the triple coincidence

of 75Ge includes a 66 keV gamma, and a gamma ray of that low an energy loses energy primarily

through photoelectric effect, making it very unlikely that the photon would escape the decay crystal.

It turns out that 77Ge has all the features we are looking for. It has two useable branches,

both with a β endpoint energy of 2070 keV. In one decay scheme with a branching ratio of 6.6%,

the gamma energies are 367.4 keV and 264.4 keV. In the other scheme, with a branching ratio of

10.3%, the gamma energies are 416.3 keV and 215.5 keV. A partial decay scheme of 77Ge is shown

in Fig. 3.5 (the full decay scheme is shown in Appendix A). The event rate will depend on the

strength of the neutron source we use, so we can control the rate of 77Ge events. Finally, the half life

of 77Ge is about 11 hours, making it feasible to activate the germanium, then remove the neutron



46

Figure 3.5: Partial 77Ge decay scheme. The two candidate surrogate decays involve a decay
to the 632 keV energy level. The β (Q = 2070 keV) would be followed by two cascade
gammas at 416/215 keV or 367/264 keV. Figure adapted from [35], which contains the full
decay structure.

source to look for the 77Ge signal.

3.5 Further motivation for measurements of excited-state decays

In addition to providing another datapoint to test theoretical calculations, decays to excited states

may indicate the nature of the underlying mediating particle in the decay. Neutrinoless double-beta

decay is generally assumed to occur via exchange of a light neutrino. The decay might, however,

proceed via exchange of a heavy neutrino, the seesaw partner to the light neutrino (see Section 1.2.2).

It might also proceed via an as-yet undiscovered supersymmetric mechanism.

If the Klapdor-Kleingrothaus et al. measurement is confirmed and the rate of 0νββ decay is

faster than earlier supposed, it may be possible to use the next generation double-beta decay ex-

periments to measure the ratio of the half lives of neutrinoless decays to an excited state versus the

ground state. As alluded to in Section 1.2.2, this ratio of half lives may indicate the nature of the

mediating particle. S̆imkovic and Faessler have calculated the ratio of the half lives for four iso-
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topes, depending on what particle governs the decay [22]. In the case of 76Ge, the 0ν half life to an

excited state will be ∼ 95, ∼ 50, or ∼ 120 times the half life of the decay to the ground state if the

mediating particle is a light neutrino, heavy neutrino, or supersymmetric mechanism, respectively.

3.6 Excited-state surrogate summary

To recap, we want to test the theoretical predictions of both the Shell Model and QRPA with more

than one ββ-type event for 76Ge. There already exists a measurement of the 2νββ decay to the

ground state. Unfortunately, the theory may be tuned to the experimentally measured numbers

(inadvertently or otherwise), so the theory must be tested before being applied to the 0νββ decays.

We want to measure the rate of two-neutrino double-beta decays of 76Ge to the first excited 0+ state

of 76Se to provide such a test.

To measure the half life of ES2νββ decays requires a Monte Carlo calculation of the detector

efficiency for this event. To develop confidence in the Monte Carlo program, we test the simulation

using a surrogate to the ES2νββ signal. That surrogate signal is the decay of 77Ge in the CLOVER

detector at Los Alamos National Laboratory, obtained via neutron activation.

The next three chapters of this work focus on measuring the 77Ge triple coincidence efficien-

cies. Chapter 7 covers the simulation and comparison to experimental results. Chapter 8 discusses

predictions and ramifications for the proposed Majorana search for 0νββ decay.
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Chapter 4

THE CLOVER DETECTOR

With the goal of using decays of 77Ge to mimic excited state double-beta decays, we turn our

attention to an experimental study using a CLOVER germanium detector at Los Alamos National

Laboratory. This chapter provides a description of the CLOVER detector, including calibrations,

environmental backgrounds and performance characterization.

4.1 Description of the CLOVER Detector

The CLOVER detector is a high-purity, solid-state natural germanium diode radiation detector made

by Canberra [77]. It is an array of four cylindrical crystals, with the crystal axes parallel to the long

dimension of the aluminum cryostat housing (see Fig. 4.1). Each crystal is two-fold segmented

parallel to the axis of the crystals. Table 4.1 shows the masses of the four crystals.

Table 4.1: Masses of the CLOVER crystals. The masses were provided by the manufacturer.

Crystal Mass (g)
1 753
2 754
3 755
4 755

Each of the four crystals is a coaxial well1 n-type detector approximately 80 mm high and 50

mm wide with a central bore 10 mm in diameter and 65 mm deep. The outer dead layer thickness is

0.5 µm and the inner dead layer thickness is 0.5 mm. The passivated surface on germanium crystal

radiation detectors (the flat surface between the inner and outer cylindrical surfaces) may have a

dead layer anywhere between 1 and 100 nm. The exact thickness of the dead layer on the passivated

surfaces of the CLOVER crystals is unknown.

The axes of adjacent crystals are separated by 44.6 mm. The sides of the crystals are machined

flat as shown by Fig. 4.2. The crystals have a 0.6 mm separation by a proprietary method and

1A ”well” detector is cylindrical with a hollow core and one closed end (i.e., the core is not drilled through the entire
cylinder).
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Figure 4.1: Canberra/Eurisys CLOVER detector. The crystals are packed in a square array
within the aluminum cryostat, with the crystal axes running parallel to the long side walls
of the cryostat. The segmentation planes are parallel to one set of cryostat walls. In this
photo, the segmentation planes are horizontal. There is a colored sticker on the front of the
cryostat showing the crystal placements.

material, though neutron activation gives clues as to the substance of this crystal spacer (more on

this subject in Section 5.4.2). The inner contacts of the crystals is 5 µm of gold, although their shape

or extent inside the central bore is also unknown.

The aluminum cryostat has walls 1 mm thick near the crystals, and farther away from the end

of the detector the walls thicken to 3 mm. The coldplate within the cryostat is made of aluminum

1 cm thick, but is of a proprietary design. The physical method of mounting the crystals within the

cryostat is also proprietary.

The CLOVER detector has seven outputs, one from each of the four crystals, and three ”po-

sition” channels that provide the segmentation output. The crystal channels are referred to as E1

through E4, and the position channels Pl, Pm, and Pr (left, middle, and right). The E channels have

cold FET2 front ends to provide high-resolution output of the energy deposition. The P channels

have warm FETs, and while they also provide energy information, their resolution is not as good as

2Field Effect Transistors collect charge from the crystals. The description ”cold” means they are contained within the
cryostat, placing them close to the crystals themselves. They closer the FETs are to a crystal, the shorter the cables
between the crystal and the FET, which leads to reduced capacitive noise. Capacitance adds noise to the electronics,
which is why it needs to be minimized.
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Figure 4.2: CLOVER crystal schematic. Each crystal has a radius of 25 mm, but the sides
of the crystals are machined flat.

that of the E channels. As such, the P channels are not used to measure energy; rather, they provide

simple ”hit or miss” information.

Using the E and P channel outputs provides information as to which segment had an energy

deposition. Fig. 4.2 shows how the crystals and P channels are related. Here is an example of how

these outputs are used: of the energy channels, if only E1 registers an energy deposition, along with

both Pl and Pm, then both halves of crystal 1 had energy deposited in them. It is possible to observe

an ambiguous situation, for instance if both E1 and E2 record energy deposition, as well as all the

P channels. There is no way of knowing, based only on this information, whether both E1 and E2

contributed to the Pm readout, or if just one of the crystals did so.

Ideally, further analysis would be possible to reconstruct these degenerate events. Continuing

with the example just outlined, if the energy deposited in E1 equals the energy deposited in Pl and

Pm, then it is logical to assume only the outside segment of E2 had any energy deposition. Relatively

poor energy resolution combined with a nonzero energy threshold, however, makes such analysis

not wholly reliable. The position channels are, as mentioned above, used only as binary indicators

of energy deposition. In practice, ambiguous events were either eliminated from the data sets or the

segmentation information was not utilized in the analysis.
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4.2 Calibrating and Optimizing the CLOVER detector

The first task prior to using the CLOVER detector was calibrating the energy response, so that we

could properly identify lines in the resulting energy histograms. We also optimized the software

DAQ for gamma ray spectroscopy.

4.2.1 DAQ Hardware and Software

The front-end electronics used with the CLOVER detector were preinstalled. For the digital data

acquisition system, we used a CAMAC-based 4-channel Digital Gamma Finder (DGF4C) made by

X-Ray Instrumentation Associates [78]. The DGF4C samples at 40 MHz and the front end ADC has

a 14-bit conversion. Oversampling increases the effective resolution of the channel levels to 16-bit,

or one part in 65,536. The DAQ computer is a Dell Pentium IV computer. It communicates with the

CAMAC crate via a PCI card interface to a Wiener CC32 CAMAC controller [79].

The software used is provided by the manufacturer, and uses the Igor Pro environment by Wave-

Metrics [80]. The software comes with default values for various DAQ settings. These DAQ settings

include threshold, gain, an energy filter, and a trigger filter. Other run-specific settings include how

often the DGF4C is polled to determine if the buffers are full (”Polling Time”), as well as the maxi-

mum time until a ”buffer spill”3 is forced (”Time Out”).

4.2.2 Detector calibration

We started the calibration of the detector with the default factory settings, shown in Table 4.2.

Table 4.2: Factory settings for the XIA DAQ software. The energy and trigger time settings are
DAQ-specific settings, and affect resolution and the stability of the signal at low threshold, respec-
tively.

Threshold 40 (arb. units)
Gain 1.0 V/V
Energy rise time 6.4 µs
Energy flat top time 1.2 µs
Trigger rise time 0.1 µs
Trigger flat top time 0.1 µs

3A ”spill” occurs when one of the channels on the DGF4C buffer fills up. On a poll of the DGF4C modules, if one
buffer is full then all four buffers are read out. A spill is therefore a measure of the number of events, and not empirically
linked to either data rate or live time.
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Figure 4.3: Raw histogram of the CLOVER E channels. The gains were set to place the
presumed 2614.5 keV peak near raw bin 50000. Confirmation of this identification is per-
formed by identifying peaks at other energies and verifying that the ratios of presumed en-
ergy to raw bin number are all roughly equal. The energy response of germanium detectors
is strongly linear, which makes these simple ratio comparisons possible.

Using these initial settings, we put a thoriated welding rod near the CLOVER detector and

acquired an energy histogram for approximately an hour. Gaussian curves were fit to the presumed

2614.5 keV peak from the decay of 208Tl for each of the four E channels. We adjusted the gains to

put the 2614.5 keV energy peak at approximately raw bin number 50000 for each of the four energy

channels. This gain was adjusted to allow for E-channel energy measurements up to roughly 3 MeV.

Once the gains were set, we obtained background data without a lead shield or muon veto for

12.7 hours, and acquired an energy histogram for each of the energy channels (see Fig. 4.3). Because

of concern of crosstalk between the CLOVER detectors, we populated these calibration histograms

only with events where a single CLOVER crystal registered an energy deposition. This single-

crystal cut was extended to overflow events that result from energy depositions outside the DAQ’s

range (i.e., if one crystal had an energy deposition and another had an overflow entry, we did not

use the event in the calibration). We fit a quadratic background and Gaussian curve on top of

several strong peaks using the ROOT [81] TH1D::Fit method, which displays the uncertainties of

the fit parameters. Using the Gaussian centroids we fit several polynomials of order 1 through 4 to

translate raw bin number to energy in keV.

Table 4.4 shows the χ2-based goodness-of-fits for the various polynomial fits to the calibration
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Table 4.3: CLOVER calibrations for the E channels.

Energy (keV) Source E1 Centroid (ch) E2 Centroid (ch) E3 Centroid (ch) E4 Centroid (ch)
351.932(2) 214Pb 6729.72(45) 6737.15(50) 6730.60(43) 6726.55(48)
583.191(2) 208Tl 11153.1(6) 11162.4(6) 11153.7(7) 11152.2(7)
609.312(7) 214Bi 11654.2(4) 11663.4(4) 11655.4(4) 11651.3(4)
911.204(4) 228Ac 17430.4(7) 17442.9(8) 17431.1(7) 17427.3(8)
968.971(17) 228Ac 18536.9(11) 18549.8(11) 18537.4(12) 18532.4(12)
1120.287(10) 214Bi 21429.3(9) 21447.8(11) 21431.9(10) 21425.3(10)
1460.830(6) 40K 27946.1(2) 27968.2(2) 27946.8(2) 27944.2(3)
1764.494(14) 214Bi 33756.7(9) 33781.4(9) 33755.8(9) 33755.1(10)
2614.533(13) 208Tl 50016.9(8) 50059.3(9) 50020.0(7) 50019.6(9)
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Figure 4.4: Energy calibration of the CLOVER detector. The error bars are smaller than the
datapoint markers. The χ2 / number of degrees of freedom (NDF) depends on the order of
the fit. See text for details.
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Table 4.4: Quality of calibration fits. The NDF is 7, 6, 5, and 4 for the 1st-, 2nd-, 3rd-, and 4th-order
polynomial fits, respectively. The best fit for each crystal is in bold type, e.g., a quadratic calibration
is the best fit for crystal 1, a 4th-order fit is best for crystals 2 and 4, and a linear fit is best for crystal
3.

Polynomial
order

E1 E2 E3 E4
χ2 P-value χ2 P-value χ2 P-value χ2 P-value

1 13.9 0.053 18.2 0.011 9.0 0.253 10.4 0.167
2 9.7 0.138 12.3 0.056 8.9 0.179 8.1 0.231
3 8.9 0.113 6.8 0.234 7.9 0.162 8.0 0.156
4 8.3 0.081 2.2 0.699 7.1 0.131 4.5 0.343

data. We see that there is no single polynomial that provides the best fit for the calibrations of

all four crystals. In light of this flexibility, we make the decision to utilize a quadratic fit for the

final calibrations. This allows for responses that deviate from linear while minimizing any potential

divergence outside the fit range. Eqs. (4.1) show the resulting energy calibrations, with the fits for

each crystal graphed in Fig. 4.4. The equations convert channel number to energy in keV, and the

uncertainties come from the ROOT fiting routine:

E1 / keV = 23(3) · 10−2 + 5.2262(2) · 10−2 ch + 12(4) · 10−11 ch2

E2 / keV = 8(4) · 10−2 + 5.2235(3) · 10−2 ch − 16(6) · 10−11 ch2

E3 / keV = 13(3) · 10−2 + 5.2268(3) · 10−2 ch − 1(6) · 10−11 ch2

E4 / keV = 34(4) · 10−2 + 5.2268(3) · 10−2 ch − 10(6) · 10−11 ch2

(4.1)

The fit equations are confirmed in Section 4.5.3, where comparisons are made between mea-

sured and published gamma ray energies. Recalibrations were performed throughout the life of

the experiment, including after any lengthy hiatus and any time the liquid nitrogen coldsource was

removed from the CLOVER. Since the raw bin numbers were recorded as part of the datasets, recali-

bration can be performed on any individual dataset using the peaks present (i.e., separate calibration

runs are unnecessary), provided the Gaussian peaks used in the calibration have enough counts to

provide statistically significant results. The goodness-of-fits for the subsequent recalibrations were

comparable to those in Table 4.4.

4.2.3 Rebinning the raw data

Care must be taken when translating raw channel numbers to energy. The raw data, being digitized,

is inherently binned. An energy histogram with an arbitrary number of bins per keV will most

likely not have bin edges that line up with the bin edges of the raw data. Simply filling the en-
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ergy histogram would therefore result in non-Poisson-distributed statistics, making goodness-of-fit

calculations unreliable at best.

Compounding the issue is the fact that with a quadratic calibration, calibrating the raw channel

numbers results in energy values that are not evenly spaced. For example, with a quadratic energy

calibration there may be (for example) 1000 raw bins between the energies 1000 and 1200 keV, but

only 997 raw bins between the energies 1200 and 1400 keV. This means we cannot use constant

offsets from calibrated energy values to obtain the low and high bin edges for the data.

We therefore created lookup tables by calculating the energy for every possible channel value

from 0 to 65535. There were separate lookup tables for each CLOVER crystal, as well as for every

re-calibration throughout the life of the experiment. These lookup tables contained all the possible

discrete energies after calibration, and the values in this table are represented by the vertical dotted

lines in Fig. 4.5. The low and high bin edges were calculated by taking an average of two consecutive

calibrated energies.

For example, the raw channels 10344, 10345, and 10346 would translate to energies 540.8410,

540.8932, and 540.9455 keV using Eqs. (4.1) for crystal 1. The low and high bin edges of this

middle energy (the one corresponding to channel 10345) are 540.8671 and 540.9194, respectively.

Please refer to Fig. 4.5 when necessary during the following description. ‘A’ and ‘B’ are two

calibrated energies, and ‘blo’ and ‘bhi’ are the calibrated low and high bin edges. Then, when filling

a histogram, if the edges of the calibrated energies fell wholly within the edges of the histogram bin

(as is the case with energy ‘A’), the count for the corresponding histogram bin (in this example, bin

‘1’) was incremented by 1. If the bin edges overlapped, as in the case of energy ‘B’, a probability

was calculated according to the amount of bin overlap. Referring to energy ‘B’, the proportion is

set by

Probability =
bhi − 3lo

bhi − blo
(4.2)

The count was then randomly put into one of the two overlapping bins (in this case bin ‘2’ or bin

‘3’) according to a binomial distribution with the probability being set by Eq. 4.2. This count was

fully entered into the returned histogram bin, so all bins in the final histogram have integer counts.

4.2.4 Detector optimization

With the CLOVER detector calibrated, we turned our attention to optimizing the output from the

detector. The calibration was performed before the optimization for quicker identification of relevant

features, but there is nothing that a priori requires calibration before optimization or vice versa.
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Figure 4.5: Rebinning the CLOVER data. The calibrated energies are represented by the
vertical dotted lines. The calibrated energy “bin edges” are an average of consecutive cal-
ibrated energies, and are represented by the solid vertical bars. The energy histogram bin
edges are represented by the dashed lines. Because of the quadratic calibration, the cali-
brated energy “bin widths” (i.e., bhi - blo for any given energy B) are not constant throughout
the spectrum. See text for further details.

Trigger filter optimization

Both the trigger and energy filters utilize a trapezoidal filter. Fig. 4.6 shows the detector input (as

processed by the analog-to-digital converter, or ADC) and two filter outputs. The two user-defined

values for each filter are the ”rise time”, shown by the parameter L, and the ”flat top time”, shown

by the parameter G. The energy filter is a slow filter used to determine the height of an pulse, while

the much faster trigger filter determines if an event has occurred. (A typical ”2L + G” time for the

energy filter is between 1 and 10 µs, while the ”2L + G” time for the trigger filter is approximately

0.5 µs.)

If the threshold of the DAQ is set very low, random noise can lead to a false trigger. In these cases

the energy reconstruction fails and the event is put into either an underflow or overflow bin. The

trigger filter can be used to reduce the rate of these false triggers (though not without limit–setting

the threshold lower and lower will still result in an increasing number of false triggers). The quality

of the trigger filter settings is measured by the minimization of the total event rate for any given

threshold setting. The optimization process, therefore, is to lower the threshold to a reasonable4

value and adjust the trigger rise and flat top times until the total event rate is minimized.

We built a lead shield around the cryostat with 4” of lead around the top, bottom, left, right, and

front faces of the CLOVER crystals and a 2” lead shield around the dewar. Although the 2” lead

shield had unavoidable thin gaps between bricks, we strove to disallow any gaps that had a direct

4”Reasonable” in this case is subjective. The threshold is in arbitrary units, and scales only roughly linearly with the
low-energy cutoff.



57

GL L

Figure 4.6: Trapezoidal filter processing. The curves show the ADC-processed detector
output, as well as the fast (trigger) filter output and slow (energy) filter output. The user-
defined parameters for each filter are L and G, referred to as the ”rise time”, and ”flat top
time”, respectively. The labeled L and G are for the energy filter. The sampling time is the
time the height of the energy filter output is recorded, and is equal to the energy filter’s L +
G. Figure adapted from the XIA User’s Manual [82].

line-of-sight to the active detector.

We set the Polling Time to 0.5 s and the Time Out to 5 s. The trigger filter optimization process

is to vary the flat top time until the event rate is minimized. Once the optimal flat top time is set, vary

the rise time to minimize the event rate even further. The first step was to determine a ”reasonable”

threshold value. We ran with a trigger rise time of 0.1 µs and a flat top time of 0.0 µs. The event

rate at a threshold of 10 was 11987 cps, at 15 it was 163 cps, and at 20 it was 7.99. The test value of

15 was chosen because it provided an event rate in the logarithmic middle of the rates encountered.

Table 4.5 shows the progression of finding the minimum event rate.

Energy filter optimization

After optimizing the trigger filter, we optimized the energy filter. To do this we gathered data from a
60Co source inside the shield. With a source that close to the detector we had to set the Polling Time

to 0.01 s and the Time Out to 0.02 s. We then took a series of three-minute datasets, changing either

the energy filter rise time or flat top time for each run. For each setting we measured the width of

the 1332 keV energy peak and generated a table of FWHM as a percentage of the gamma energy.
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Table 4.5: CLOVER E channel threshold optimization. With the threshold set to 15, the optimal
settings are a 0.175 µs rise time, and a 0.05 µs flat top time. Since the DGF4C runs at 40 MHz, these
time settings can only be set to integer multiples of 25 ns.

Rise time (µs) Flat top time (µs) Event rate (cps)
0.100 0.000 163
0.125 0.000 104
0.150 0.000 11.1
0.175 0.000 10.3
0.200 0.000 11.5
0.175 0.025 11.7
0.175 0.050 9.05
0.175 0.075 9.06
0.175 0.100 9.37

The optimal energy filter settings are those that correspond to the lowest average FWHM of the four

energy channels.

Table 4.6 shows how the resolution changes with the energy filter rise and flat top times. We see

that there is a minimum in the average FWHM for an energy rise time of 4.4 µs and an energy flat

top time of 1.2 µs.

Low-Energy performance of the optimized CLOVER

With the CLOVER detector optimized for resolution and a stable trigger filter, we took background

data inside the 4” Pb shield for 41.9 hours (33.7 hours of live time). Fig. 4.7 shows the calibrated low

energy region of the resulting spectrum with data from all four crystals combined. A full analysis

of the background spectrum is available in Section 4.5.3.

Measurement of livetime

The live time of the DAQ system can be measured from the data files themselves. When the DGF4C

buffer is opened for recording events, the ”buffer start time” is recorded in the buffer data header.

The buffers acquire data until they are full or until a spill is forced. The live time for a spill can

therefore be measured by subtracting the buffer start time from the time stamp of the last event in

the buffer. To measure the total live time of a data run, this time difference is totaled for every spill

in the data set. The live time as a percentage of the run time can be measured by dividing the total

live time by the time difference between the last event in a file and the first buffer start time.

There is a small correction to the live time involving pileup rejection. When a trigger is initiated,
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Table 4.6: CLOVER E channel resolution optimization. The optimal settings are a 4.4 µs rise time
and a 1.2 µs flat top time. As with the trigger filter settings, the energy filter rise and flat top times
are allowed to take on only discreet values. Starting with the factory settings, first the energy rise
time is optimized. Once the best rise time is found, the flat top time is varied. The lowest possible
flat top time allowed by the DAQ is 1.2 µs. The FWHM values are a percentage of the centroid
energy, 1332 keV.

Rise time
(µs)

Flat top
time(µs)

〈FWHM〉 E1 FWHM E2 FWHM E3 FWHM E4 FWHM

6.4 1.2 0.2082 0.1959 0.2078 0.1969 0.2323
6.0 1.2 0.2123 0.1922 0.2113 0.2057 0.2401
5.6 1.2 0.2116 0.1912 0.2165 0.2059 0.2327
5.2 1.2 0.2083 0.1866 0.2155 0.2056 0.2258
4.8 1.2 0.2069 0.1890 0.1957 0.2098 0.2332
4.4 1.2 0.2035 0.1894 0.2015 0.2064 0.2167
4.0 1.2 0.2066 0.1910 0.1975 0.2057 0.2323
3.6 1.2 0.2055 0.1903 0.2079 0.2020 0.2219
3.2 1.2 0.2139 0.1990 0.2169 0.2158 0.2238
4.4 1.6 0.2064 0.1979 0.2030 0.1976 0.2270
4.4 2.0 0.2120 0.1916 0.2148 0.2130 0.2287

the height of the pulse is recorded a set ”sampling time” later (see Fig. 4.6). This time is set by the

energy filter parameters, and is equal to the energy filter’s L + G + the time of one decimated clock

tick5. If there is more than one trigger initiated within this time window, all participating events

are rejected due to pileup. All but the last event within a spill have this associated dead time. This

pileup rejection time therefore introduces an extra dead time equal to the total number of events less

the total number of spills multiplied by the sampling time:

Dead time correction = (# of events − # of spills) × sampling time (4.3)

This dead time correction is small. Consider a data rate of 1 kHz. For the optimized energy filter

settings, the sampling time (L + G + one decimated clock tick) is 6.000 µs. Within one second there

would be 1000 events and 45 spills. The additional dead time would therefore be 5.7 ms over a run

time of 1 s, for a correction of 0.57% of the run time.

5The DGF4C trigger and energy filters operate with a ”filter decimation”. This decimation is a measure of the number
of clock ticks over which values are averaged before entering the filter logic. For a decimation of n the number of
averaged clock ticks is 2n. Thus with a clock period of 25 ns and a decimation of 4, one decimated clock tick for the
CLOVER data is 25 ns ×24 = 400 ns.
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Figure 4.7: Low-energy histogram after optimization. Given the way the spectrum shows a
dropoff at roughly 15 keV, the low-energy cutoff for coincidence analyses is set at 20 keV–if
an energy is below this value, it is discarded. The peaks will be identified in Section 4.5.3.
Data shown represents all events where a single crystal registered an energy deposition.

4.3 Shielding the CLOVER detector

To reduce the background rate in the dataset, we shielded the CLOVER detector using a passive

lead shield and an active muon veto. In this section, we cover both of the shields used.

4.3.1 Passive Shielding

The most basic shielding material for small-scale experiments is lead bricks. While a simulation

would have given us basic information as to the efficacy of the lead shielding, we would have had to

verify the simulation using experimental measurements. The simulation might not have taken into

account all the local forms and levels of background. Given the ease with which a lead shield can be

built, we made the decision to simply measure shielding efficacy rather than model it. The question

we had to answer was how much would the lead bricks reduce the background?

CsI shielding studies

To answer this question, we collected data using a CsI detector in four different configurations: no

shielding, a 2” lead shield, a 4” lead shield, and a 6” lead shield. A CsI detector was used because its
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small size allowed a full shield up to 6” thick, while the CLOVER detector and dewar taken together

are large enough to exhaust the limited supply of lead bricks at less than a full 4” lead shield. We

normalized the CsI spectra by the runtime and plotted the results on the same graph. Fig. 4.8 shows

the results.
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Figure 4.8: Comparing background rates with varying lead shielding thickness. The hori-
zontal scale is not calibrated, and so is in raw channels. The large peak near bin 21000 in the
top curve is presumed to be the 2614.5 keV gamma peak from 208Tl decays. The large peak
in the same curve near 12000 is assumed to be the 1460 keV peak from 40K. The voltage of
the detector fluctuated between data runs, resulting in a shift in the peak centroids among
the four curves. The source of this fluctuation was not known, though the peaks in the data
can be identified between spectra (e.g., the strong peak in the purple curve near channel
6500 corresponds to the strong peak in the black curve near channel 6000). If the figure is
not available in color, the “red” curve is at the top, the “blue” curve is the one that lies just
below the “red” curve between channel numbers 7000 and 22000, the “black” curve is the
one with the very large peak near channel 6000, and the “purple” curve is the only curve
remaining.

It turned out that some of the bricks we used in building the 6” shield were contaminated, which

lead to the large peak near channel 6000 in the black curve (if the figure is not available in color,

see the figure text for an explanation). Later studies showed this contamination to be from 137Cs.

Despite this contamination, the continuum is shown to be reduced going from no shielding to a 2”

lead shield to a 4” lead shield. Moving from a 4” lead shield to a 6” lead shield, however, did not

appreciably reduce the continuum background in the upper energies (i.e., above channel 20000). We
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will therefore use a 4” lead shield with the CLOVER.

Because of the brick contamination, all the bricks in the shield were assayed. The contaminated

bricks, numbering roughly 10 out of about 200, were removed from the laboratory and properly

disposed of as mixed waste.

CLOVER shielding studies

Having made the decision to use a 4” passive lead shield around the CLOVER detector, we repeated

the shielding study with the CLOVER. We collected background data using no shielding, a 2” lead

shield, and a 4” lead shield6. Fig. 4.9 shows the resulting time-normalized histograms. We measured

the areas of various energy peaks as well as several heights in the continuum, normalized the values

by time and the zero-shielding rate, and plotted the results in Fig. 4.10. From this graph we can see

that the background reduction varied from a factor of about 0.4 in the continuum near 2000 keV to

almost two orders of magnitude in the 1460 keV 40K peak. We would not expect all the background

rates to be attenuated by the same factor. There may have been some backgrounds present in the

lead shielding (e.g., inelastic fast neutron collisions on 208Pb leading to a 2614 keV gamma ray) that

were reduced less effectively than sources wholly external to the lead shield.

4.3.2 Active Shielding

To further reduce the background, we employed a muon veto shield. This active shield was made of

two scintillator blocks, measuring roughly 10 cm × 30 cm × 8 cm, with photomultipliers attached.

Their signals were added together by a linear fan in/fan out, the output of which was connected to

one of the DGF4C channels. Fig. 4.11 shows the CLOVER detector with the production shield: 4”

of lead around the cryostat, 2” lead shield around the dewar, and the muon veto scintillators on top

of the lead shield.

This muon veto was used in the same manner as the position channels on the CLOVER detector,

i.e., as a simple, binary readout. Events that included energy deposition in the scintillators are

identified in post-processing as originating outside the lead shield. Because the scintillators were

outside the shielding, their rate was much higher than the background rate of the CLOVER. The

DAQ trigger on the scintillator channel was therefore turned off. This limited the effective rate of

the scintillators to that of the background rate of the CLOVER inside the lead shield, which was

roughly 10 Hz.

To verify the performance of the muon veto, we histogrammed all CLOVER events where there

was also an energy deposition in the scintillators. Some of these events were accidental coinci-

6There were not enough bricks to build a 4” lead shield around the entire CLOVER detector and dewar, so we built a
5-wall 4” lead shield around CLOVER, and a 2” shield around the dewar, being sure to eliminate as much as possible
any direct ”lines of sight” through the shield to the germanium crystals.
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Figure 4.9: CLOVER shielding histogram comparison. A threshold of 50 was used to obtain
these graphs, which is why the data acquisition low-energy cutoff is at roughly 150 keV.
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Figure 4.10: Comparing the efficacy of various thicknesses of lead shielding. The gamma
peaks used in this comparison are 238.6, 351.9, 511.0, 609.3, 911.1, 1460.8, 1764.5, and
2614.5 keV. The continuum level was evaluated at 170, 550, 1200, and 2000 keV.
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Figure 4.11: CLOVER detector with 4” lead shield and muon veto.

dences. To measure the accidental coincidence rate we measured the ratio of peak areas in both

the muon-shield-coincident histogram and the raw histogram. Specifically, we analyzed three peaks

at energies unrelated to muon activity. This accidental coincidence rate turned out to be (1.48 ±

0.61)%. Table 4.7 shows the ratio of the unrelated peak areas, as well as the peak area ratio of the

more strongly correlated 511 keV annihilation peak area.

We determined the muon-related spectrum by multiplying the bin values of the full spectrum by

1.48% and subtracting those results from the bin values in the spectrum of events coincident with a

muon tag. Fig. 4.12 shows the resulting histogram. Through this data-cleaning process, it is clear

that the strongest muon-related peaks come from e+e− annihilation gamma rays and lead X-Rays.

We estimated the energy deposited by a muon in a single CLOVER crystal to be greater than 20

MeV, and as such is outside the range of the DAQ.

In practice, we ended up not using the anti-muon veto in performing spectrum analyses or coin-

cidence studies presented here. The accidental rate was only on the order of 1.5% for background

data, and the only strongly-effected peaks are the lead X-Rays and annihilation gamma peaks, none

of which is assumed to have a noticeable affect on the analyses. Finally, the lack of full anti-muon

coverage around the largest mass source (the lead shield) precluded tagging many of the cosmic-

ray-related events as such. Apart from the lead X-Ray and annihilation gamma peak areas, we
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Table 4.7: Muon accidental rate. The ratios of peak areas from decays of 212Pb (238 keV), 228Ac
(911 keV), and 40K (1461 keV), which are unrelated to muon events, set the accidental muon coin-
cidence rate at (1.48 ± 0.61)%. The 511 keV annihilation peak is related to the muon rate, as shown
by its larger ratio.

Energy
Ratio of muon-coincident peak area
to background peak area

238 (1.16 ± 0.16)%
911 (2.09 ± 0.54)%

1461 (1.19 ± 0.23)%
511 (5.24 ± 0.32)%

concluded that cosmic rays would only effect the background continuum level, but all events that

contribute to the background will be accounted for via the background fits.

4.4 Gamma photopeak efficiency

A final characterization of the CLOVER detector before analyzing the full spectrum is a measure-

ment of the photopeak efficiency of the individual CLOVER crystals. To obtain this measurement,

an isotope must be used that has many strong gamma lines in a wide energy range. Fortunately,
228Ac and 208Tl, both contained in the 232Th decay chain, satisfy these requirements. We placed a

thorium wire inside the lead shield and gathered data for 2.07 hours.

To obtain the efficiency curve, we measured the areas of 29 gamma peaks associated with the

decay of 228Ac and normalized them by the area of the lowest-energy of these peaks, at 209.3 keV.

We also measured the areas of 5 peaks associated with the decay of 208Tl and normalized them by

the area of the lowest-energy of these peaks, at 277.4 keV. A similar normalization was performed

with the relative intensities of these same gamma lines for the two isotopes. Finally, a ratio of

the normalized values (normalized peak area to normalized relative intensity for each of the two

isotopes) is plotted in Fig. 4.13.

Gamma attenuation in matter is exponential, so if the detectors were a simple-shaped solid mass

of germanium we would expect the efficiency curve to be exponentially falling with energy. The

non-regular crystal geometry, however, leads to an efficiency curve that deviates from a simple

exponential. Taking the gamma attenuation in matter as motivation, we fit a simple exponential

decay plus constant background to the data. The equation ends up being

Relative efficiency = 0.153(7) + 0.93(11) e−(energy−148(87)) / 766(27) (4.4)
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Figure 4.12: CLOVER data in coincidence with muon shield. The clearest evidence for the
effects of muons are lead X-Rays near 75 and 85 keV, and the annihilation γ peak at 511
keV.

where the uncertainty in the last digit of every fit value is in parenthesis after the fit value itself.

The goodness-of-fit is very low, but the fit is not intended to advocate any particular model, but

is rather used to provide a smooth interpolation of photopeak efficiencies between the measured

values. Given the lack of a good model in the photopeak efficiency curve, Eq. (4.4) will only be

applied to external sources of gamma rays and only in the 209 - 2615 keV energy range.

To improve the goodness-of-fit in Fig. 4.13, we would need to run a Monte Carlo simulation

and compare this simulation to experimental results. At this point, however, we want to rely on

simulation results as little as possible, because it is the simulation itself we would like to verify.

4.5 Background spectrum of the CLOVER detector

With the shielding determined, the CLOVER detector calibrated and fully optimized, and gamma

efficiency characterized, we turned our attention to the background spectrum. We analyzed back-

ground data in the 41.9-hour (33.7-hour live time) dataset.

A peak fitter was used to look for peaks in the spectrum. To make the peak fitting more accurate,

though, the relationship between peak energy and peak width had to be determined. Once the list

of peaks was created using the constrained peak fitter, it was ”hand-checked” against the spectrum,

with multiple curves used if any additional features were within the fit window of the target peak.
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Figure 4.13: Gamma photopeak efficiency of the CLOVER crystals. The efficiency is nor-
malized to a 209.3 keV gamma ray. The crosses are from 228Ac decay gammas and the
solid circles are from 208Tl decay gammas. To match the efficiencies of the two isotopes,
the efficiency of the 277 keV line from 208Tl is set to the efficiency of the 270 keV line from
228Ac. The exponential fit has a χ2 / D.O.F. of 96.7928 / 29 = 3.34.

4.5.1 Determining the peak width of the CLOVER

In a germanium radiation detector a particle will hit the crystal and move charge carriers from the

valence band to the conduction band. The number of charge carriers it excites is directly proportional

to the energy deposited. It is reasonable to assume, then, that the uncertainty in the number of

excited charge carriers is related to the square root of the total number of charge carriers. While

the resolution of germanium detectors tends to be consistently better than this statistical approach

would imply7, we still make the assumption that part of the peak width is proportional to the square

root of the peak energy.

In addition to this square root term, the electronics and cabling adds an average noise term to a

pulse from the germanium crystal. These energy-indepedent and energy-dependent widths (the ”a”

and ”b” terms, respectively, in the equation below) add in quadrature to obtain the final width of a

peak:

σ = peak width =
√

a2 + b2 (peak energy) (4.5)

7This effect is given the name ”Fano factor”. See Knoll [83] for further explanation and examples



68

A Gaussian plus quadratic background was fit to the peaks:

Fit curve = O + L · energy +
A
√

2π σ
exp

(
−

1
2

(energy − C
σ

)2)
(4.6)

was fit to the strongest peaks in each of the four crystals using approximately 20 bins per keV of

energy. The constant offset O, slope of the background L, Gaussian amplitude A, centroid C, and

width σ are all free parameters. We plotted the resulting values of σ versus gamma energy and fitted

Eq. (4.5) to the data, resulting in Fig. 4.14. The fit values of a and b are shown in Table. 4.5.1.

4.5.2 The Peak Fitter

With the width of any given peak now constrained by the energy of the peak itself, we turn our

attention to the peak fitter. All peaks are fit with a linear background and fit windows of ±20 keV.

If there is more than one peak within this window, the results must be more closely fit manually. In

some cases, a neutron recoil creates a peak in the spectrum that results in a more ”sawtooth” shaped

background than Gaussian. Unfortunately, there are very few peaks in a background spectrum that

are not within 20 keV of another strong feature. While the peak fitter is not very useful for analyzing

a background spectrum, it can still be used for reduced datasets or when a strong source is present

inside the shield.

The peak fitter algorithm uses the fit equation

Fit = c1 + c2 · energy +
√

c2
3 exp

−1
2

 energy − c4√
a2 + b2 energy

2 (4.7)

where a and b are given by Table 4.5.1, and the free fit variables are c1, c2, c3, and c4.

The initial values will change depending on the first-order shape of the spectrum. In the case of

the 42-hour background dataset, c1 is very roughly set to assume that the continuum background is

linear with a y-intercept of 2000 and a slope of -0.64 with respect to the energy, while c2 is given a

starting value of 0. The starting value of c3 is set to the bin height at the center of the fit window less

c1, and the seemingly unnecessary construction of
√

c2
3 is to avoid negative peaks (the fit function

does not properly handle absolute values). The initial c4 is set to the center of the fit window itself.

The fitter then steps over every bin from 40 keV to 3000 keV. The background at the peak centroid

is found using the equation

background per bin = c1 + c2 · c4

The area of a peak is found using the standard Gaussian area function

peak area =
√

2π c3

√
a2 + b2 c4 (4.8)
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Figure 4.14: CLOVER peak width fit. The energy error bars are too small to be seen on
this scale. The fit values are given in Table 4.5.1. The χ2 for crystals 1 through 4 were
0.57, 2.61, 7.65, and 2.48, respectively, each with 4 degrees of freedom. The corresponding
P-values are 0.97, 0.63, 0.11, and 0.65.

Table 4.8: CLOVER peak width parameters. The width of the peaks is roughly 1 keV. Crystal 3 has
the best overall resolution, while crystal 2 has the highest y-intercept, indicating a heightened noise
level in the electronics.

Crystal a b
1 0.719 ± 0.040 0.0193 ± 0.0027
2 0.776 ± 0.040 0.0182 ± 0.0029
3 0.666 ± 0.051 0.0187 ± 0.0027
4 0.605 ± 0.051 0.0230 ± 0.0025
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This area must be normalized to the histogram bin width and energy scale. For example, if the

horizontal energy scale is in keV and there are 5 bins per keV, the area as given by this equation

must be multiplied by 5. The uncertainties in the peak areas are those returned by the ROOT fitting

routine.

To calculate the significance of a peak, the background fit is integrated around the peak, with

centroid ±2.5σ being the integration limits. Integrating a Gaussian curve over ±2.5σ will give

98.8% of the peak area, so the area of the Gaussian as given by Eq. (4.8) must be reduced by this

same factor. To calculate significance above background then, the suppressed peak area is divided

by the square root of the integrated background:

significance =
0.988

√
2π c3 σ√∫ c4+2.5σ

c4−2.5σ (c1 + c2x) dx
(4.9)

We also employed two more tweaks to the peak finder. Only those peaks with a significance of

3σ or greater are reported. Also, the centroid of the peak must be within 3 keV of the center of the

fit window. This last requirement removes spurious peaks of insensibly large area (and therefore

significance) at the very edge or even outside of the fit window.

4.5.3 Background spectrum and fit peaks

With the peak fitting algorithm in place, we can now go about the task of identifying peaks in the

background spectrum. To reiterate what was stated in Section 4.5.2, the peak fitter was used on the

background data, but the results were only used as a guide. All peak measurements in this section

were performed manually, and the manual fits allowed for peaks with significance less than 3σ.

To identify background radiation, we had to compromise between resolution and statistics. To

emphasize statistics, we would accept all events, regardless of how many crystals were hit in the

event and which crystals had the deposited energy. To emphasize resolution, we would accept

events where only a specific crystal (e.g., crystal 3) registered energy deposition, and no others.

The compromise, then, was to use the combined histograms when only a single crystal registered

an energy deposition. Because we combined the data from all four crystals, however, we had to

re-measure the peak widths as a function of energy. Using the combined data, we get values for a

and b of (see Eq. 4.5)

a = 0.740 ± 0.014

b = 0.0186 ± 0.0011
(4.10)

Table 4.9 shows information about the peaks, including the peak source, the published gamma

energies, and relative intensities of the lines. Figs. 4.15, 4.16, and 4.17 shows the background

spectrum with peaks from Table 4.9 labeled.
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A few peaks with significance less than 4σwere included in Table 4.9. These lines were included

in the table because they are related to known existing lines (e.g., the presence of the 1173 keV line

from 60Co implies the existence of the coincident line at 1332 keV). In addition to these related lines

are sub-threshold lines linked to known processes, i.e., trace 137Cs contamination, neutron capture

on 73Ge, and inelastic nucleon recoils on 27Al.

In addition to the Gaussian fits, there are a number of peaks that have a sawtooth shape rather

than a Gaussian shape. The clearest example of this sawtooth shape is the 692 keV peak from
72Ge(n,n’e) reactions. This sawtooth pattern derives from a nuclear recoil from the fast neutron

collisions [84]. These sawtooth-shaped peaks were fit using methods outlined in the next section.

If a Gaussian peak and neutron recoil peak are related to the same energy state, only the area of

the Gaussian was recorded in Table 4.9. For the 692 keV peak, however, there is no associated

Gaussian, and the peak area comes from fitting a sawtooth shape to the feature.
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Table 4.9: Background peaks of the CLOVER detector. Peak energies were found using a peak fitter

as a guide, but then manually fit (see text for further details). The relative intensities are comparable

only between peaks derived from the same radioisotope. Entries grouped together all apply to a

single fit energy peak.

Fit E

(keV)

Peak

Counts

Peak

Uncer.

Back-

ground

Sig.

(σ)
Source

Pub E

(keV)

Rel.

Int.

24.1 1108.3 107.0 11307.9 10.30 71mGe 23.4 0.48

46.6 4006.7 93.9 4654.1 58.03 210Pb 46.5 4.3

53.7 2028.7 82.2 4891.9 28.66 75mGe 53.4

63.5 3389.2 101.5 6093.3 42.90 234Th 63.3 4.8

66.7 536.7 91.8 6560.6 6.55
75mGe sum

peak
66.7

72.9 4705.7 123.3 6979.4 55.65 Pb X-Ray 72.8

75.1 11646.4 154.9 6843.2 139.10 Pb X-Ray 75.0

77.3 6108.7 126.7 6666.7 73.92 115In(n, γ) 76.8

84.8 4106.1 143.8 6356.1 50.89 Pb X-Rays

 84.5

84.9

87.3 2661.4 132.8 6563.1 32.46 Pb X-Rays


87.2

87.4

87.9

90.2 405.0 167.0 6208.9 5.08

92.8 5711.0 139.7 5497.1 76.10 234Th

 92.4

92.8

 2.8

2.8

98.7 318.0 75.4 4513.7 4.68

110.0 752.4 66.0 4336.1 11.29 19F(n, X) 109.9

112.7 450.9 62.5 4300.1 6.79

129.2 413.3 63.6 4071.6 6.40 228Ac 129.1 2.45

139.7 1979.2 76.0 4009.3 30.88 75mGe 139.7 39.0

143.7 687.2 64.3 3996.7 10.74 230Th 143.9 0.048

162.9 716.7 64.3 3870.3 11.38 115In(n, γ) 162.4 5.1

185.9 3494.7 83.8 3852.0 55.63 226Ra 186.2 3.58

198.3 2281.6 75.2 3780.0 36.66 71mGe 198.4

209.4 524.2 59.6 3590.7 8.64 228Ac 209.3 3.9

238.7 10099.3 116.5 3223.9 175.73 212Pb 238.6 43.3

Continued on next page
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Table 4.9 – continued from previous page

Fit E

(keV)

Peak

Counts

Peak

Uncer.

Back-

ground

Sig.

(σ)
Source

Pub E

(keV)

Rel.

Int.

241.6 1489.4 66.0 3203.9 26.00 214Pb 242.0 7.4

270.0 518.3 52.6 2891.8 9.52 228Ac 270.2 3.5

295.4 1997.4 66.4 2801.0 37.29 214Pb 295.2 19.3

300.4 427.2 51.3 2774.2 8.01 212Pb 300.1 3.3

327.9 426.6 49.9 2602.6 8.26 228Ac 328.0 3.0

338.4 1338.2 59.1 2530.2 26.28 228Ac 338.3 11.3

352.0 3311.3 74.9 2432.6 66.33 214Pb 351.9 37.6

412.1 200.7 41.9 2049.8 4.38 198Au 411.8 96

416.8 226.6 41.7 2026.7 4.97 116mIn 416.9 27.7

463.3 234.5 42.0 1851.9 5.38 228Ac 463.0 4.4

511.0 4782.0 80.5 2008.9 105.41

 208Tl

Ann. γ

 510.8

511.0

22.6

537.2 178.7 37.1 1532.0 4.51 206Pb(n, n’γ) 537.5

569.9 377.7 42.5 1713.2 9.02 70Ge(n, n’γ) 569.7 0.5

583.2 2213.4 61.3 1615.1 54.41 208Tl 583.2 84.5

595.9 921.6 140.0 1426.1 24.11 74Ge(n, n’γ) 595.8

597.4 4022.3 301.6 15036.5 32.41 74Ge(n, n’γ) 595.8

609.3 1944.1 62.3 1383.1 51.65


70Ge(n, n’γ)
73Ge(n, γ)
214Bi


608.3

608.4

609.3

46.1

661.6 217.8 37.4 1385.0 5.78 137Cs 661.7 85.1

692.4 3222.4 173.8 5429.8 43.21 72Ge(n, n’e) 692.0

727.2 555.6 40.4 577.4 22.84 212Bi 727.3 6.6

767.9 202.1 33.6 1165.6 5.85 214Bi 768.4 4.9

771.8 159.2 32.9 1160.5 4.62

785.8 196.4 33.0 1110.1 5.83 212Bi 785.4 1.1

794.7 263.4 33.9 1099.9 7.85 228Ac 794.9 4.3

803.1 503.8 37.4 1090.0 15.08 206Pb(n, n’γ) 803.1

834.1 2207.6 289.1 11116.3 20.69 72Ge(n, n’γ) 834.4

860.8 327.6 36.3 951.7 10.49 208Tl 860.6 12.4

881.0 129.7 31.3 929.8 4.20 206Pb(n, n’γ) 881.0

898.6 201.0 31.1 982.2 6.34 207Pb(n, n’γ) 897.8

Continued on next page
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Table 4.9 – continued from previous page

Fit E

(keV)

Peak

Counts

Peak

Uncer.

Back-

ground

Sig.

(σ)
Source

Pub E

(keV)

Rel.

Int.

911.2 1708.3 50.8 943.1 54.96 228Ac 911.2 25.8

933.8 100.7 29.3 900.9 3.32 214Bi 934.1 3.0

964.8 277.6 31.3 865.8 9.32 228Ac 964.8 5.0

969.0 1027.1 42.3 859.3 34.62 228Ac 969.0 15.8

986.9 122.7 28.1 831.8 4.20

1001.5 288.4 30.9 816.8 9.97 223mPa 1001.0 0.8

1014.4 201.4 29.0 806.9 7.01 27Al(n, n’) 1014.4

1063.8 120.7 27.8 844.2 4.10 207Pb(n, n’γ) 1063.7

1096.9 228.6 29.0 771.0 8.14 116mIn 1097.3 56.2

1120.4 509.7 33.7 752.3 18.36 214Bi 1120.3 15.1

1173.4 198.6 27.9 669.9 7.58 60Co 1173.2 100.0

1238.5 203.1 27.6 680.0 7.69 214Bi 1238.1 5.8

1293.4 215.1 26.0 558.5 8.99 116mIn 1293.6 84.4

1332.5 89.1 22.7 529.8 3.83 60Co 1332.5 100.0

1377.9 159.6 24.0 492.7 7.10 214Bi 1377.7 4.0

1460.8 3480.4 62.8 430.9 165.66 40K 1460.8 11.0

1509.0 129.9 20.9 373.3 6.64 214Bi 1509.2 2.1

1588.0 179.4 21.7 336.3 9.66 228Ac 1588.2 3.2

1592.4 103.3 19.5 336.0 5.57 208Tl DEP 1592.5

1620.5 87.3 19.2 338.8 4.68 212Bi 1620.5 1.5

1729.7 142.8 19.4 284.9 8.36 214Bi 1729.6 2.9

1764.5 714.2 31.2 260.9 43.69 214Bi 1764.5 15.4

1778.7 64.7 16.5 249.3 4.05 28Al 1778.9 100

1805.8 61.6 16.1 241.0 3.92

1847.0 71.5 16.3 242.1 4.54 214Bi 1847.4 2.1

2103.4 142.5 18.3 232.0 9.24 208Tl SEP 2103.5

2203.8 201.2 19.5 201.4 14.01

 76Ge(n, n’γ)
214Bi

 2203.8

2204.2

 5.1

2447.6 56.1 13.5 144.9 4.61 214Bi 2447.9 1.6

2614.4 1723.6 42.9 116.5 157.81 208Tl 2614.5 99.0
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Figure 4.15: CLOVER background spectrum (0-1000 keV). This spectrum is based on 42
hours of background data (33.8 hours of live time) with the CLOVER in a 4” lead shield.
Only data from crystal 3 are shown.
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Figure 4.16: CLOVER background spectrum (1000-2000 keV). This spectrum is based on
42 hours of background data (33.8 hours of live time) with the CLOVER in a 4” lead shield.
Only data from crystal 3 are shown.
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4.5.4 Verification of peak identification

The peaks in the background spectrum were checked for consistency against published intensi-

ties [89] and the measured relative efficiencies. By normalizing a peak area by both the relative

intensity of the gamma and the relative efficiency as measured in Section 4.4, we can generate a

table of augmented peak areas that would ideally all take on the same value within any given iso-

tope. We then normalized these augmented peak areas by the first such value within an isotope. The

results are shown in Table 4.10.

Table 4.10: Peak verification in the background spectrum. By appropriately normalizing the peak

areas, they should all take on the same value within any given isotope. The last column shows the

ratio of the normalized peak areas to the area of the lowest-energy peak in the isotope group. The

absolute uncertainties in the last place of any value are shown in parenthesis. See the text for more

details.

Isotope Energy (keV) Normalized Area Ratio

228Ac

209.3 132(24) 1.00(25)

270.2 156(36) 1.18(29)

328 159(29) 1.20(31)

338.3 134(19) 1.01(23)

463 69(15) 0.52(15)

794.9 110(19) 0.83(21)

911.2 133(16) 1.00(22)

964.8 117(19) 0.88(21)

969 138(17) 1.04(22)

1588.2 190(29) 1.43(34)

208Tl

583.2 38(5) 1.00(18)

860.6 51(8) 1.32(27)

2614.5 92(5) 2.39(34)

214Bi

768.4 73(15) 1.00(18)

934.1 69(22) 0.95(36)

1120.3 81(10) 1.12(27)

1377.7 117(21) 1.62(44)

1764.5 174(16) 2.40(54)

1847.4 134(35) 1.85(61)

212Bi
727.3 143(20) 1.00(20)

785.4 319(66) 2.23(56)

Continued on next page
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Table 4.10 – continued from previous page

Isotope Energy (keV) Normalized Area Ratio

60Co
1173.2 5(1) 1.00(25)

1332.5 3(1) 0.51(16)

116mIn

416.9 10(2) 1.00(33)

1097.3 10(2) 0.95(27)

1293.6 7(2) 0.70(19)

212Pb
238.6 237(32) 1.00(19)

300.1 142(26) 0.60(13)

214Pb

242 205(29) 1.00(20)

295.2 112(16) 0.55(11)

351.9 101(14) 0.50(10)

Most of the ratios turned out to be unity within uncertainties. In a few interesting cases, the

discrepancies can be explained. For instance, in the case of the excess counts in the 2614 keV line

in the 208Tl group, we know that fast neutron inelastic recoils off 208Pb will result in the same energy

gamma, giving us excess counts in the peak.

A few discrepancies remain. There is an excess of counts in the 1765 keV line from 214Bi, the

785 keV line from 212Bi, and the 242 keV line from 214Pb. This would seem to indicate that perhaps

there are other decays that are contributing to those peak areas. There is an unexplained deficiency

of the counts in the 463 keV line from 228Ac.

The fact that most of the lines are internally consistent, and even the discrepancies are still

within a factor of roughly two of the expected value, is indicative of the robustness of the foregoing

calibrations and fitting.

4.5.5 Fast neutron rate

One feature of the background spectrum that will have increased relevance during the neutron ac-

tivation of the CLOVER detector is the intrinsic backgrounds from fast neutrons. Škoro et al. [90]

have developed a method for measuring a fast neutron flux using a high purity germanium detector.

We utilized their method here.

The relevant equation is from page 334 of [90]:

Φ = k
I
V

(4.11)

where Φ is the flux in neutrons / s · cm2 and V is the volume of the germanium detector in cm3.
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k is a constant ratio set by [90] to 900 ± 150 cm. Finally, I is the intensity of the broad 692 keV
72Ge(n,n’γ) peak in Hz. The total volume of the detectors, (566.8 ± 0.4) cm3, is obtained using the

masses of the individual crystals (see Table 4.1).

The only unknown term is I, the spectral intensity of the 692 keV peak. To determine the area

of the peak at 692 keV peak the following fit equation was used

dN
dE
= c0

exp
[
−(energy − c1)/c2

]
1 + exp

[
−(energy − c1)/c3

] (4.12)

where the cn terms are free parameters in the fit. The numerator is an exponential fit to the high-

energy tail of the 692 keV peak, and the denominator is a smooth step function with the strength of

the step set by c3. In addition to Eq. (4.12), the fit included a quadratic background and two Gaus-

sians centered on 680 keV and 727 keV (the offset, linear, and quadratic were all free parameters,

as were the parameters associated with the two Gaussian peaks).

The fit ended up having a χ2 / D.O.F. of 170.2 / 170 (P-value = 0.482) with the following fit

values:

c0 = 202.63 ± 10.47

c1 = 692.15 ± 0.21

c2 = 10.68 ± 0.67

c3 = 0.78 ± 0.15

The fit is shown in Fig. 4.18.

The uncertainties in the fit values were numerically propagated through the area calculation

using the appropriate entries from the covariance fit matrix. The range of integration was performed

from
[
c1 − 2.5(peak width at c1)

]
to [c1 + 5c2]. Integrating out five “attenuation lengths” gives an

area 99.3% the area if the integration were performed out to infinity. We use this cutoff in the

integration to make possible a consistent estimate of the background underneath the peak (i.e., we

integrate the background counts in the same range). Another factor to take into account is the

binning. Because there are 2 bins per keV, and the x-scale is in keV, we have to multiply the results

of the integrations by 2.

The peak area is 4306 ± 221. This measured 692 keV peak area is different from the one shown

in Table 4.9 because in the current case the spectrum did not exclude multi-crystal events. Fast

neutrons may interact more than once in the detector, and cutting on a single-crystal event would

have incorrectly attenuated the flux. Normalizing this peak count by the live time puts the value of
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I at (35.4 ± 1.8) 10−3 Hz. Finally, with all three terms in place, the flux can be calculated:

Φ = (900 ± 150 cm)
(35.9 ± 1.8) 10−3 Hz

(566.8 ± 0.4) cm3

= (57.0 ± 9.9) 10−3 neutrons / s · cm2 (4.13)

The uncertainty in the flux ends up being 17.4%.
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Figure 4.18: Background 692 keV neutron recoil peak. This is a zoom in on the 42 hours
of background data (33.75 hours of live time) shown earlier. The χ2 / D.O.F. = 170.2 / 170.
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Chapter 5

CLOVER ACTIVATION

The natural germanium of the CLOVER was activated by moderating neutrons from an AmBe

source. There were concerns, however, regarding the effects of fast neutrons on the detector. This

section is concerned with finding a compromise between obtaining quality data and protecting the

detector from damage.

5.1 Background and Activation Spectra

Previous studies [85][88] have determined that a fast neutron (∼1-10 MeV) flux can degrade the

resolution of a germanium diode detector over time, requiring an annealing procedure to restore the

quality of the resolution. Based on these studies we needed to keep the total fast neutron fluence

on the CLOVER detector to less than 108 n/cm2. Our first activation was therefore a somewhat

conservative attempt, with the primary goals being to measure both the fast and thermal neutron

fluxes.

We used three bricks of polyethylene to moderate the neutrons, each 2” thick. We wanted to

measure the activity of the AmBe source in situ, which required a 2” lead brick is to reduce the

high-intensity lower-energy gamma activity coming from the source. This put the AmBe source

approximately eight inches (∼20 cm) away from the side of the CLOVER detector. Making a very

conservative estimate of no neutron moderation, the fluence of fast neutrons at the CLOVER from

our AmBe source is 12.9 neutrons / cm2· s. With this geometry, the CLOVER can be exposed to the

AmBe source for approximately three months before reaching the 108 n/cm2 “danger fluence”. If

the germanium detector suffers from fast neutron damage, it would show up in the form of degraded

energy resolution. It could be shipped back to the manufacturer to undergo an annealing procedure

to restore most of the resolution, but we wanted to avoid the detector down time if possible.

5.1.1 Background spectrum with local polyethylene

We took data for 16.1 hours (live time of 15.3 hours) with the six inches polyethylene moderator in

place but without the AmBe source to catalog any changes in the background spectrum. In addition

to the lines enumerated in Table 4.9, we note the addition of a strong line that fits to 2223.2 keV. The

identification of this line is a prompt gamma from neutron capture on hydrogen in the polyethylene.

There are other lines associated with neutron capture on various isotopes that will be covered in
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Figure 5.1: CLOVER background spectrum with polyethylene. There is a 2223 keV line not
present in the basic background spectrum (see Fig. 4.17) associated with neutron capture
on hydrogen.
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more detail later in this section.

5.1.2 Activation spectrum

Keeping in mind our desire to be conservative in exposing the CLOVER to fast neutrons, and

notwithstanding the conservative estimates made previously, we wanted to minimize the time-

integrated fast neutron flux. Unfortunately, the DAQ system did not allow us to set the data col-

lection time, but rather the total number of spills. We made a few quick test measurements to

determine the data rate, and activated the Clover detector for 520.1 minutes. During this neutron

exposure we left the AmBe source in place, and obtained eight data sets, each approximately one

hour. The resulting live time over all eight data sets was 296.2 minutes. Table 5.1 is a catalog of the

peaks with the AmBe source in place, and the corresponding spectrum is shown in Figures 5.2, 5.3,

and 5.4.

To clearly see the peaks resulting only from activation, we subtracted the time-normalized back-

ground spectrum with the polyethylene moderator in place from the time-normalized activation

spectrum. The result is shown in Fig. 5.5. It is clear that some of the background-associated lines

at, for instance, 238 keV and 1460 keV, have been greatly attenuated.

Table 5.1: Activation peaks of the CLOVER detector. Peak energies were found using a peak fitter

and then manually fit (see Section 4.5.3 for details). Entries grouped together all apply to a single fit

energy peak. Unlike Table 4.9, there is no relative intensity column because the peaks derive mostly

from inelastic neutron scatters and not nuclear decays.

Fit E

(keV)

Peak

Counts

Peak

Uncer.

Back-

ground

Sig.

(σ)
Source

Pub E

(keV)

23.8 7006.9 269.9 65598.1 27.03 71mGe 23.4

53.6 23146.5 215.6 22780.2 151.52 73Ge(n, n’γ) 53.4

66.6 7650.8 212.9 30819.2 43.06
75mGe sum

peak
66.1

70.3 3770.2 220.3 28162.2 22.20 Unknown

73.0 10432.3 221.4 28364.9 61.20 Pb X-Ray 72.8

75.1 16793.7 231.2 26759.7 101.43 Pb X-Ray 75.0

85.0 8098.7 182.7 20257.8 56.22 Pb X-Rays

 84.5

84.9

87.3 2288.0 154.8 19343.6 16.25 Pb X-Rays


87.2

87.4

87.9

Continued on next page
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Table 5.1 – continued from previous page

Fit E

(keV)

Peak

Counts

Peak

Uncer.

Back-

ground

Sig.

(σ)
Source

Pub E

(keV)

92.8 797.0 133.9 17448.1 5.96 234Th

 92.4

92.8

96.2 1257.9 129.3 17151.3 9.49 115In(n, γ) 96.0

110.1 4940.7 163.0 17055.4 37.38 19F(n, X) 109.9

112.1 948.3 143.8 17034.8 7.18 Unknown

139.8 23952.0 198.5 16901.6 182.03 75mGe 139.7

159.5 1112.1 118.7 15667.5 8.78 Unknown

162.3 10673.8 157.7 15635.0 84.34 115In(n, γ) 162.4

175.1 4376.7 140.7 16496.4 33.67 71mGe 175.0

186.4 2022.5 128.1 16484.8 15.56 115In(n, γ) 186.2

198.3 22988.7 195.1 16569.9 176.45 71mGe 198.4

238.6 1612.0 116.7 14763.6 13.11 212Pb 238.6

253.1 3610.1 124.4 14461.4 29.66 74Ge(n, γ) 253.0

272.7 769.1 105.5 13771.4 6.48 115In(n, γ) 273.0

297.8 2096.5 129.1 13479.9 17.84 73Ge(n, n’γ) 297.3

326.1 3634.7 117.0 12718.3 31.84 73Ge(n, n’γ) 325.7

416.9 3532.7 105.2 9426.0 35.95 116mIn 416.9

470-485 N/A N/A N/A N/A A big mess N/A

492.8 570.7 91.5 8232.5 6.21 115In(n, n’γ) 492.4

500.1 3627.7 109.9 8416.0 39.07 70Ge(n, γ) 499.9

510.9 11168.2 84.5 11515.2 102.83 Ann. γ 511.0

516.7 592.6 40.4 10061.71 5.84 206Pb(n, n’γ) 516.2

537.5 1607.9 85.3 7027.6 18.95 206Pb(n, n’γ) 537.5

562.3 3054.7 189.5 109532.5 9.12 76Ge(n, n’γ) 562.9

569.7 4073.5 123.5 6486.7 49.97 207Pb(n, n’γ) 569.7

574.9 604.2 88.9 6451.4 7.43 74Ge(n, γ) 574.8

583.1 2709.4 104.3 6304.5 33.71 208Pb(n, n’γ) 583.2

596.0 13297.5 156.2 7398.1 152.74 74Ge(n, n’γ) 595.8

597.5 14852.0 233.9 86698.9 49.84 74Ge(n, n’γ) 595.8

608.5 1403.3 105.3 7081.0 16.48

 70Ge(n, n’γ)
73Ge(n, γ)

 608.3

608.4

657.7 351.3 71.9 6285.0 4.38 206Ge(n, n’γ) 657.2

Continued on next page
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Table 5.1 – continued from previous page

Fit E

(keV)

Peak

Counts

Peak

Uncer.

Back-

ground

Sig.

(σ)
Source

Pub E

(keV)

663.5 708.6 74.1 6185.6 8.90 206Pb(n, n’γ) 663.8

691.9 12728.2 211.5 55735.9 53.27 72Ge(n, n’e) 691.4

698.8 689.2 138.7 10872.5 6.53 Unknown

701.3 889.0 129.0 10825.6 8.44 74Ge(n, γ) 701.5

708.1 1377.7 92.4 5627.4 18.14 70Ge(n, γ) 708.2

747.1 342.8 67.9 5209.0 4.69 70Ge(n, γ) 747.3

763.5 301.3 65.3 5129.7 4.16 73Ge(n, n’γ) 764.1

787.8 703.7 68.2 5050.9 9.78 70Ge(n, γ) 788.7

802.9 8681.6 115.4 4891.6 122.64 206Pb(n, n’γ) 803.1

807.9 357.9 64.6 4839.9 5.08 70Ge(n, γ) 808.3

818.8 463.7 65.4 4726.0 6.66 116mIn 818.7

832.6 16012.7 645.7 53838.4 68.18 72Ge(n, n’γ) 834.4

834.1 424.8 138.8 4336.9 6.37 72Ge(n, n’γ) 834.4

843.6 1079.3 91.6 4167.5 16.52 27Al(n, n’γ) 843.7

847.1 622.1 82.8 4105.4 9.59 76Ge(n, n’γ) 847.2

860.7 647.3 73.3 4489.5 9.55 76Ge(n, γ) 861.4

868.0 2019.0 81.7 4463.8 29.86 74Ge(n, n’γ) 867.9

880.9 1579.5 73.5 4474.2 23.33 206Pb(n, n’γ) 881.0

898.0 2179.3 76.8 4575.5 31.83 207Pb(n, n’γ) 897.8

961.4 359.6 56.7 4057.2 5.58 74Ge(n, n’γ) 961.1

982.0 358.7 58.3 3963.0 5.63 Unknown

1014.4 1668.9 68.7 3807.6 26.72 27Al(n, n’) 1014.4

1039.5 7199.7 358.3 36778.4 37.09 70Ge(n, n’γ) 1039.5

1063.6 1363.9 68.8 3459.4 22.91 207Pb(n, n’γ) 1063.7

1097.0 4329.1 87.5 3726.1 70.07 116mIn 1097.3

1100.6 445.7 58.3 3707.7 7.23 74Ge(n, n’γ) 1101.3

1139.3 578.5 58.0 3502.8 9.66 73Ge(n, γ) 1138.8

1165.0 612.4 57.4 3326.8 10.49 72Ge(n, γ)

1196.3 10318.4 702.8 60739.7 41.36 Unknown

1201.1 1947.1 81.3 3181.64 34.10 n(p, d)γ DEP 1201.2

1204.1 756.6 70.5 3173.1 13.27 74Ge(n, n’γ) 1204.2

1293.5 4374.2 84.4 3181.2 76.62 116mIn 1293.6

Continued on next page
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Table 5.1 – continued from previous page

Fit E

(keV)

Peak

Counts

Peak

Uncer.

Back-

ground

Sig.

(σ)
Source

Pub E

(keV)

1298.5 766.8 56.9 3162.8 13.47 70Ge(n, γ) 1298.7

1378.3 396.8 81.5 2968.1 7.20 70Ge(n, γ) 1379.0

1380.3 366.3 81.6 2963.2 6.65 Unknown

1413.0 265.7 50.3 2947.7 4.83 Unknown

1433.0 228.3 50.7 2953.9 4.15 206Pb(n, n’γ) 1433.5

1436.4 277.1 51.3 2955.0 5.04 Unknown

1460.8 792.9 60.3 3003.6 14.29 40K 1460.8

1463.8 715.9 63.0 3015.4 12.88 72Ge(n, n’γ) 1464.0

1466.6 330.7 57.6 3026.5 5.94 Unknown

1507.8 587.9 54.8 3008.7 10.59 116mIn 1507.7

1592.3 701.9 54.9 2872.3 12.94 208Pb(n, n’γ) DEP 1592.6

1704.4 333.5 52.6 3046.1 5.97 Unknown

1712.0 3591.3 80.5 3100.8 63.72 n(p, d)γ SEP 1712.2

1726.1 223.4 51.6 3051.4 4.00 207Pb(n,n’γ) 1725.7

1769.9 342.7 51.8 3003.6 6.18 207Pb(n,n’γ) 1770.2

1778.7 1336.7 61.8 3008.2 24.08 28Al 1779.0

1844.5 468.7 53.5 3042.0 8.40 206Pb(n, n’γ) 1844.5

1950.9 264.9 53.4 3647.6 4.33 Unknown

2092.3 346.4 45.5 2193.8 7.31 207Pb(n, n’γ) 2092.7

2103.3 813.3 50.0 2077.1 17.63 208Pb(n, n’γ) SEP 2103.5

2111.9 531.9 45.8 1984.6 11.80 116mIn 2112.3

2223.1 62987.2 254.2 1617.4 1547.38 n(p, d)γ 2223.2

2390.7 256.5 35.8 1300.5 7.03 116mIn 2112.3

2614.3 8164.0 95.7 1005.9 254.33 208Pb(n, n’γ) 2614.5

2649.8 157.6 30.7 966.4 5.01 Unknown
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Figure 5.2: CLOVER activation spectrum (0-1000 keV). This spectrum is based on 520.1
minutes of activation data (live time of 296.2 minutes) with the CLOVER in a 4” lead shield
and moderating the neutrons through 6” of polyethylene.
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Figure 5.3: CLOVER activation spectrum (1000-2000 keV). This spectrum is based on
520.1 minutes of activation data (live time of 296.2 minutes) with the CLOVER in a 4” lead
shield and moderating the neutrons through 6” of polyethylene.
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Figure 5.6: AmBe neutron spectrum. The data is digitzed from a graph in March et al. [86].
The spectrum is normalized, so it can be used directly as a probability distribution function.

5.1.3 The AmBe Source and effects of shielding

The neutron flux measurement in the previous section only incorporated the AmBe neutrons that are

above reaction threshold, i.e., above 692 keV. The total neutron flux coming from the AmBe source

can be measured once we know the shape of the AmBe neutron spectrum.

The source is 30 mCi in the americium, and the full-spectrum neutron rate is (6.487 ± 0.045)

104 Hz1. The rate is normalized to 12:00 GMT on 22 May 1987, and allowing for the 433-year

halflife of 241Am, the activity of the source at the time of the experiment was (6.230 ± 0.043) 104

Hz.

Marsh, Thomas, and Burke performed a high-resolution measurement of the neutron spectrum

from an AmBe source [86]. The data from the high-resolution AmBe spectrum was digitized and

is shown in Fig. 5.6. Only neutrons with energy greater than 692 keV contributed to the inelastic

scattering peak shown in Fig. 5.7, which from the Marsh et al. data is (88.74 ± 0.89)% of the AmBe

neutron spectrum, where the uncertainty is an estimate based on the resolution of the digitization. If

there were no lead or moderator between the source and the detector, assuming the source is 20 cm

away from the CLOVER, there would be a flux of (11.00 ± 0.08) neutrons / s · cm2 above 692 keV.

1The source manufacturer is Amersham, and the neutron rate was measured at the Nuclear Physics Laboratory at
Teddington. The uncertainty of 0.7% has a CL of 95%.
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Thus the two inches of lead shielding and six inches of moderator reduced the neutron flux to (21.0

± 3.5)% of the unmoderated neutron flux.

Given the reduction in the fast neutron flux, the CLOVER can be exposed to the source in

this shield and moderator geometry for about 16 months before entering the damage region. The

exposure, including testing and preliminary measurements, has been roughly 12 hours.

5.2 Fast AmBe Neutron Flux

We fit Eq. (4.12) plus five Gaussians centered near 699, 701, 708, 739, and 747 keV to the same

region as used in section 4.5.5. The 739 keV peak was not listed in Table 5.1 because it has a

significance of only 3.8σ, although it had to be included in the current fit to allow for a reasonable

goodness-of-fit parameter. The fit had the following results (see Fig. 5.7):

c0 = 1398.67 ± 25.40

c1 = 691.775 ± 0.047

c2 = 9.712 ± 0.254

c3 = 0.523 ± 0.032

Normalizing the resulting integral by the bin width and using the same error analysis procedure as in

Section 4.5.5 gives a peak area of 26007 ± 453. The uncertainty was calculated in the same manner

as described in Section 4.5.5. With a livetime of 296.2 minutes, the 692 keV peak intensity was

(1.463 ± 0.025) Hz. Plugging these values into Eq. (4.11) gives a final flux of

Φ = (900 ± 150 cm)
(1.463 ± 0.025) Hz
(566.8 ± 0.4) cm3

= (2.323 ± 0.389) neutrons / s · cm2

To calculate the activity relative to background, we simply used the ratio of 692 keV peak inten-

sities, thereby eliminating the largest source of error (the k term in Eq. (4.11)). The fast neutron flux

during activation was (25.7 ± 1.4) times the room background fast neutron flux (see Section 4.5.5).

Finally, we subtracted the background rate from the activation rate to measure the AmBe-related

flux:
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ΦAmBe = (900 ± 150 cm)
(1.406 ± 0.025) Hz
(566.8 ± 0.4) cm3

ΦAmBe = (2.233 ± 0.374) neutrons / s · cm2 (5.1)

We now measure the reproducibility of the 692 keV peak intensity using the eight individual data

files in the 6” activation data set. Because the AmBe source was not moved during this activation,

we would expect the 692 keV peak intensity to remain constant. Fig. 5.8 shows the 692 keV peak

intensity for the eight files, with a constant fit. Given a χ2 / NDF of 7.88 / 7, we conclude that it is

very reasonable to fit a constant value to the 692 keV peak intensity for these eight data files.

5.3 Thermal Neutron Flux

The thermal neutron flux can be measured by looking for the decay of the 75mGe isomer, using a

method described by Škoro et al. [90]. A thermal neutron captures on 74Ge to this isomeric state with

a cross section of σth (75mGe) = 170 ± 30 mb [87]. 75mGe decays with a 99.970% branching ratio

to 75Ge, a transition with a Q value of 139.7 kev. This decay proceeds via both internal conversion

and gamma emission, at a ratio of αICC = 1.62 ± 0.05 [91]. 75mGe has a half life of 47.7 seconds,

and thus the total event rate is quickly obtained. The difference in the final number of decays over

520 minutes assuming a constant decay rate versus an asymptotically increasing decay rate differs

by just 0.2%. This difference will be disregarded.

5.3.1 Extracting the flux

The equation from Škoro et al. that relates the intensity of the 139.7 keV peak to the thermal neutron

flux is

Φth =
I139.7

N
(74Ge

) εγ139.7+αICC

1+αICC
σth

(75mGe
) (5.2)

where Φth is the total thermal neutron flux, I139.7 is the intensity of the 139.7 keV peak, N(74mGe)

is the number of 74Ge atoms, εγ139.7 is the detector’s photopeak efficiency for a 139.7 keV gamma.

Note that the observation efficiency of the internal conversion electrons is assumed to be 100%. In

reality, some of the internal conversion electrons will either escape the crystal or deposit energy

inside a dead layer. This effect is assumed to be small compared to the uncertainty in the neutron

capture cross section, and will be neglected.

The number of 74Ge atoms within a mass of natural germanium can be expressed as a function

of the volume of the germanium:
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N
(
74Ge

)
= V[cm3]

(
1.601 × 1022

)
(5.3)

where V is the volume of the natural germanium in cm3. Škoro et al. also express εγ139.7 as a function

of the volume of the germanium:

ε
γ
139.7 ' 1 −

1 − exp(−V1/3)
V1/3 (5.4)

where as before, V is the volume of the detector expressed in cm3. Plugging Eqs. (5.3) and (5.4)

into Eq. (5.2) gives

Φth = 980
I139.7

V
(
2.6 − 1−exp(−V1/3)

V1/3

) (5.5)

where, once again, the volume V is expressed as cm3. Škoro et al. estimate the final uncertainty in

the thermal neutron flux measurement to be 30%.

The ultimate goal of the current study, however, is not necessarily to determine the thermal

neutron flux, but to determine the number of 77Ge decays in the final data set. To this end, we only

need to calculate the ratio of neutron captures on 74Ge to 76Ge. The uncertainty in this ratio will be

less than the 30% uncertainty estimated by Škoro et al. For now, though, we complete the study of

the neutron flux, and will in Section 6.1.4 make the switch to using just the capture ratio with its

lower relative uncertainty.

5.3.2 The thermal neutron flux through the CLOVER crystals

The volume of each crystal can be obtained from its mass (see Table 4.1), and is about 141.6 cm3

each, giving a photopeak efficiency for a 139.7 keV gamma of 80.9%, which the authors of [90]

claim is accurate to 10%. The efficiency is added to αICC to obtain a factor of 2.41.

To test the efficiency approximation, we used the MaGe2 Monte Carlo simulation framework to

simulate one million 140-keV gamma rays spread homogeneously throughout crystal 1. 75% of the

gammas deposited full energy within the crystal, which is within the 10% uncertainty predicted by

Škoro et al.. Adding this value to αICC gives a factor of 2.35, and thus the efficiency approximation

suppresses the Φth by 2.5% relative to the calculated flux.

Because part of the goal of the present work is to experimentally evaluate the accuracy of the

simulation, the εγ139.7 approximation, with an assumed uncertainty of 10%, will be used to measure

the thermal neutron flux.

2MaGe is covered in detail in Chapter 7
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Since 75mGe has a half life of 48 s, the 75mGe decays should not be individually correlated

with any other events depositing energy in the CLOVER. The area of this peak should therefore be

independent of whether the single-crystal or multi-crystal histograms are used. Indeed, this is what

we observed, with the peak area sum of all four crystals being 23900 ± 200 for the single-crystal

events, and 24000 ± 240 for the multi-crystal events. Because of the better resolution, we therefore

decide to measure the 140 keV peak using the single-crystal events.

The thermal neutron flux through the individual CLOVER crystals was also measured. In the

case of the individual crystals, the mass is taken to be 754 grams, giving a volume of 141.6 cm3.

There is a complication, though, in analyzing the neutron flux through individual crystals–140

keV gammas may exit one crystal and enter another, adding to the counts in the 75mGe peak. This

serves to double-count some of the neutrons flowing through the crystals. We therefore want to

answer the question, of all the counts in the 140 keV peak in any given crystal, how many originated

within the crystal itself?

To answer this question, we re-used the data from the Monte Carlo simulation mentioned above.

Of those one million simulated primary gamma events, 750,000 contributed to the 140 keV peak

in crystal 1, 21,000 in crystals 2 and 4, and 5500 in crystal 3. The remaining gamma rays either

escaped the detector entirely or only added to the continuum below 140 keV.

With these efficiencies in hand, we can write down a matrix equation for how many counts we

would expect to observe in any given crystal, given how many decays actually occurred in each

crystal:


ob1

ob2

ob3

ob4

 =
αICC

1 + αICC


a1

a2

a3

a4

 +
1

1 + αICC


ε1 ε4 ε3 ε2

ε2 ε1 ε4 ε3

ε3 ε2 ε1 ε4

ε4 ε3 ε2 ε1




a1

a2

a3

a4

 (5.6)

where an is the actual number of 75mGe decays in crystal n, obn is the observed number of 140 keV

energy depositions in crystal n, and the efficiency values εn are defined according the simulation

results:

ε1 = 7.5 × 10−1

ε2 = 2.1 × 10−2

ε3 = 5.5 × 10−3

ε4 = 2.1 × 10−2

To understand Eq. (5.6), we have a proportion of 75mGe decays proceeding via internal conver-

sion, and the observation efficiency of these decays is assumed to be 100%. These internal conver-

sions are represented in the first term on the right of Eq. (5.6). We then have a proportion of 75mGe
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decays proceeding via gamma emission, represented by the second term. The cyclic permutation of

the εn values is due to the four-fold symmetry of the CLOVER construction.

After collecting like terms on the right, the matrix in Eq. (5.6) is inverted to obtain the actual

number of 75mGe decays based on the observed peak areas of the four crystals:


a1

a2

a3

a4

 =

δ1 δ4 δ3 δ2

δ2 δ1 δ4 δ3

δ3 δ2 δ1 δ4

δ4 δ3 δ2 δ1




ob1

ob2

ob3

ob4

 (5.7)

where now the δn values are given by

δ1 = 1.1

δ2 = −9.8 × 10−3

δ3 = −2.4 × 10−3

δ4 = −9.8 × 10−3

We then answer the question, given a known number of 75mGe decays in any given crystal, how

many 140 keV energy depositions remain within that crystal. The answer is the matrix equation


c1

c2

c3

c4

 =
(

αICC

1 + αICC
+

1
1 + αICC

) 
a1

a2

a3

a4

 (5.8)

Finally, we substitute Eq. (5.7) into Eq. (5.8) to obtain


c1

c2

c3

c4

 =

φ1 φ4 φ3 φ2

φ2 φ1 φ4 φ3

φ3 φ2 φ1 φ4

φ4 φ3 φ2 φ1




ob1

ob2

ob3

ob4

 (5.9)

where the φn values are given by

φ1 = 1.0

φ2 = −8.9 × 10−3

φ3 = −2.2 × 10−3

φ4 = −8.9 × 10−3
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What Eq. (5.9) tells us is that given an equal number of counts in the 140 keV peak in all four

crystals, the thermal neutron flux through any one crystal would have been erroneously augmented

by just a few percent, which may be negligible given the 30% uncertainty in determining the thermal

neutron flux. We have two comments on this consideration. One, since the AmBe source is placed

closest to crystals 3 and 4, we do not expect the 140 keV peaks in each crystal to be the same size,

making this matrix correction more substantial for crystals 1 and 2 than 3 and 4. Two, while the

current uncertainty may be 30%, this procedure can be applied to any array of germanium crystals

for processes with a much smaller uncertainty, perhaps making this count separation procedure more

relevant.

Using the foregoing method, we measured the thermal neutron flux through the individual

CLOVER crystals. Table 5.2 shows the results.

Table 5.2: Thermal neutron fluxes through individual crystals with 6” of moderator. The live time
was 296.2 minutes. The peak areas were normalized by the run time and the resulting intensities
entered into Eq. (5.9) and then Eq. (5.5) to obtain the last column. The statistical uncertainties are
far smaller than the estimated 30% uncertainty in the method, thus the uncertainties in the reported
fluxes are simply taken to be 30%.

Crystal Peak area
Flux

(n / cm2 · s)
1 4446 ± 83 0.94 ± 0.28
2 5263 ± 89 1.12 ± 0.34
3 8074 ± 122 1.73 ± 0.52
4 6189 ± 104 1.32 ± 0.40

As we might expect, the thermal neutron flux through the crystals nearest to the AmBe source,

crystals 3 and 4, is higher than the flux through the far crystals 1 and 2. There is a second smaller

effect, though, deriving from the fact that the AmBe source is closer to the physical height of crystals

2 and 3 and 1 and 4, leading to a further flux difference between the four crystals (skip ahead to

Fig. 6.1 to see a photo of the activation setup with 4” of polyethylene moderator instead of 6”). The

average thermal neutron flux was determined to be (1.28 ± 0.20) n / cm2· s.

Crystal separation material

There is material in the CLOVER detector used to physically separate the crystals from each other.

The identity and geometry of this separator is a proprietary engineering detail, though we may use

the thermal neutron flux measurements to determine the nature of the material.

With 6” of neutron moderator, the AmBe source sits approximately 20 cm from crystal 3 and 25

cm from crystal 2. Thus we can expect the thermal neutron flux through crystal 2 to be (20/25)2 =
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64% that of the thermal neutron flux through crystal 3 given the increased distance from the source.

The close crystals, though, are themselves absorbing 28% of the neutrons that stream through them

(see Appendix B). We would therefore expect the flux through crystal 2 to be 46% of the flux

through crystal 1. Table 5.2 shows that the ratio is 0.65 ± 0.28. While this flux ratio is in agreement

with prediction, the size of the uncertainty makes a more sensitive test impossible at this point.

Because of the large error bars, and the fact that the flux through crystal 2 is actually larger

than expected, it is difficult to say anything definite about the nature of the crystal separator. The

strongest statement that can be made is that the separator is most likely not made of a material with

a very high thermal neutron capture cross section.

Systematic analysis of peak intensity

We create a plot of the 140 keV peak intensity for each of the eight datasets making up this data

run. This graph is comparable to Fig. 5.8, except relevant to the thermal neutron flux rather than the

fast neutron flux. We compare the intensities of the 140 keV peaks for each of the eight individual

data files comprising this activation data set. Because the AmBe source was left in place during the

entire activation, we would expect the peak intensities to be constant. We add the peak intensities

for all four crystals for each data set. This analysis sets an expectation for later comparisons when

the AmBe source was replaced between each activation. Fig. 5.9 shows the results. As with Fig. 5.8,

a linear fit to the peak intensities is reasonable.

5.4 Cooldown Analysis

Before analyzing specific peaks and signals in the CLOVER data, the cooldown spectrum must have

its peaks identified and categorized. The known bulk materials present were germanium, aluminum,

lead, and polyethylene. Neutron activation indicated significant amounts of indium and manganese,

and these materials might have an impact on the thermal neutron flux measurement.

5.4.1 Background and Activation Spectra

After the 520 minutes of neutron activation, cooldown data were taken for 58.1 hours (52.25 hours

of live time). Table 5.3 is a catalog of the peaks, and the resulting spectrum is shown in Fig-

ures 5.10, 5.11, and 5.12. The peaks that are not identified in Figs. 4.15, 4.16, and 4.17 are identified

in Table 5.3.
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Figure 5.9: 139.7 keV peak intensity systematics. The error bars in this graph are statistical,
and fitting a constant value to them results in a χ2 / NDF of 3.13 / 7 (P-value = 0.87).

Table 5.3: New cooldown peaks of the CLOVER detector. Most peaks are found in the background

spectrum as well (Figs. 4.15, 4.16, and 4.17).

Fit E

(keV)

Peak

Counts

Peak

Uncer.

Back-

ground

Sig.

(σ)
Source

Pub E

(keV)

253.0 371.1 76.4 6973.4 4.39 Unknown

325.7 431.2 76.6 5627.8 5.68 Unknown

807.5 226.7 46.7 2122.5 4.86 Unknown

818.8 219.9 45.3 2157.9 4.68 116mIn 818.7

846.7 286.4 70.2 2152.1 6.10 56Mn 846.8

1155.2 133.7 35.1 1358.0 3.58 Unknown

1630.5 167.2 25.9 618.8 6.64 Unknown

1712.0 188.0 25.3 577.4 7.73 Unknown

2112.4 245.1 24.2 420.6 11.81 116mIn 2112.3

2118.6 107.9 21.0 416.7 5.22 Unknown

2390.6 94.5 19.0 337.6 5.08 Unknown

5.4.2 Indium and Manganese in the CLOVER

In addition to the known bulk materials near the CLOVER crystals, there is indium and manganese

as well. The amounts of these materials will affect later analyses, so we categorized their levels.

The presence of indium

The evidence for indium is strong. Table 5.4 shows some basic information about natural indium.

With such a high capture cross-section, a significant thermal neutron flux would activate any indium

present, with captures on 115In dominating those on 113In. There are three isomers of 116In, with

the longest-lived isomer being 116mIn, which β− decays to 116Sn with a half life of 54.29 minutes

(116In and 116m2In have half lives of 14.10 s and 2.18 s, respectively). We focus on the effects of the

long-lived 116mIn. Table 5.5 shows its strongest lines.

The presence of these strongest lines is one part of the proof of the presence of indium. Addi-

tional proof is the measured half life of these peaks. The most significant peak is at 1294 keV, so

that is the feature that we used for the half life measurement. Fig 5.13 shows the number of events

in a ± 2-keV window around the 1294-keV centroid in 1-hour time bins (the time t = 0 seconds

data point shows the number of 1294 keV events in the first hour, at t = 3600 seconds the number

of events in the second hour, and so on). The data is fit to a curve with an exponential decay on

top of a constant background, and the free parameters are the constant, initial event rate, and time
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Figure 5.10: CLOVER cooldown spectrum (0-1000 keV). This spectrum is based on 58.3
hours of cooldown data with the CLOVER in a 4” lead shield and with 6” of polyethylene
present. See Fig. 4.15 for a list of peak identifications not shown here.
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Figure 5.11: CLOVER cooldown spectrum (1000-2000 keV). This spectrum is based on
58.3 hours of cooldown data with the CLOVER in a 4” lead shield and with 6” of polyethy-
lene present. See Fig. 4.16 for a list of peak identifications not shown here.
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Figure 5.12: CLOVER cooldown spectrum (2000-3000 keV). This spectrum is based on
58.3 hours of cooldown data with the CLOVER in a 4” lead shield and with 6” of polyethy-
lene present. See Fig. 4.17 for a list of peak identifications not shown here.
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Table 5.4: Properties of natural indium. Natural abundances and cross-sections come from [87].
The thermal neutron capture cross section for natural indium is (271.5 ± 7.7) barns.

Isotope
Natural

Abundance

Thermal neutron
capture cross-

section (b)

Percentage of neutron
captures relative to
natural germanium

113In 4.29(5)% 15.1(13) (0.238 ± 0.0218)%
115In 95.71(5)% 283(8) (99.76 ± 3.98)%

Table 5.5: Strongest 116mIn lines. The third and fourth columns are based on measured peak ar-
eas from the cooldown dataset. The last column is obtained via the same method as described in
Section 4.5.4.

γ Energy
(keV)

Rel. Int. (%)
Peak Area
(counts)

Normalized Peak Area Ratio
(counts)

416.86(3) 27.7(12) 2051(93) 1.00(20)
818.718(21) 11.5(4) 438(70) 0.77(19)
1097.326(22) 56.2(11) 2264(69) 1.04(19)
1293.558(15) 84.4(17) 2613(67) 0.94(17)
2112.312(22) 15.5(4) 364(33) 1.14(21)

constant. The decay constant fits to (52.8 ± 1.9) minutes, in good agreement with the accepted half

life of 116mIn of 54.3 minutes.

With the strongest 116mIn lines present in the cooldown spectrum, and the good agreement of the

half life measurment, the evidence for the presence of indium in the CLOVER is solid. How indium

is used in the CLOVER construction, however, is proprietary and the manufacturer will divulge

neither the placement nor the overall mass.

The presence of manganese

There is only one natural occuring isotope of manganese, 55Mn, with a thermal neutron capture of

13.36(5) barns. The resulting isotope, 56Mn, has a half life of 2.58 hours. Table 5.6 shows the

strongest 56Mn lines.

Unfortunately, only the strongest of these lines was observed in the cooldown spectrum. It is

unsurprising that the other lines were not visible, because not only were the peaks less intense,

but the photopeak efficiency at the higher energies also conspired to keep peaks below statistical

significance.
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Figure 5.13: Decay of 116mIn in the cooldown data. The decay constant fits to (52.8 ± 1.9)
minutes, in agreement with the accepted value of 54.3 minutes. The χ2 / D.O.F. = 15.7 / 13
(P-value = 0.266).

Repeating the half life measurement of the 847 keV peak (see Fig. 5.14), the half life turned out

to be (2.02 ± 0.30) hours, or 1.9 σ from the accepted value.

While the statistics would need to be improved to obtain a more confident determination of the

presence of manganese, the corroborating evidence of peak presence and decay constant provide a

strong hint. Confirming measurements will be made in the next chapter when increased statistics

are available.
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Table 5.6: Strongest 56Mn lines. Peak areas are not compared because in the current dataset, only
the 847 keV line was observed.

γ Energy (keV) Rel. Int. (%)
846.771(5) 98.9(3)

1810.772(17) 27.2(8)
2113.123(10) 14.3(4)
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847 keV counts vs. time, Cooldown data from initial activation through a 6" moderator

Figure 5.14: Decay of 56Mn in the cooldown data. The decay constant fits to (2.02 ± 0.30)
hours. The χ2 / D.O.F. = 34.2 / 27 (P-value = 0.160).
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Chapter 6

EXPERIMENTAL RESULTS

With the CLOVER fully characterized, one polyethylene brick was removed, leading to a greater

thermal neutron flux both because the AmBe source was now closer to the CLOVER and fewer

neutrons were captured in the wax1. With this higher flux, the CLOVER was put through a series of

activation and cooldown cycles, and from those cooldown datasets the efficiency of observing the

surrogate excited-state double-beta decay signal was extracted.

6.1 Production Activation and Cooldown

For production datataking, we determined the activation/cooldown cycle timing and subsequently

went through sixteen such cycles. For each activation we measured the fast and thermal neutron

fluxes. From the intensity of the 75mGe decays we extrapolated the total number of 77Ge events in

the dataset.

6.1.1 Experimental setup

Using the six inches of moderator in the previous chapter was a conservative choice made for testing

purposes. Removing a single polyethylene brick would increase the fast neutron flux by approxi-

mately a factor of (4 bricks / 3 bricks)2 = 1.8, a level deemed safe for the CLOVER with modest

exposure. Fig. 6.1 shows a photograph of the set up with the front part of the shield removed to show

the relationship between the AmBe source, the polyethylene moderator, and the CLOVER detector.

6.1.2 Optimizing the cycle period

We determined the optimal cycle time in the following way. Assume that the activation and cooldown

times are equal, and represented by t. At the end of a single activation period, the 77Ge signal will

be at (1 − 2−t/τ) of maximum, where τ is the half-life of the isotope in question. Integrating the

signal during the cooldown period, starting at this fraction of maximum, gives

Single cycle integrated signal = τ 4−t/τ(1 − 2t/τ)2

1We do not a priori expect the relative increase in the fast neutron flux to be equal to the relative increase in the
thermal neutron flux
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Figure 6.1: Activating the CLOVER Detector. The CLOVER detector is in the middle of
the photo, with a colored sticker showing the approximate locations of the four internal
crystals. The white bricks to the left of the CLOVER are the polyethylene moderator, and
the AmBe source is on the far left.

If there is a total time limit on the number of activation/cooldown cycles of T, the number of cycles

that can be fit in is T/2t. We can therefore find the optimal activation by looking for a maximum in

the equation

Total integrated signal ∼
4−t/τ

t
(1 − 2t/τ)2 (6.1)

where all normalization constants have been dropped. This equation is plotted in Fig. 6.2.

The optimal t is 2.07 τ. For 77Ge, τ = 11.30 hours, putting a fully-optimized activation/cooldown

cycle at 46.7 hours—activate for 23.4 hours, then take cooldown data for 23.4 hours. We wanted

to obtain data more often than once every two days, however, to discover any problems with the

ongoing procedure and reduce the risk of lost time. Taking into account human considerations of a

regular schedule, we decided to halve the activation/cooldown cycle, and activate for 12 hours and

obtain data for 12 hours.
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Figure 6.2: 77Ge cycle optimization. This graph shows that the optimal activation/cooldown
cycle time is 2.07 τ individually for activation and cooldown (4.14 τ for the complete cycle).
Our complete cycle time was 24 hours, reducing the 77Ge signal to 91.2% of maximum.

Using the values of 12/11.3 and 11.3 for t and τ respectively in Eq. (6.1) gives an integral of

0.256. Using the optimal value for t of 2.07 τ gives an integral of 0.280. Thus with this shorter

activation/cooldown cycle time, the 77Ge signal efficiency was at 91.2% of maximum.

6.1.3 Fast neutron flux

With the cycle time determined, we embarked on a series of 16 activation/cooldown cycles with the

4” moderator. The start and stop times are shown in Appendix C.

For each of the 16 activation datasets we measured the intensity of the 692 keV fast neutron

peak using the fit equation described in Section 5.2. Fig. 6.3 shows the peak intensity for each of

the data runs.

Turning the 692 keV peak intensity into a fast neutron flux (see Section 4.5.5) and integrating

over the activation times for each individual data run gives a total fast neutron fluence of (8.2±0.4)×

105 n / cm2, well below the 108 n / cm2 danger region.
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Figure 6.3: 692-keV peak intensity through 4” moderator. Fitting a constant peak intensity
through all 16 runs results in a χ2 / D.O.F. = 47.8 / 15 (P-value = 2.8e-5). Compare to
Fig. 5.8.

6.1.4 77Ge creation rate

We also measure the intensity of the 140 keV peak from the decay of 75mGe. Ordinarily, this peak

would be used to calculate the thermal neutron flux. In the present case, however, the goal is not

to measure the thermal neutron flux per se, but rather to calculate the number of 77Ge decays in

the cooldown datasets. Once we have the 75mGe creation rate, we can multiply by the ratio of the

appropriate thermal neutron capture cross sections and relative abundances of 74Ge and 76Ge to

obtain the 77Ge creation rate. In this way, the proprietary construction details do not increase the

uncertainty in the rates.

76Ge has a thermal neutron capture cross section to 77Ge of (0.06 ± 0.01) barns. 76Ge also has a

capture cross section to 77mGe of (0.10 ± 0.01) barns. 77mGe decays via internal transition (half life

= 52.9 s) to 77Ge, with a branching ratio of 19%. The other 81% of the time it beta decays to 77As

without passing through the triple-coincidence branches currently under study. Thus (49 ± 7)% of

all neutron captures on 76Ge result in a ground-state 77Ge nucleus.
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77Ge creation rate
75mGe creation rate

=

(
(0.49 ± 0.07)(160 ± 14) mb

170 ± 30 mb

) (
7.61 ± 0.38%

36.28 ± 0.73%

)
= 0.097 ± 0.024 (6.2)

Note that the uncertainty in this ratio is about 25%. This will set the lower limit for the systematic

uncertainty in the number of 77Ge decays present in the dataset.

Similar to the process in Section 5.3.2, we compare the intensity of the 140 keV peak from run

to run in the 4” polyethylene configuration. Fig. 6.4 shows the results. The manufacturer of the

AmBe source confirmed that the neutrons are not emitted isotropically. We questioned whether the

spread in values derives from this anisotropy. Unfortunately, if this were the case then a run with

a particularly high (or low) fast neutron flux would also have a particularly high (or low) thermal

neutron flux. Comparing Figs. 6.3 and 6.4, we see this is not necessarily the case.

A separate experiment with controlled rotation of the AmBe source was not performed. It is

possible that there may be another systematic effect that alters the fast and thermal neutron fluxes,

although without a controlled experiment to measure the degree of anisotropy in the neutron emis-

sion, it cannot be completely ruled out.

77Ge tally

With the 140 keV peak intensity measured for each activation run, and the creation rate of 77Ge

nuclei thereby extrapolated, we can calculate the overall rate of 77Ge decays during both activation

and cooldown. We assumed an asymptotic rise in the 77Ge event rate during activation based on its

half life, and an exponential fall in the event rate during cooldown data taking. Fig. 6.5 shows the

rate curves.

By integrating over the times during which cooldown data were being taken (the shaded regions

of Fig. 6.5), we predicted the number of 77Ge decays. Because of the presence of 116mIn, we

applied a time cut by removing the first part of every cooldown dataset. We do not know a priori

the optimal time to wait for the 116mIn to decay—if the time cut is too small we have a significant
116mIn background, but if the time cut is too large the statistics are too low and the uncertainty on

the coincidence peak areas will correspondingly be very large.

We therefore decided to measure the significance of the coincidence peaks using 11 different

time cuts of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 hours. We then use the time cut that gives the greatest

coincidence peak significance. The number of 77Ge decays in the final data set will of course depend

on what time cut was used. Table 6.1 shows the number of expected 77Ge decays for each early time

cut as well as the total integrated time of all cooldown data sets.
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Figure 6.4: 140-keV peak intensity through 4” moderator. A constant peak intensity through
all 16 runs results in a χ2 / D.O.F. = 71.6 / 15 (P-value = 10−9). This quality of fit should
be compared to that of Fig. 5.9. The statistical uncertainty in the peak intensity is between
1% and 3% depending on the dataset.

6.2 Cross talk between the CLOVER Crystals

An issue that emerged during the coincidence studies is that of cross talk between the crystals.

Cross talk is seen in the CLOVER as a suppression of reported energy in a crystal. Among other

mechanisms, the cross talk can depend on either the energy deposition or the number of crystals hit.

To study the energy dependence, we hold the number of crystals hit constant, and vice versa.

While the presence of indium in the CLOVER has been a sometimes difficult issue to work with,

we can use the 116mIn signal to study the crosstalk. The 417 keV gamma ray from 116mIn can occur

in coincidence with 818, 1294, and 2112 keV gamma rays. To study the energy dependence, we

require exactly two crystals be hit. We further require one of those two crystals have an energy

deposition at one of the coincidence energies, and we fit a Gaussian curve to the nominal 417 keV

peak. Fig. 6.6 shows the resulting histogram. The figure clearly shows the 417 keV peak centroid

increasingly suppressed with increasing coincidence energies. Fig. 6.6 includes the spectrum from

single-energy depositions as a reference.

We next characterize the dependence of the crosstalk on the number of crystals hit. We use all

three coincidence energies (818, 1294, and 2112 keV) to perform three separate analyses. In each

analysis we require two, three, and four crystals be hit. For the two-crystal cut, one of the crystals
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Figure 6.5: Estimated 77Ge rate during activation and cooldown cycles. The solid red and
blue lines show the rate of 77Ge events in the CLOVER detector based on the measured
thermal neutron flux and extrapolated number of neutron captures on 76Ge nuclei. The
shaded-to-zero areas show when data was being taken. Integrating the blue areas gives the
total number of 77Ge decays in the CLOVER detector.

Table 6.1: Number of 77Ge decays. We eliminated the first zero through ten hours from each
individual decay data set. The systematic uncertainty in the number of decays is 25% (see Eq. (6.2)
and accompanying text.

Time cut (hours) Number of 77Ge decays Integrated time (m)
0 285527 15272
1 254561 14327
2 224950 13376
3 197102 12407
4 172025 11485
5 150824 10652
6 132213 9872
7 112765 9008
8 93837.0 8116
9 78235.6 7341
10 64604.7 6621
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must have an 818 keV energy deposition. For the three-crystal cut, two of the crystals have to sum to

818 keV, and for the four-crystal cut, three of the crystals have to sum to 818 keV. For each number-

crystal cut, we histogram the energies in the remaining crystal, and, as before, fit a Gaussian curve

to the nominal 417 keV peak. We repeated the procedure for the 1294 and 2112 keV coincidence

energies as well. The results are shown in Fig. 6.7 and Table 6.2. Based on these measurements, we

conclude the crosstalk is not dependent on the number of crystals hit.

Traditionally, the cross talk issue is an intricate one, though we have demonstrated that in the

CLOVER detector it is dependent on total energy deposition and independent of the number of

crystals hit. Even though the relationships may be analyzed phenomenologically, there are a number

of potential sources of the cross talk, including crystal coupling, capacitive pickup, ground loops,

and image charges (and this list is by no means complete). Digitization of the full pulse from all

four crystals for every event, independent of the number of crystals with energy deposition, may

help in understanding this issue.

Because of the unknown model of the source of cross talk, rather than attempting to predict

the behavior at various coincident energies we decided to simply measure the centroids of coinci-

dence peaks and reanalyze the coincidence data centered on those suppressed energies. We kept the

coincidence window at ± 2 keV.

6.3 Verification of 77Ge Signal

We analyzed the cooldown data sets to verify the presence of 77Ge. 15.3% of 77Ge decays are to the

475 keV energy level of 77As (see Fig. 3.5 or Appendix A). This energy level has a half life of 114

µs. This excited 77As nucleus then decays 97% of the time via two coincidence gamma rays at 211

keV and 264 keV (the other 3% is a decay directly to the ground state). This long-lived state leads

to two possible methods for verifying the 77Ge signal. In the first method, the long half life of this

level means the vast majority of these decays will not have the beta particle coincident with the two

subsequent cascade gammas. As a result, there is a much greater chance of observing a 211 keV

energy deposition in one crystal and a 264 keV energy deposition in another. In the second method,

a histogram of the energy depositions immediately preceding the coincidence event should give a

beta spectrum with the correct endpoint energy.

6.3.1 77Ge verification with coincidences

Utilizing no time cut (i.e., incorporating all of the cooldown data) and requiring exactly two crystals

have an energy deposition, we plotted two histograms. One spectrum is of energy depositions

coincident with 211 keV, and the other is of 264 keV coincidences. If there is a significant 77Ge

presence, there will be a large 264 keV peak in the 211 keV coincidences histogram, and vice versa.
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Figure 6.6: Coincidence energy effect on peak centroids. Except for the single-crystal
curve, the coincidence curves require exactly two crystals have an energy deposition. The
818 keV coincident centroid is at 416.18(3) keV, the 1294 keV coincident centroid is at
415.57(4) keV, and the 2112 coincident centroid is at 414.63(3) keV. The single-crystal
curve, with a centroid at 416.97(4) keV, is included for reference. The single-crystal curve
is attenuated by a factor of 500 for easier comparison between peak heights.

Table 6.2: Crystal multiplicity effect on peak centroids. The centroids remain unchanged within
any given coincidence energy, showing that the number of crystals hit has no effect on the crosstalk
energy suppression. These centroids correspond to the curves shown in Fig. 6.7.

818 keV coin. 1294 keV coin. 2112 kev coin.
2-crystal 416.18(3) 415.57(4) 414.63(3)
3-crystal 416.12(8) 415.63(8) 414.71(8)
4-crystal 415.6(5) 415.9(3) 415.0(5)
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Figure 6.7: Crystal multiplicity effect on peak centroids. The top curve for each of the
three graphs (coincidence energy 818, 1294, and 2112 keV) shows the two-crystal cut. The
middle curve is the three-crystal cut and the bottom curve in each of the three graphs is the
four-crystal cut. Although the statistics for the four-crystal cuts are too low to reliably fit a
Gaussian curve, it is included for comparison. See Table 6.2 for the centroid values. The
source of excess counts on the high side of the 2112-coincidence curves is unknown.
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Figure 6.8: Verification of 77Ge signal with coincidences. The strongest lines in the spec-
tra are the respective coincidence partners. The minor lines in the spectra are attributed to
Compton scatters from the stronger lines in the raw spectrum, e.g. 116mIn, 208Tl, 40K. Be-
cause the coincidence energies involved are lower than those from 116mIn, the suppression
was lower than that shown in Fig. 6.6.

We used this coincidence to test the cross talk. We performed the coincidence study using the

published gamma ray energies of 211.03 and 264.44 keV with a window of ± 2 keV. The centroid

of the resulting 211 keV peak was 210.70(2) keV, and the area 2533(53) counts. The centroid of the

264 keV peak was 264.04(2) keV, and the area was 2592(53) counts.

The analysis was performed using the fit centroids ± 2 keV. The centroid of the 211 keV peak

remained at 210.70(2) keV, and the area was 2545(54) counts. For the 264 keV peak the centroid was

once again 264.04(2) keV, and the area was 2580(53) counts. The peak areas were not appreciably

different whether using the published energy or the suppressed energy. The difference between the

sets of energies (published and suppressed) was roughly one sixth the FWHM of the peaks (see

Section 4.5.1), so we would not necessarily expect a dramatic effect in the area of the peaks.

The results of the analysis with the shifted centroids are plotted in Fig. 6.8, and demonstrate the

presence of 77Ge.

6.3.2 77Ge verification with the beta spectrum

Utilizing this same 475 keV energy level, the energy of the events previous to the 211 / 264 keV

coincidence are shown in Fig. 6.9. There were three requirements for any given previous event:
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it must have been the event immediately preceding the coincidence event, there must have been

exactly one crystal with an energy deposition, and the preceding event must have occurred within

three half lives of the 475 keV energy level (i.e., 3×114 µs = 342 µs). As the average time between

all events is 0.1 seconds, the effect of accidental events should be small. There were 1599 events

that met all three criteria.

As a test to make sure Fig. 6.9 is not simply an accidental background spectrum, we created a

histogram of events immediately following rather than immediately preceding the 211 / 264 keV

coincidence. The other requirements (the time cut and the single-crystal deposition) remained the

same. Fig. 6.10 shows the result, which follows a basic background continuum much more closely

than Fig. 6.9. We created a Kurie plot from the beta spectrum, shown in Fig. 6.11. The data supports

the claim that the observed decays are consistent with beta decay from 77Ge.

There is a source-associated background to this beta spectrum and its associated Kurie plot.

Referring to Appendix A, we note it is possible for 77Ge to decay to an energy level above 475

keV, with a subsequent transition to the 475 keV energy level. The total branching ratio for all such

transitions is 16.5%. This should be compared to the branching ratio of a decay directly to the 475

keV energy level of 15.3%.

The backgrounds derive primarily from two transitions: 1189.8→ 475 keV (7.17%) and 1560.6

→ 475 keV (6.05%).These two backgrounds involve 715 keV and 1086 keV energy gamma rays re-

spectively, and the single-crystal cut should suppress these backgrounds. A Monte Carlo simulation

would have to be run to determine the full effects of these backgrounds. Regardless, the purpose of

this beta-spectrum exercise was to verify the presence of 77Ge, and the differing spectra of Figs. 6.9

and 6.10 combined with the fit of Fig. 6.11 demonstrates this presence.

6.4 Coincidence Results

With the presence of 77Ge confirmed, we finally turned our attention to measuring the efficiency of

observing the 77Ge triple coincidence that mimics the 76Ge double beta decay to the first excited 0+

state of 76As.

As a reminder, the coincidences we looked for come from the 631.8 keV energy level, and

are 367.40 / 264.44 keV and 416.33 / 215.50 keV. Unfortunately, both of these coincidences have

backgrounds in the decays of 75Ge (at 264.66 keV) and 116mIn (at 416.86 keV), respectively. We

may be able to reduce these backgrounds by eliminating the first portion of every cooldown data

set. To this end, we removed the first 0 through 10 hours of data from every cooldown data set (i.e.,

the 0-hour cut contained all the data, the 1-hour cut contained all but the first hour from every data

set, and so on). We then calculated the significance of the coincidence peaks for every time cut.

The time cut we used for the final analysis was the one that resulted in the peak with the greatest

significance. Because the backgrounds are not the same for all four coincidence peaks, we had to
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Figure 6.9: Verification of 77Ge signal with beta spectrum analysis. The events in the
spectrum precede a 211/264 keV coincidence. According to the partial decay spectrum
shown in Fig. 3.5, this beta spectrum should have an end point energy of 2227 keV. Fig. 6.11
shows the accompanying Kurie plot.
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Figure 6.10: Accidental 77Ge-coincidence events. This figure shows a clear deviation from
Fig. 6.9, supporting the interpretation of Fig. 6.9 as a beta spectrum from 77Ge. See text for
further details.
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Figure 6.11: Kurie plot of 77Ge beta spectrum. The points are experimental, and the line is
a best fit to the data with the end point locked at 2227 keV. The fit runs from 400 keV to
2250 keV, and has a χ2 / D.O.F = 21.42 / 72.

allow for different time cuts for each peak.

We also had to take into account the crosstalk between the CLOVER crystals. As described at

the end of Section 6.2, we perform the analysis with the published energies, measure the suppressed

centroids, and reanalyze with the new energies.

6.4.1 The 367.40 / 264.4 keV coincidence

Coincidences with published energies

We plotted a set of eleven histograms of events coincident with either a (264.44 ± 2) keV or (367.40

± 2) keV energy deposition after eliminating the first zero through ten hours of data from each

individual data set. We also required exactly three crystals have an energy deposition. For each of

these 2 × 11 data sets, we measured the centroid, significance, area, and background around the

coincidence peak, with the results shown in Tables 6.3 and 6.4.

Coincidences with suppressed energies

What then is the effect of searching for coincidences centered on the suppressed centroids? We

reanalyzed the data, looking for coincidences at the centroid averages of (262.81 ± 2) keV and
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Table 6.3: Significance of the 367 keV peak using the published value of the 264 keV coincidence.
We eliminated the first zero through ten hours from each individual decay data set. The bold line
indicates the time cut that results in the greatest peak significance. See text for further explanation.

Time cut (hours) Centroid Significance Peak area Background / bin
0 366.09 6.32 σ 40.93 ± 9.02 8.40
1 366.12 6.06 σ 36.47 ± 8.48 7.25
2 366.06 5.95 σ 33.90 ± 8.11 6.49
3 365.90 5.11 σ 27.17 ± 7.38 5.66
4 365.80 4.39 σ 22.70 ± 6.91 5.34
5 365.84 4.04 σ 20.12 ± 6.60 4.95
6 365.97 4.93 σ 21.78 ± 6.39 3.91
7 365.54 4.66 σ 18.66 ± 5.85 3.21
8 365.68 4.28 σ 15.78 ± 5.40 2.72
9 365.62 4.41 σ 15.67 ± 5.29 2.52
10 365.52 3.95 σ 13.21 ± 4.85 2.24

Table 6.4: Significance of the 264 keV peak using the published value of the 367 keV coincidence.
We eliminated the first zero through ten hours from each individual decay data set. The bold line
indicates the time cut that results in the greatest peak significance. See text for further explanation.

Time cut (hours) Centroid Significance Peak area Background / bin
0 262.81 6.81 σ 44.15 ± 9.30 8.41
1 262.76 6.92 σ 41.30 ± 8.88 7.13
2 262.83 6.90 σ 39.17 ± 8.58 6.45
3 262.71 6.69 σ 35.14 ± 8.10 5.51
4 262.73 6.44 σ 31.57 ± 7.61 4.80
5 262.66 6.68 σ 29.93 ± 7.29 4.01
6 262.72 6.22 σ 27.30 ± 7.05 3.85
7 262.66 4.91 σ 20.78 ± 6.27 3.58
8 262.79 4.44 σ 18.19 ± 5.99 3.35
9 262.13 3.24 σ 12.18 ± 5.35 2.82
10 263.13 2.80 σ 10.28 ± 5.00 2.70
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(365.83 ± 2) keV. The results are shown in Tables 6.5 and 6.6.

The consistent increase in peak significances in going from the published to measured energy

centroids demonstrates the validity of the energy-suppressed search windows. Figures 6.12 and 6.13

show the peak fits in the raw (upper, dashed curve), coincidence (middle, solid curve), three-crystal

(middle, dashed curve), and optimal time-cut (lower, solid curve) spectra for the two coincidence

peaks under consideration.

In Fig. 6.13, there is a sizeable 264 keV peak in the raw spectrum, indicating a potential back-

ground in the coincidence spectrum. Unfortunately, this 264 keV peak is assumed to come from, at

least in part, 75Ge, and there are no other peaks in the 75Ge spectrum that would allow background

subtraction from the coincidence spectrum. For this reason, the area of the 367 keV peak in the 264

keV coincidence spectrum will be used to determine the efficiency of observing this 264 / 367 keV

coincidence.

Also in Fig. 6.13, there is a peak near 270 keV in the upper two curves. This peak most likely

comes from the decay of 77As, created from the decay of 77Ge. 77As has a 368.7 / 270.8 keV gamma

coincidence.

With a one-hour time cut, the total number of 77Ge events is 255000 ± 64000. The area of the

367 keV peak was 58.30 ± 9.59 counts, giving an efficiency for observing this decay of

Efficiency for observing the 77Ge 264 / 367 keV coincidence = (0.0229 ± 0.0069)%. (6.3)

6.4.2 The 416.33 / 215.50 keV coincidence

Coincidences with published energies

We plotted another set of 2 × 11 histograms similar to those in the previous section, and again

required exactly three crystals have an energy deposition. We searched for coincidences using the

published gamma ray energies ± 2 keV. We then measured the significance of the nominal 416 and

215 keV peaks, with the results shown in Tables 6.7 and 6.8.

Deciding what suppressed energy to use for the 416 keV coincidence is not as simple as taking

the average. The 116mIn background to the 416 keV coincidences is stronger than the 75Ge back-

ground to the 264 keV coincidences because the 417 keV gamma are always coincident with at least

two other particles, making the three-crystal cut less effective. We therefore decided to allow the
116mIn to decay a bit. Based on Table 6.8, we would use a time cut of either 3 or 4 hours. Looking

ahead to Table 6.10, we decided to use a three-hour time cut to measure the suppressed energy. The

average of these centroids is (415.00 ± 0.42) keV. We used a simple average of the eleven centroid

measurements of the 215 keV gamma: (213.62 ± 0.21) keV.
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Table 6.5: Significance of the 367 keV peak using the energy-suppressed value of the 264 keV
coincidence. The ”264” keV coincidence was actually (262.81 ± 2) keV. The bold line indicates the
time cut that results in the greatest peak significance. See text for further explanation.

Time cut (hours) Centroid Significance Peak area Background / bin
0 365.83 9.82 σ 61.53 ± 10.08 7.86
1 365.81 10.34 σ 58.68 ± 9.59 6.44
2 365.80 10.11 σ 53.98 ± 9.12 5.70
3 365.78 9.45 σ 47.80 ± 8.58 5.12
4 365.58 8.28 σ 40.32 ± 8.04 4.74
5 365.70 7.94 σ 36.67 ± 7.73 4.27
6 365.76 9.11 σ 37.12 ± 7.43 3.32
7 365.63 8.72 σ 32.26 ± 6.88 2.74
8 365.68 7.81 σ 27.95 ± 6.47 2.56
9 365.48 5.71 σ 20.43 ± 5.73 2.56
10 365.51 4.70 σ 16.46 ± 5.28 2.45

Table 6.6: Significance of the 264 keV peak using the energy-suppressed value of the 367 keV
coincidence. The ”367” keV coincidence was actually (365.83 ± 2) keV. The bold line indicates the
time cut that results in the greatest peak significance. See text for further explanation.

Time cut (hours) Centroid Significance Peak area Background / bin
0 262.86 9.01 σ 60.93 ± 10.19 9.15
1 262.75 8.74 σ 55.60 ± 9.70 8.09
2 262.81 8.88 σ 52.73 ± 9.32 7.05
3 262.75 9.76 σ 51.10 ± 8.84 5.48
4 262.70 8.61 σ 44.39 ± 8.37 5.31
5 262.67 7.76 σ 38.46 ± 7.92 4.91
6 262.68 7.36 σ 35.51 ± 7.67 4.65
7 262.63 5.88 σ 27.70 ± 6.97 4.44
8 262.76 4.79 σ 21.97 ± 6.44 4.21
9 263.10 4.10 σ 17.05 ± 5.83 3.46
10 263.21 3.63 σ 14.28 ± 5.41 3.10
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Figure 6.12: 367 keV region in the 264 keV coincidence spectrum. The significances of the
peaks are 4.28 σ (upper dashed), 4.94 σ (middle solid), 9.82 σ (middle dashed), 10.34 σ
(lower solid). See the text for details.
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Figure 6.13: 264 keV region in the 367 keV coincidence spectrum. The significances of
the peaks are 59.5 σ (upper dashed), 11.3 σ (middle solid), 9.01 σ (middle dashed), 9.76 σ
(lower solid). See the text for details.
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Table 6.7: Significance of the 416 keV peak using the published value of the 215 keV coincidence.
We eliminated the first zero through ten hours from each individual decay data set. The bold line
indicates the time cut that results in the greatest peak significance. See text for further explanation.

Time cut (hours) Centroid Significance Peak area Background / bin
0 415.57 8.05 σ 61.37 ± 10.78 11.63
1 415.41 5.98 σ 41.78 ± 9.31 9.76
2 415.47 5.35 σ 35.22 ± 8.67 8.67
3 415.42 4.77 σ 30.45 ± 8.14 8.14
4 415.30 3.86 σ 23.58 ± 7.46 7.46
5 415.52 2.87 σ 16.73 ± 6.78 6.78
6 415.09 2.11 σ 11.78 ± 6.26 6.26
7 414.86 2.10 σ 11.60 ± 6.12 6.12
8 414.79 2.40 σ 13.12 ± 5.98 5.98
9 414.76 2.52 σ 13.42 ± 5.67 5.67
10 414.24 2.14 σ 11.09 ± 5.37 5.37

Table 6.8: Significance of the 215 keV peak using the published value of the 416 keV coincidence.
We eliminated the first zero through ten hours from each individual decay data set. The bold line
indicates the time cut that results in the greatest peak significance. See text for further explanation.

Time cut (hours) Centroid Significance Peak area Background / bin
0 213.86 5.73 σ 53.17 ± 11.19 17.22
1 213.81 7.12 σ 52.77 ± 9.99 10.99
2 213.74 6.94 σ 45.51 ± 9.06 8.60
3 213.76 7.77 σ 45.68 ± 8.69 6.92
4 213.72 7.78 σ 41.45 ± 8.08 5.67
5 213.48 7.29 σ 36.48 ± 7.53 5.01
6 213.37 6.22 σ 28.94 ± 6.83 4.33
7 213.67 5.59 σ 24.66 ± 6.44 3.89
8 213.69 5.29 σ 22.58 ± 6.23 3.65
9 213.57 6.20 σ 23.96 ± 6.14 2.99
10 213.15 5.47 σ 19.80 ± 5.53 2.62
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Coincidences with suppressed energies

Reanalyzing the data with the suppressed energies results in Tables 6.9 and 6.10. Here the effects of

the 416 keV background from 116mIn are shown. There is no gamma line near 215 keV in the decay

spectrum of 116mIn, so events from the decay of this isotope will only contribute to the background

around 215 keV. By letting this very strong indium signal decay away, the background around the

215 keV peak is reduced faster than the peak area drops, increasing the peak’s significance, with

the maximum occurring at a time cut of three hours. Fig. 6.15 shows the raw (upper, dashed curve),

416 keV coincident (upper, solid curve), three-crystal cut (lower, dashed curve), and three-hour cut

(lower, solid curve) spectra. For the sake of completeness, Fig. 6.14 shows the raw (upper, dashed),

215 keV coincident (solid curve), and three-crystal cut (lower, dashed curve) spectra. There is no

time cut in Fig. 6.14 because all time cuts serve to reduce the significance of the peak.

Similar to the previous 264 / 367 keV coincidence, we do not use the 416 keV peak in the 215

keV coincidence spectrum to measure the efficiency of observing this 77Ge decay. In this case it

is because of the very strong 116mIn background. With a three-hour time cut, the total number of
77Ge events is 197000 ± 49000. The area of the 215 keV peak was 50.04 ± 9.28 counts, giving an

efficiency for observing this event of

Efficiency for observing the 77Ge 215 / 416 keV coincidence = (0.0254 ± 0.0079)%. (6.4)
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Table 6.9: Significance of the 416 keV peak using the suppressed value of the 215 keV coincidence.
We eliminated the first zero through ten hours from each individual decay data set. The bold line
indicates the time cut that results in the greatest peak significance. See text for further explanation.

Time cut (hours) Centroid Significance Peak area Background / bin
0 415.43 13.37 σ 94.29 ± 11.87 9.94
1 415.25 10.54 σ 70.17 ± 10.57 8.87
2 415.25 9.83 σ 59.97 ± 9.69 7.44
3 415.23 9.70 σ 55.38 ± 9.21 6.52
4 415.18 8.64 σ 48.56 ± 8.80 6.32
5 415.30 6.93 σ 37.68 ± 8.01 5.92
6 414.95 6.17 σ 31.84 ± 7.56 5.33
7 415.02 5.53 σ 27.89 ± 7.15 5.09
8 414.96 5.40 σ 25.67 ± 6.86 4.52
9 414.91 6.09 σ 26.13 ± 6.65 3.68
10 414.58 5.70 σ 21.58 ± 6.00 2.87

Table 6.10: Significance of the 215 keV peak using the suppressed value of the 416 keV coincidence.
We eliminated the first zero through ten hours from each individual decay data set. The bold line
indicates the time cut that results in the greatest peak significance. See text for further explanation.

Time cut (hours) Centroid Significance Peak area Background / bin
0 213.80 6.10 σ 58.21 ± 11.65 18.23
1 213.83 7.11 σ 55.59 ± 10.40 12.24
2 213.83 7.42 σ 51.75 ± 9.69 9.73
3 213.83 7.79 σ 50.04 ± 9.28 8.25
4 213.88 7.43 σ 44.35 ± 8.65 7.13
5 213.78 6.01 σ 33.75 ± 7.71 6.30
6 213.70 5.01 σ 26.71 ± 7.06 5.68
7 213.87 5.22 σ 26.13 ± 6.85 5.01
8 214.05 5.40 σ 25.23 ± 6.66 4.36
9 214.02 5.48 σ 24.50 ± 6.50 4.00
10 213.85 4.61 σ 19.13 ± 5.78 3.44
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Figure 6.14: 416 keV region in the 215 keV coincidence spectrum. The significance of the
peaks are 266.7 σ (top solid), 11.47 σ (middle, dashed), 13.37 σ (bottom solid). See text
for details.
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Figure 6.15: 215 keV region in the 416 keV coincidence spectrum. The significance of the
peaks are 7.29 σ (upper dashed), 5.24 σ (upper solid), 6.10 σ (lower dashed), 7.79 σ (lower
solid). See text for details.
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Chapter 7

PERFORMANCE OF THE MAGE SIMULATION FRAMEWORK

With the efficiency for observing the triple coincidences from 77Ge experimentally measured,

what is the Monte Carlo prediction? To answer this question, we use the Monte Carlo simulation

framework under development by both the Majorana [74] and GERDA [95] collaborations. This

frameworks gets its name from the two collaborations, and is called MaGe.

7.1 MaGe: The Majorana/GERDA simulation package

MaGe is a Monte Carlo simulation framework based on the GEANT4 [93] simulation and ROOT [81]

analysis packages. The framework utilizes the fact that GEANT4 and ROOT are written in C++,

allowing for a powerful, extensible, and scalable object-oriented approach to the simulations. Given

the similarities between the Majorana and GERDA experiments, the collaborations decided to avoid

duplication of efforts and contribute mutually-useable code for physics processes and event genera-

tors while also allowing very simple control over detector-specific details.

The structure of MaGe consists of an overall “run manager” that handles the various subsystems

in the framework. The basic structure is shown in Fig. 7.1. Where possible, C++ objects inherit

from virtual objects to ensure compatibility with the existing structure. When the conventions are

followed it is very easy to write a macro command file and run a previous simulation with a new

detector or new output scheme. MaGe includes online help within the simulation that lists and

describes the available options.

Code examples of the MaGe simulation framework can be found in Appendix D.

7.1.1 The database subsystem

The database within MaGe is based on the open-source relational database PostgresQL [94]. The

primary database is maintained at Lawrence Berkeley National Laboratory, with regularly-updated

local implementations running at other sites. Part of the goal behind MaGe was to make the sim-

ulation as scalable as possible. With an eye toward simulating a modular detector displaying great

redundancy in design, the database acts as a repository for information about the specific parts of

any given detector.

Take the CLOVER detector as an example. It is made up of four individual germanium crystals,

each of which is very close, though not identical, in size. There is a separate database line for
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Figure 7.1: Structure of the MaGe framework. What is shown here is not a full list of the
subsystem parts, but is simply representative of which subsystems govern which aspects of
the simulation.

each individual crystal detailing its dimensions, dead layer thicknesses, and so on. The database

is extendable, so we may add more information to the crystal database entries, such as crystal

orientation for pulse shape processing, without disrupting legacy code or macro files.

There is a database entry for the CLOVER detector itself as well. This CLOVER entry includes

not only the CLOVER dimensions, but the serial numbers of the individual crystals. If one of the

actual crystals ever becomes damaged and a new crystal put in its place, no MaGe code would need

to be rewritten or even recompiled to reflect this change. Rather, a database entry for the new crystal

would be created, and the CLOVER’s list of crystal serial numbers would be updated.

This database also contains materials information. A material in this case can be defined as

either a single element with a specified A, Z, density, state, temperature, and pressure, or it can

be built up of component isotopes. Building a material out of isotopes can allow for the creation

of, for instance, polyethylene (comprised of H and C atoms) or germanium with various isotopic

abundances. As currently envisioned, the Majorana experiment will be using crystals enriched to

86% 76Ge, 14% 74Ge, and trace amounts of other isotopes. If a new enrichment process is created

by which the isotopic abundances change, only the database needs to be updated. As with the case

of a swapped crystal, no MaGe code would need to be rewritten or recompiled.
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There is no limit to the information that might be contained within the database. Some types of

simulation control might be better handled by the macro file or a new C++ object, but use of the

database can minimize the work necessary to run a new simulation, and that can improve the quality

control of MaGe.

In addition, there may be future development of MaGe that would be greatly simplified by using

a database. For instance, while GEANT4 has the ability to generate images of detector geometries,

there may be a different visualization package the collaboration decides to use in the future. If the

detector geometry were hardcoded into MaGe, those values would have to be manually extracted

and re-entered in the visualization package. If there were a alteration to the geometry, changes

would have to be made in multiple locations, increasing the risk of errors being made. As it is, a

single change made in the database will be reflected in subsequent simulations, the visualization,

and any other future packages.

7.1.2 The generators subsystem

Within MaGe, the generator is that part of the code that creates primary particles with an energy and

initial direction. The starting location of those primary particles is specified next, and the particles

are then handed off to other GEANT4 code for transport and interaction. The generators included in

the MaGe simulation are drawn from a number of sources. The macro file contains the command that

specifies which generator is used. MaGe uses generators distributed as part of GEANT4, generators

developed by the collaboration, and generators developed by third parties. In this section we give

an example of each.

The GEANT4 Radioactive Decay Manager (G4RDM)

The G4RDM is distributed as part of the GEANT4 package, and creates alphas, betas, and gam-

mas in proportions and energies based on the Evaluated Nuclear Structure Data File (ENSDF)

database [96]. ENSDF is updated on a continual basis, and as of February 17th, 2006, it contained

15641 datasets for 2979 nuclides.

In the G4RDM, an isotope is placed at a specific location with an initial momentum. That isotope

is allowed to propagate and, if unstable, to decay to progeny specified in ENSDF. The progeny

are also propagated and allowed to decay. Thus the G4RDM is very useful when simulating the

backgrounds from decay chains, such as 238U and 232Th.

The AmBe neutron generator

The MaGe development team built a generator for neutrons produced by an americium-berilliyum

(AmBe) source. To build this generator, an experimentally-measured spectrum of AmBe neutrons
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Figure 7.2: Spectrum and CDF of AmBe neutrons. The CDF (dotted line) was created from
the normalized spectrum. The CDF uses the vertical scale on the right side. The spectrum
(solid line) is the same as that shown in Fig. 5.6. AmBe neutron spectrum from Marsh et
al. [86].

was digitized and normalized, and a cumulative distribution function (CDF) created from the nor-

malized spectrum. Fig. 7.2 shows the normalized spectrum and CDF.

To select a neutron energy in the AmBe generator, a random number is generated uniform be-

tween 0 and 1. A linear interpolation between consecutive energy values corresponding to the CDF

values immediately below and above the random number is performed, and the result is used as the

energy of the generated neutron. The initial direction of an AmBe neutron is random.

Decay0

The Decay0 [97] generator was created by Ponkratenko, Tretyak, and Zdesenko, and is used to

create double-beta decay events of any of 21 isotopes. Decays of 76Ge may proceed to the 0+0 (i.e.,

ground) state, or the excited 2+1 , 0+1 , or 2+2 states of 76Se. If the decay is to an excited state, Decay0

will also generate the cascade gammas. The energies of the beta particles are calculated separately.

Decay0 then creates a table of events with particle type, initial 3-momentum, and time since previous

particle emission. These Decay0 events were written to a file, which MaGe then parses to instantiate

the event.
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7.1.3 Positioning the primary particles

Once the primary particles were identified, they had to be placed into the simulation. This was

done in several ways, depending on the simulation. For instance, simulating a radioactive source

would require all the primary particles be generated at a specific point. Calculating the effects of

contamination spread homogeneously throughout a specific part would require a volume “position

sampler” that randomly distributes events evenly throughout a defined volume. Using a collomated

source or a laser would require the primary particles be distributed in a narrow opening cone from

a single source. Finally, to allow for contaminants that drift onto the various parts of the actual

detector, there is a separate “surface sampler” that returns the coordinates on the surfaces of the

detector objects.

Thus depending on the situation, primary particles can be positioned anywhere and with any

initial direction as specified by the actual physical setup that is being simulated.

7.1.4 The geometry subsystem

As explained in Section 7.1.1, detector dimensions and materials are stored in the database. The

geometry subsystem reads in those values and builds the detector, referencing the parameter names

virtually exclusively. This is what allows a detector parts to be “swapped out” in the simulation

without requiring a recompile. An example of how a detector is built within MaGe is shown in

Appendix D.2.

7.1.5 The I/O subsystem

Simulation control is provided via a macro input file, and the G4Messenger class is used to read

in those macro command lines. The G4Messenger class provides a framework so that any class

within GEANT4 (geometry, generators, physics processes, and so on) can be controlled without a

recompilation. A typical macro file is shown with explanation in Appendix D.3.

Anticipating using the ROOT framework to analyze both the simulation and experimental data,

MaGe outputs the results into tree objects in ROOT-formatted files. The output files are, unsur-

prisingly, inherently connected to the detector geometry. A separate ROOT output scheme must

therefore be defined for every distinct detector geometry class, although object-oriented program-

ming allows for code re-use. Different output schemes can store varying levels of information. For

example, with the CLOVER detector the total energy deposited in a crystal may be recorded, or ev-

ery individual energy deposition within a crystal may be recorded for offline segmentation or pulse

shape analysis. Each output scheme is available at run time via the macro command file.
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7.1.6 The processes subsystem

The final complex subsystem within MaGe is the processes subsystem, also known as the “physics

lists”, which is based on the code distributed as part of GEANT4. The processes allow for various

kind of physical interactions. For example, gamma rays may interact via, among other processes,

Compton or Rayleigh scattering, photoelectric effect, e+e− conversion, and so on.

Most of the anticipated radiation in the Majorana and GERDA experimental halls comes from

nuclear decays. The simulation therefore includes the ability to handle alphas, betas, and gammas

from the lower limit of GEANT4 electromagnetic interaction energy (250 eV) up to roughly 10 MeV.

At the same time, cosmic rays can create backgrounds in the 0νββ region of interest, and spallation

neutrons may be absorbed by stable nuclei, emitting prompt gammas and inducing further decays in

the now-unstable nucleus. The Majorana and GERDA experiments therefore also have to be able to

simulate the effects of muons up to 1 TeV in energy, as well as neutrons from thermal energies up

to 1 GeV.

These wide ranges of energies, particles, and interactions call for a very comprehensive physics

lists. The MaGe process list therefore draws on two lists that are distributed with the GEANT4

package: the underground physics list and the QGSP HP hadronic physics list. The former list

is intended primarily for low-background experiments, as it is comprised of separate low-energy1

models for electromagnetic interactions. The QGSP list is used for high-energy penetration shield-

ing, and is therefore suited to simulating cosmic rays. The QGSP HP list is a high-precision version

of the QGSP list that uses data tables for neutron interactions from thermal energies up to about

20 MeV. These neutron data tables are also available from the GEANT4 collaboration web pages.

These two lists were merged line by line to create a single list that contained all the interactions

present in both lists.

Even when performing high-precision simulations, however, it makes no sense to simulate

events down to the keV energies in, for instance, the bulk of a lead shield. The lead is not instru-

mented, and as long as the simulation correctly predicts the energy attenuation of various particles

going through the lead shield, we are not so concerned with where precisely in the lead shield the

particles lost their energy. MaGe uses GEANT4’s ability to set what is known as the “energy cutoff”

to different values depending on what volume a particle is traveling through. The energy cutoff is

the energy below which secondary particles are not created. The energy cutoff can be set separately

for different particles and detector regions.

The energy cutoff is actually set as a length, which is equal to the attenuation length of a particle

with a specific energy moving through a specific medium. As may be obvious, there is no single

equation that transforms the cutoff length to an energy, as it depends on what physics processes are

1“Low-energy” in this case means between 250 eV and 3 GeV.
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included in the simulation. For the MaGe physics list, Table 7.1 shows the equivalent energies for

various particles traversing various materials. In certain situations, secondary particles are created

even if the parent particle was below the cutoff energy. One such situation is if the particle is within

the cutoff length of a material boundary, as there may be an active volume on the other side of that

boundary. Another situation is if the particle can decay or be captured, creating other particles with

energy that may be above the cutoff, e.g., positrons may have a kinetic energy below the cutoff, but

when they annihilate the resulting gammas may be above the cutoff length; in this case, the positrons

are still created.

We still have to decide what cutoff length to use. In germanium, a 1 MeV beta particle will

travel on the order of 1 mm. We therefore decide to set the cutoff length to an order of magnitude

than this typical beta track length, or 100 µm.

Table 7.1: Energy cutoff values in MaGe. The cutoff parameter is set as a length, which is then
converted to an energy for any combination of particle and material. The cutoff energy is the energy
below which secondary particles are not created. In this example, the cutoff length was set to 100
µm for all three particles. Energies are in keV.

Particle Vacuum Air Aluminum Germanium Indium Gold
Gamma 0.990 0.990 2.3 5.9 11.1 40.3
Electron 0.990 0.990 129.7 172.1 199.5 347.1
Positron 0.990 0.990 128.1 167.9 192.3 334.6

7.2 The MaGe CLOVER Detector

The LANL CLOVER geometry was entered into the MaGe simulation. Many of the construction

details come from the manufacturer, including the specific crystal dimensions, the cryostat dimen-

sions, the characteristics of the crystal dead layers, and the material used for the inner contacts.

Unfortunately, there are also proprietary engineering specifications that the manufacturer will not

divulge. One such detail is the shape of the cold plates, although the material is known to be alu-

minum and the thickness 1 cm. Another missing detail is the method by which the crystals are held

together. Fig. 7.3 shows the CLOVER crystals as programmed into MaGe. Visible are the crystals,

crystal separator, and coldplates.

7.2.1 77Ge coincidence simulations

To simulate the CLOVER response to 77Ge decays, the G4RDM event generator and volume po-

sition sampler were used to homogeneously distribute 77Ge decays throughout crystal 1. Fig. 7.4



137

Table 7.2: 77Ge simulation coincidence results. The top line of each of the four sections shows the
area and significance of the coincidence energy in the raw spectrum. The middle line of each section
shows the same values but with the coincidence applied. The bottom line of each section shows the
area and significance of the coincidence peak when requiring exactly three crystals register energy
deposition.

Coincidence Curve
Coin.

energy
Area BG / bin Sig. (σ) Efficiency

264 keV Raw 367.4 49912 ± 275 5112 312
264 keV coin. 367.5 2061 ± 51 104 90.4
3-crystal 367.5 1958 ± 47 42 135 0.0196(5)%

367 keV Raw 264.4 219395 ± 505 6219 1244
367 keV coin. 264.4 2360 ± 51 33 184
3-crystal 264.4 2045 ± 47 20 205 0.0205(5)%

215 keV Raw 416.3 73748 ± 323 4955 469
215 keV coin. 416.3 2932 ± 57 60 169
3-crystal 416.3 2705 ± 53 23 252 0.0271(5)%

416 keV Raw 215.5 109244 ± 389 8518 529
416 keV coin. 215.5 2928 ± 57 52 182
3-crystal 215.5 2638 ± 53 31 212 0.0264(5)%

shows the detector response in the four crystals.

With the 77Ge events simulated, we calculated the area and significance of the coincidences that

were measured in the experimental data at the end of Section 6.4. Figs. 7.5 through 7.8 show the

264 keV, 367 keV, 215 keV, and 416 keV coincidences, respectively. The area and significance of

the Gaussian peaks, along with the background under the peaks, are shown in Table 7.2.

7.2.2 Comparison to experiment

In the previous chapter, we measured the experimental efficiency of observing a triple coincidence

of 77Ge. There were two possible decay chains to analyze. One chain involved a triple coincidence

between a beta particle and two gammas at 264 and 367 keV (observation efficiency (0.0229 ±

0.0069)%, see Eq. (6.3)). The other chain involved a triple coincidence between a beta particle and

two gammas at 215 and 416 keV (observation efficiency (0.0254 ± 0.0079)%, see Eq. (6.4)).

Using MaGe, we predicted efficiencies of (0.0196 ± 0.0005)% and (0.0264 ± 0.0005)%. By

taking ratios of the experimental and simulation efficiencies, we may evaluate the accuracy of the

simulation. We have the following ratio for the 264 / 367 coincidence:
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Figure 7.3: The MaGe CLOVER. The germanium crystals are shown in purple, the crystal
separator in blue, and the coldplates in grey.
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Figure 7.4: 77Ge simulated events. 10 million events were simulated in the MaGe
CLOVER, with events evenly distributed throughout crystal 1. The range of the simulated
data was chosen to match that of the CLOVER detector DAQ software. The spectrum in
crystal 1 is smooth because the energy of the beta particle, which has a smooth spectrum,
was always added to any energy deposited by any gamma rays, washing out any sharply-
defined features in the final spectrum of crystal 1. The sharp lines seen in crystals 2, 3, and
4 are listed in Table A.1.
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Figure 7.5: 264 keV coincidence simulation curves. The top solid line is the raw spectrum,
the center, dotted line is with 264 keV coincidences, and the bottom solid line adds a 3-
crystal cut to the coincidence cut. Compare to Fig. 6.12.
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Figure 7.6: 367 keV coincidence simulation curves. The top solid line is the raw spectrum,
the center, dotted line is with 367 keV coincidences, and the bottom solid line adds a 3-
crystal cut to the coincidence cut. Compare to Fig. 6.13.
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Figure 7.7: 215 keV coincidence simulation curves. The top solid line is the raw spectrum,
the center, dotted line is with 215 keV coincidences, and the bottom solid line adds a 3-
crystal cut to the coincidence cut. Compare to Fig. 6.14. In the top curve, there are two
lines present at 416.3 and 419.8 keV.
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Figure 7.8: 416 keV coincidence simulation curves. The top solid line is the raw spectrum,
the center, dotted line is with 416 keV coincidences, and the bottom solid line adds a 3-
crystal cut to the coincidence cut. Compare to Fig. 6.15. There are two strong peaks in the
top curve because both 211 and 215 keV gamma rays are strong lines in the 77Ge spectrum
(see Table A.1).
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Table 7.3: 77Ge coincidence uncertainty details. If we took six times as much data, the uncertainty
in the experimental peak areas would drop to around 5%, but before then the uncertainties would
be dominated by the thermal neutron capture cross sections and natural abundances uncertainties.
Where two numbers are reported separated by a comma, the first number refers to the 264 / 367 keV
coincidence, and the second to the 215 / 416 keV coincidence.

Source Uncertainty Totals
αICC 3%

Systematic: 27.0%

74Ge→ 75mGe cross section 17.6%
76Ge→ 77Ge cross section 10.0%
76Ge→ 77mGe cross section 16.7%
74Ge natural abundance 2.0%
76Ge natural abundance 5.0%
140 keV peak intensity (exp.) 1.2 – 3.1%

Statistical: 17%, 19%Coincidence peak areas (exp.) 16%, 19%
Coincidence peak areas (sim.) 2.6%, 1.9%

Ratio =
measured efficiency for 264 / 367 keV coincidence
simulated efficiency for 264 / 367 keV coincidence

=
0.0229 ± 0.0069
0.0196 ± 0.0005

(7.1)

= 1.17 ± 0.35 (7.2)

The experimental and simulation results are separated by 0.49σ. As for the 215 / 416 coincidence,

we have

Ratio =
measured efficiency for 215 / 416 keV coincidence
simulated efficiency for 215 / 416 keV coincidence

=
0.0254 ± 0.0079
0.0264 ± 0.0005

(7.3)

= 0.96 ± 0.30 (7.4)

In this second coincidence the ratio between experimental and simulation results is only 0.13σ from

unity.
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7.3 Evaluation of simulation

We conclude the MaGe simulation is an accurate representation of the CLOVER detector. With

these results, we may use MaGe to predict the efficiency of a Majorana module to an ES2νββ decay

from 76Ge with confidence in obtaining results to within 1σ.

With the experimental and simulation results compared, we show a breakdown of the sources of

uncertainty in the ratios in Table 7.3. From this table we see that the uncertainty is dominated by

the systematics. To reduce the systematic uncertainty would require more accurate measurements

of the thermal neutron capture cross sections of 74Ge and 76Ge.
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Chapter 8

APPLYING MAGE TO THE MAJORANA EXPERIMENT

The MaGe simulation framework is applied to a 60 kg Majorana module. The simulations not

only provide measurements of signal sensitivity, but measurements of background levels as well.

While MaGe must eventually incorporate every observable form of electromagnetic, muon, and

hadronic interactions, this chapter focuses only on electromagnetic interactions, and backgrounds

due to nuclear decay.

8.1 The Majorana Detector

Before describing the simulations of the Majorana detector, we describe the detector itself. A basic

description of the Majorana experiment was provided at the end of Chapter 1, and here we go into a

bit more detail.

Since Klapdor-Kleingrothaus et al. published a claim of observation for 0νββ decay of 76Ge [48] [55],

it behooves any germanium-based search for 0νββ decay to verify or refute the measurement. In

light of this, the stated goals of the Majorana experiment are to:

1. Probe the quasi-degenerate neutrino mass region above 100 meV.

2. Demonstrate that backgrounds, at or below 1 count/ton/year in the 0νββ-decay peak 4-keV

region of interest (1 count/ROI/t-y), can be achieved that would justify scaling up to a 1 ton

or larger mass detector.

3. Definitively test the Klapdor-Kleingrothaus claim to have observed 0νββ decay in 76Ge in the

mass region around 400 meV.

Taken together, these goals drove the design of the detector array. It had to have an adequate

active mass, as well as be modular so that if the background reduction can be demonstrated, scaling

to a larger experiment is “simply” a matter of constructing more modules. Majorana is proposed

as a 1-, 2-, or 3-module experiment, with each module being approximately 60 kg of germanium,

enriched to 86% 76Ge. Fig. 8.1 shows a cutaway view of the 2-module design inside a shield.

Figs. 8.2 show the crystal arrangement inside a module. The crystals measure 7 cm high and 6.2 cm

in diameter, with a hollow core 6 cm high and 0.8 cm in diameter. The crystals may be segmented

to allow for greater distinction between multi-site and single-site events. The exact segmentation

scheme is not yet decided upon, but the highest degree of segmentation under consideration is 6 φ
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Figure 3.1: Cross-sectional view of the module arrangement within the shielding.

3.2 Detector Mass

The selection of our initial detector mass to be 120 kg of 86% enriched 76Ge is driven by our physics
goals and guided by the community’s recent recommendations on the optimum path forward in next
generation searches for neutrinoless double-beta decay. The justification for a detector mass size of
120 kg is directly linked to all three of the science goals:

• Achieving sensitivity to masses within the quasi-degenerate neutrino mass region within a
reasonable time frame (5 years), which will surpass other international efforts that are currently
underway.

• The need to have a sufficient sized array to allow demonstration of backgrounds for a 1 ton
detector, both in terms of realistic sized modules and to provide statistically significant back-
ground measurements.

• The need to perform a precision test within a reasonable time frame of the Klapdor-Kleingrothaus
claim. The Majorana experiment will have much lower background and substantially higher
statistical significance than other efforts.

3.2.1 Sensitivity

3.2.1.1 Sensitivitiy too In terms of physics reach, in the absence of background the sensitiv-
ity of 0νββ decay experiments to neutrino mass scales as the

√
DetectorMass. The presence of

background reduces this sensitivity, and in the limiting case where no signal is observed and the
experiment is dominated by background (≥ 5 counts in the 0νββ peak region of interest) the sen-
sitivity to neutrino mass scales as the fourth root of the mass. Thus the optimum detector size
is intimately connected both to the expected backgrounds and the signal. This asymptotic depen-
dence of sensitivity can be seen in Figure 3.2 which compares sensitivity as a function of time for two

16

Figure 8.1: Potential 2-module design of the Majorana detector. This design is modular to
allow for the inclusion of additional active mass. Each module in this design contains 19
columns of three crystals, each 1.1 kg. The total mass is roughly 120 kg, 86% of which is
76Ge. The final apparatus will stand between two and three meters high.

Figure 3.2: A Majorana detector module with a close-packed array of 19 detector strings, each with
three detectors. The strings are supported from a copper cold plate cooled by a long cold finger
extending through the lead detector shield. A thermal shroud mounted to the cold plate creates an
∼85 K enclosure surrounding the crystals providing shielding from the warm vacuum vessel walls.
The predominant construction material is ultra-pure electroformed copper.
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(a) M120 module

Figure 3.3: A conceptual design of the three crystal detector string. The three detectors sit on
support trays coupled to three thin support tubes which in turn are supported from a copper lid.
Kapton flex cables bring the signals from the crystals up through the lid to the front end electronics
boards mounted above the lid.

38

(b) M120 string

Figure 8.2: Single Majorana module and string. These renderings show the 19 columns of
three-crystal strings as well as the cryostat, coldplates, and coldfinger. The three front end
electronic boards at the top of each string are held by the ”stringer lid”, from which the
crystals also hang. Each string is supported by the ”stringer mount plate”.
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segments (“pie wedges”) × 6 z segments (“hockey pucks”). Fig. 8.3 shows some of the possible

segmentation schemes.

The background reduction techniques of germanium detectors has improved since the Heidelberg-

Moscow experiment. These techniques include radiologically cleaner electroforming of copper

parts, better materials screening, reducing cosmogenic activation by fabricating the detector com-

ponents deep underground, segmentation, and improved pulse shape discrimination. If Majorana

is able to achieve the background reduction goals, and Klapdor-Kleingrothaus et al. accurately

measured the 0νββ half life of 76Ge, the double-beta signal as seen by a 2-module detector will be

very strong. Fig. 8.4 shows the size of the predicted peak after 4.5 years of running. The proposed

detector is sensitive enough to confirm the signal reported by Klapdor-Kleingrothaus et al. [55].

8.2 Excited state double-beta decay sensitivity

The sensitivity of a Majorana module detector to excited state 2νββ decays depends directly on the

efficiency for observing the decay. Given the modularity of the design, the efficiency is calculated

using Monte Carlo techniques for an individual 57-crystal module. This provides a conservative

estimate on the efficiency of observing the decays, as running two modules in tandem can only

increase the efficiency.

8.2.1 Calculating the Majorana module ES2νββ efficiency

A geometry of a Majorana module was entered into the MaGe simulation, and a visualization of the

simulation geometry is shown in Fig. 8.5. To calculate the ES2νββ efficiency, we used the DECAY0

event generator, based on the DECAY4 code [97]. DECAY0 uses the ENSDF [96] data tables

to obtain endpoint and cascade gamma energies as well as determine relative angles between the

decay particles. It allows for double-beta decay in various modes, including either zero or non-zero

neutrino mass, right-handed currents, and decays to 0+ and 2+ states of the final nucleus. The beta

spectra incorporate the Fermi function. Fig. 8.6 shows the spectra of the individual beta particles in

the ESββ decay of 76Ge as well as the summed beta energy for ES2νββ decays. A trial simulation

with 10,000 events homogeneously distributed through crystal L0C1 was run, and the location of

energy depositions recorded. Fig. 8.7 is a projection of the hit locations onto the XY-plane.

The signal observation efficiency was calculated for each unique crystal location in a module, of

which there are twelve1. For each of these twelve crystals 1 million DECAY0 ES2νββ events were

generated. The results of the analysis were then averaged over the the 12 unique positions, weighted

by that position’s multiplicity. That is to say, the efficiency of the total detector was determined

using the equation

1There are four unique crystal positions (e.g., crystals 0, 1, 7, and 8) in each of three layers.
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Figure 4.3: 1×6 “pancake”, 2×3 reference design, and highly segmented 6×6 segmentation geome-
tries.

Segmentation requires more contacts, cables, and preamp front ends, but the payoff in rejection
is large. Internal isotope (68Ge and 60Co) rejection factors for segmentation schemes from 2 to 12
segments have yielded factors of ×20 to ×30. This can counter cosmogenic radioactivity formed
from the exposure of the detector during manufacture. More modest rejection, a factor of a few, is
found for external 208Tl, largely due to Compton scattering into adjacent segments.

Segmentation is a proven method. Efforts at several universities and national laboratories have
validated the tracking concept and demonstrated reliable event reconstruction in Ge. We have
leveraged this work and have begun to adapt it for double beta-decay studies. The collaboration has
carried out experiments with modest segmentation (2 azimuthal segments) to heavy segmentation
(32 segments in a mixed pattern), as well as many simulations. The simulations show substantial
suppression levels, and the experiments have verified that these are obtainable. Optimization is
needed to find a segmentation pattern with a high rejection efficiency, one that is easily and reliably
manufactured, assembled, and maintained underground, and which minimizes the introduction of
additional backgrounds with the addition of small parts in proximity to the crystals. For the purpose
of this proposal we invoke a simplified event reconstruction and not the full event reconstruction
power demonstrated by GRETINA.

4.2.8 Time Correlations

Single-site, time-correlated (SSTC) events are the least studied cut method but are still expected to
be quite useful. A completely different and decay-chain-specific cut, this method looks forward or
backwards in time from an event in the ROI to find signatures of parent or daughter isotopes. Given
a raw event rate of roughly 1 event per crystal per day, this method will work exceptionally well for
internal, short-lived parent-daughter pairs like 68Ge-68Ga and for decays of internal contaminants,
with somewhat lower rejection efficiency.

The decay of 68Ge via capture of an inner electron releases 10.367 keV of energy in a series
of soft x-rays, which are observable >95% of the time. Within a few half-lives of 68Ga (T1/2 =
1.13 hours), we expect to observe a positron emission with a total of 2.9 MeV. We should be able to
look backward from any positron event near 2039 keV and see the parent 68Ge decay to veto those
that have not already been removed by the PSA, segmentation, or granularity cuts. In addition, we
should be able to make a spectrum of such coincidences to isolate and quantify the 68Ge contribution.
Excellent energy resolution is essential for this type of contamination isolation. Because this effect
is limited to a single segment, the count rate in the segment determines how far back in time we can
look for the precursor signal. The total rate per kg (raw) is expected to be ∼1/day/kg, or as low as
0.14/day/segment. Looking back many half lives gives high efficiency to identify 68Ge decay, while
reducing the live time of the experiment negligibly. Simulations of SSTC yield reduction factors
larger than ×10, see Figure 4.4. This method could work for rejecting backgrounds due to 208Tl and
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Figure 8.3: Possible Majorana crystal segmentation schemes. The segmentation increases
detector granularity, which helps to distinguish multi-site from single-site events.

Table 2.3: Best reported results for 0νββ half lives. The mass limits and ranges are those deduced by
the authors and their choices of matrix elements within the cited experimental papers. All limits are
quoted at the 90% confidence level, except for the KKDC[Kla04] result, where the bounds are for the
99.7% confidence level. Backgrounds in the region-of-interest (ROI) are given in cnts/keV/kg-year,
and are included if given in the original publication. Note that in most of this document we refer to
backgrounds in cnts/keV/t-y (ton-year) or in cnts/ROI/t-y, where we multiply by the width of the
ROI, which for 76Ge detectors is 4 keV.

Isotope Half-Life (y) |〈mν〉| (eV) Exposure Background Reference
(kg-yr) (cts/keV/kg-yr)

48Ca > 1.4×1022 < 7.2-44.7 0.037 0.03 You91[You91]
76Ge > 1.9×1025 < 0.32-1 35.5 0.19 Kla01[Kla01]
76Ge > 1.6×1025 < 0.33-1.35 8.9 0.06 Aal02[Aal02]
76Ge = 1.2×1025 = 0.24-0.58 71.7 0.11 Kla04[Kla04]
82Se > 1.9×1023 < 1.3-3.2 0.68 Sar05[?]
96Zr > 1×1021 < 16.3-40 0.0084 Arn98[Arn98]

100Mo > 3.5×1023 < 0.7-1.2 5.02 3.5 × 10−3 Sar05[?]
116Cd > 1.7×1023 < 2.2-4.6 0.15 0.03 Dan00[Dan00]
128Te > 7.7×1024 < 1.1-1.5 Geoch. Geoch. Ber93[Ber93]
130Te > 1.8×1024 < 0.2-1.1 10.85 0.18 Cap05[Cap05]
136Xe > 4.4×1023 < 2.2-5.2 4.84 Lue98[Lue98]
150Nd > 3.6×1021 < 4.9-17.1 0.015 Bar05[Bar05]

Figure 2.3: Left panel: KKDC [Kla04] data in the region-of-interest. The 0νββ peak is located at
2039 keV. The other peaks are identified as 214Bi lines. Right panel: Expected 120 kg Majorana
observation after three years, assuming the KKDC half-life.

13

Figure 8.4: Predicted Majorana 0νββ signal assuming T 0ν
1/2 = 1.19 × 1025 years. (this half

life is the value observed by Klapdor-Kleingrothaus et al. [55]). This figure represents the
signal from two 60-kg Majorana modules running for 4.5 years. The graph shown is the
simulated spectrum after analysis cuts.
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Figure 8.5: MaGe geometry of Majorana module. The crystals, crystal plates, and side
copper support rods are visible. The support structure, cryostat, and front-end electronics
boards are present in the simulation but omitted in this figure for clarity. The crystals can
be uniquely identified by the number and layer, e.g., L1C16 is the center crystal in the front
face of the hexagon, middle layer (marked with a red X). Compare to Fig. 8.2(a).
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Figure 8.6: DECAY0 beta spectra. The solid curve is for a single beta particle, and the
dashed curve is the sum energy. The endpoint energy is 917 keV. The strong effects of the
Fermi function are seen in the relatively high probability in the low-energy range of the
single-beta spectrum. Compare the solid curves to Fig. 2.3.



148

Figure 8.7: Energy depositions in a Majorana module. This figure shows a projection
onto the XY-plane of all energy depositions resulting from 10,000 ES2νββ decays spread
homogenously throughout crystal L0C1. Hits are visible on the crystals, crystal plates,
copper support tubes, and cryostat wall. The scales on both axes are in centimeters.

Total module efficency =
1
57

∑
x

Efficiency from crystals LxC0 +

6 ×
∑
x,y

Efficiency from crystals LxCy

 (8.1)

where x takes on the values 0, 1, and 2, and y takes on the values 1, 7, and 8.

There are two ways we can look for excited-state decays. One is by taking advantage of the triple

coincidence and requiring a “strict” three-crystal (or three-segment) cut, as was done in the case of
77Ge in Chapter 6. In this strict analysis, we require that one crystal or segment have an energy

deposition of 559 ± 2 keV and another a deposition of 563 ± 2 keV. The third energy deposition is

presumably the energy from the beta particle, and is therefore allowed to range up to 917 keV.

A second analysis method involves relaxing the requirement that exactly three crystals or seg-

ments be hit, and performing the analysis based solely on the amount of energy deposited (this

method will be referred to as the “relaxed” analysis). For an ES2νββ decay wholly contained within

the detector, the total energy will of course fall along a spectrum from 1122 to 2039 keV. We can

take advantage of the fact that the two beta particles are unlikely to leave the crystal or segment in

which the decay occurred by systematically removing the energy from one crystal or other from the
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Table 8.1: ES2νββ observation efficiency. For this analysis, n-hit was required to be exactly 3. The
unsegmented scheme is here referred to as “1×1” segmentation.

Segmentation Strict analysis Relaxed analysis
1×1 0.916(10)% 2.39(2)%
2×3 0.945(10)% 7.29(3)%
6×6 0.575(6)% 12.18(3)%

total. If the remaining energy adds to 1122 keV, we interpret that event as an ES2νββ decay. This

method can of course be expanded to a segmented analysis.

Because the segmentation scheme has not yet been decided upon, we perform the analysis on

three segmentation schemes. One scheme assumes no segmentation (or 1×1 segmentation), one

scheme assumes a modest segmentation of 2 × 3, and the last scheme assumes the highest segmen-

tation under consideration, 6 × 6.

In hopes of improving the signal-to-background ratio, we may apply a further cut in the relaxed

analysis by requiring a minimum number of crystals or segments to register an energy deposition

(referred to from now on as “n-hit”). Fig. 8.8 shows an n-hit histogram for the events that passed

the relaxed analysis cut described in the previous paragraph. This graph was created by generating

an n-hit histogram for each of the 12 unique crystals, then weighting the results by the crystal

multiplicity. By requiring an n-hit lower limit of 3 all the segmentation schemes, we will eliminate

10% of events from the unsegmented scheme, 2% from the 2×3 segmentation, and 0.3% from the

6×6 segmentation scheme. The usefulness of this cut can only be discussed with a Monte Carlo

analysis of both the signal efficiency and the background levels. We will revisit this issue in the next

Section.

With all of the strict and relaxed analysis cuts in place, we can calculate the efficiency of ob-

serving an excited-state two-neutrino double-beta decay using a single Majorana module. Table 8.1

shows the efficiencies in the 1×1 (i.e., unsegmented), 2×3, and 6×6 segmentation schemes in both

the strict and relaxed analyses.

We might wonder why the strict analysis efficiency for 2×3 segmentation is not appreciably

greater than that of an unsegmented crystal. There are two competing effects at work. On the one

hand, the smaller the segments, the more likely the gamma rays are to escape the segment in which

the decay occurred. On the other hand, the smaller the segments, the less likely it is that the gamma

rays will deposit their full energy in a single segment. There will therefore be a segmentation

scheme that will optimize the efficiency for the strict analysis, and given the fact that the 1×1 and

2×3 segmentation schemes provide efficiencies relatively close together compared to that of the 6×6

scheme, we can expect a relatively modest scheme would optimize the efficiency.
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Figure 8.8: N-hit in the relaxed ES2νββ analysis. If a lower limit on n-hit of 3 is required
for each segmentation scheme, we will eliminate 10% from the no-segmentation, 2% from
the 2×3-segmentation, and 0.3% from the 6×6-segmentation schemes.
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Table 8.2: ES2νββ false positives rate. The reported numbers are the rate of false positives as a
proportion of the total events that pass the analysis cuts.

Segmentation Strict analysis Relaxed analysis
1×1 3.6(2)% 9.5(2)%
2×3 2.2(2)% 5.8(1)%
6×6 1.8(2)% 5.3(1)%

For the relaxed analysis, the higher the degree of segmentation the higher the observation effi-

ciency, as the primary consideration is whether the gamma rays will escape the segment in which

the decay occurred. The gamma rays are not required to deposit full energy in a single segment,

though, for the relaxed analysis to interpret the event as an ES2νββ decay.

We have a caveat regarding the analyses. It may be possible in both the strict and relaxed

analyses to observe a false positive. In the case of the strict analysis, it is possible for the beta

particles to deposit either 559 or 563 keV while one of the gamma rays deposits only some of

its energy in an active crystal. In this case, the beta particles would be incorrectly interpreted as a

gamma ray and the partially-escaped gamma ray would be incorrectly identified as the beta particles.

The assumption in the relaxed analysis is that the crystal or segment whose energy was removed

contained the decay beta particles, and the gammas were fully absorbed in the remaining active

germanium detectors. Unfortunately, it may be possible for the gamma rays to partially or even

fully escape and yet have the event still look like an ES2νββ decay. Consider the case where the

first gamma ray deposits 500 keV in a single crystal and escapes the detector. Assume the second

gamma ray deposits 400 keV and escapes. If the beta particles deposit 622 keV, then the first gamma

ray and the beta particles total 1122 keV, and those particles are incorrectly interpreted as all being

gamma rays. The second gamma ray is incorrectly interpreted as the beta particles depositing 400

keV of energy.

If there were a method to observe energy outside the germanium crystals but within the shielding,

it might be possible to tag these events as false positives. No such instrumentation exists in the

current proposal, nor is there any intention of installing such instrumentation. We therefore use the

Monte Carlo data to count the number of false positives for the three segmentation schemes and two

analysis methods. The results are shown in Table 8.2. It might be possible to reduce the rate of false

positives by applying pulse shape discrimination to the crystal in which the decay was assumed to

occur. Unfortunately, this pulse shape discrimination will not be able to distinguish between energy

deposited by beta particles and energy deposited by a single Compton scatter from a gamma ray.

Pulse shape analysis will reduce the rate of false positives somewhat, but cannot eliminate them.
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We would at this point like to compare the efficiency of observation of a 76Ge ES2νββ decay

in a Majorana module to the efficiency of observing the surrogate 77Ge triple coincidence in the

CLOVER detector. The experimental values for the surrogate observation efficiency were 0.0237%

and 0.0260% (see Eqs. (6.3) and (6.4)). These observation efficiencies are almost two orders of

magnitude below the observation efficiency of the double-beta decay. There are two reasons for

this. One is that the 77Ge decays had branching ratios of just 6.6% and 10.3%, respectively, while

we assumed that as far as the double-beta decays go, we are looking at a pure data set with a

branching ratio of 100%. Another issue that increases the double-beta decay observation efficiency

is the increased active mass—the Majorana module has more crystals, each of which has about 47%

more mass than the CLOVER crystals. The Majorana module is simply more likely to observe the

full energy of the cascade gammas.

8.2.2 Calculating backgrounds to the ES2νββ signal

The Majorana collaboration has set limits of acceptable background levels to reach its stated back-

ground contribution to the 0νββ region of interest. We use those target background levels to predict

what the background to the ES2νββ signal will be. The strongest anticipated radioactive contami-

nants in the germanium and copper are simulated in each unique part location. We then apply the

unsegmented-crystal strict and relaxed cuts to the background data.

The strongest backgrounds internal to the germanium crystals come from 60Co and the 238U,
232Th, and 68Ge decay chains (though not necessarily in that order). The strongest backgrounds in

the electroformed copper parts are the 238U and 232Th decay chains. We simulated one million events

of each background source in each applicable germanium or copper part. An “event” in this case is a

single beta decay in the case of 60Co, or the entire decay chains of the other three radioisotopes. The

only germanium parts are the crystals, and the copper parts in which backgrounds were simulated

are the electroformed copper parts: the inner copper shield, stringer lids, stringer mount plate, and

cryostat (except for the shield, all parts are visible in Figs. 8.2). The decay chains were assumed to

be in equilibrium, so the entire decay chain was generated for every primary decay. For example,
68Ge decays to 68Ga, which decays to 68Zn, which is stable. Thus in the case of 68Ge, with 1 million

primary decays there were actually 2 million total simulated decays.

We counted the number of background events that passed the analysis cuts. In the case of the

crystals and StringerLids, the contribution from each unique location was weighted by that part’s

multiplicity, giving a non-integer number of counts. The results are shown in Table 8.3.

Unfortunately, the simulation data set was not great enough to give counts for some of the part /

source pairs. We therefore estimate the contribution of those backgrounds based on the established

ratios between the relaxed and strict background contributions. In the case of the 238U backgrounds,

we can use either the ratio for the stringer lids or the ratio for the cryostat. We go with the more
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Table 8.3: ES2νββ background rate per 1 million primary decays. For the radioisotopes that decay
via a chain to a stable nucleus, the chain was assumed to be in equilibrium so that one decay for
every radioisotope in the chain was created for a single primary.

Part
238U 232Th 68Ge 60Co

Strict Relaxed Strict Relaxed Strict Relaxed Strict Relaxed
Crystals 10.67 221.7 7.649 2593 0.526 2089 5.877 2034
StringerLids 1.526 475.9 0.421 95.42
StringerMountPlate 0 1 1 192
Cryostat 1 716 0 104
Inner shield 0 50 0 1

conservative of these ratios (the stringer lids, with a ratio of 0.3%), and set a contribution of 0.003

for the stringer mount plate and 0.16 for the inner shield per million primary decays.

For 232Th the more conservative ratio comes from the stringer mount plate, and is roughly

0.52%. We will therefore still estimate an upper limit on the 232Th background contribution from

the cryostat and inner shield at 0.54 and 0.0052 counts per 1 million decays, respectively.

8.2.3 The ES2νββ sensitivity

ES2νββ signal

Finally, to predict the sensitivity of a single Majorana module to the excited-state ββ signal, we

calculate how many ES2νββ decays there would be in 11 months of live time, assuming a half life

of 1023 years (as a reminder, the 76Ge 2νββ decay half life to the ground state is 1.5 × 1021 years,

see Table 2.1). An 11-month exposure is assumed because if Majorana is funded for two modules,

the first module will be installed and running for 11 months before being shut down to commission

the second module. We would therefore be interested in what results might be obtained during this

single-module phase of the experiment.

A Majorana module will contain 53.9 kg of 76Ge. With the above-stated half life, we would

expect 2718 excited-state decays during the 11 months of live time. How many of those decays

we observe would of course depend on whether we used the strict or relaxed analysis methods, and

the segmentation scheme of the crystals. Table 8.4 shows the number of events we could expect to

observe.
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Table 8.4: Majorana module ES2νββ sensitivity. Assuming an 11-month live time and an ES2νββ
half life of 1023 years, this table shows the number of counts we expect for three different segmen-
tation schemes and using either the strict or relaxed analysis.

Segmentation Strict analysis Relaxed analysis
1×1 24.89(55) 65.0(1.4)
2×3 25.68(56) 198.1(3.9)
6×6 15.63(34) 331.0(6.4)

Table 8.5: Total number of primary background decays in 11 months. See text for details of calcu-
lations for obtaining these values.

Part 238U 232Th 68Ge 60Co
Crystals 0.05 0.05 3176 698
StringerLids 231 231
StringerMountPlate 113 113
Cryostat 978 978
Inner shield 7666 7666

Unsegmented background counts

To predict the number of background events, we need to know how many primary decays there are

in 11 months of live time for each combination of source and part shown in Table 8.3. The target

background level for both uranium and thorium is 1 µBq / kg of copper. Each of the 19 stringer lids

is 0.421 kg, the stringer mount plate is 3.92 kg, the cryostat is 33.8 kg, and the inner shield is 265

kg. Within the germanium crystals, the level of 238U and 232Th is expected to be 30 pBq / kg, with

each of the 57 Ge crystals being 1.1 kg.

While on the surface of the Earth, 68Ge and 60Co are cosmogenically produced in the germanium

at a rate of 1 / kg·day, with a 100-day exposure. During this surface exposure time, 12 68Ge and 2
60Co nuclei per kg of germanium will decay, leaving behind 88 and 98 nuclei per kg respectively.

(The half life of 68Ge is 270.8 days, and for 60Co the half life is 5.2714 years.)

Given these background levels, we can predict how many decays there will be during the 11

months of live time. Table 8.5 shows the number of primary decays for each combination of part

and source. By multiplying these values by those in Table 8.3 and normalizing by the number of

simulation decays (1 million), we calculate the total number of background counts to the ES2νββ

decay signal for both the strict and relaxed analyses. These results are shown in Table 8.6 and

Figs. 8.9 and 8.10.
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Figure 8.9: Total background counts with unsegmented, strict analysis. The largest single
contributor to the background is 60Co within the crystals, which contributes 80% to the
total. The numbers shown are absolute simulated background counts over 11 months of live
time for a single Majorana module.
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Figure 8.10: Total background counts with unsegmented, relaxed analysis. The largest
contributors to the background are 68Ge and 60Co within the crystals, which contribute 89%
to the total. The 68Ge is the shortest-lived of these backgrounds, and the simulation assumed
data taking from the day the germanium is brought underground. In reality, the 68Ge will
decay away somewhat before the start of production data taking, so the background will
most likely be much less.
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Table 8.6: Total ES2νββ background counts in 11 months. The uncertainties on the background
rates are approximately a factor of 2 for the strict analysis and 2% for the relaxed analysis. “SMP”
stands for StringerMountPlate. Compare these numbers to the first line in Table 8.4. See text for
details.

Part
238U 232Th 68Ge 60Co

Strict Relaxed Strict Relaxed Strict Relaxed Strict Relaxed
Crystals 6e-7 1.2e-5 4e-7 1.4e-4 1.1e-3 5.8 1.8e-2 5.2
StringerLids 3.5e-4 0.11 9.7e-5 2.2e-2
SMP 3e-7 1.1e-4 1.1e-4 2.2e-2
Cryostat 9.8e-4 0.70 5.3e-4 0.10
Inner shield 1.2e-3 0.38 4.0e-5 7.7e-3
Subtotals 0.003 1.194 0.001 0.153 0.001 5.803 0.018 5.169

We simplify Table 8.6 by totaling the anticipated background counts during the 11-month live

time:

Total background counts in unsegmented, strict analysis = 0.023

Total background counts in unsegmented, relaxed analysis = 12.2
(8.2)

We make note of two issues concerning the backgrounds. First is that with a strict, whole-crystal

analysis, even during 11 months of live time we expect the number of background counts to be much

less than one—this analysis has essentially no background. Second, the 60Co and 68Ge backgrounds

are the largest contributors to the backgrounds.

Segmented background counts

For the segmented analysis, we only analyze the largest contributors to the background: the 68Ge

and 60Co in the crystals. Before presenting the results of the background analysis, however, we

show the n-hit histograms for these isotopes in Fig. 8.11. These histograms should be compared to

those shown in Fig. 8.8. It may be that there is a different n-hit cut that will strengthen the signal-

to-background ratio, but a complete simulation of all backgrounds in all parts would have to be

performed to verify the optimal n-hit cut. For now, though, we simply note that an n-hit cut may be

an effective method to eliminate more background than signal.

With all the analysis cuts in use, we calculate the number of background counts from 68Ge

and 60Co in the three segmentation schemes. Table 8.7 shows the results. The background in the

unsegmented analysis was dominated by 68Ge and 60Co, and increasing the values in this Table by

about 20% gives a good indication of the total background we can expect. We can see that the



157

n hit
0 1 2 3 4 5 6 7 8 9 10

co
un

ts
 / 

n 
hi

t b
in

10

210

310

Co60Ge, Dashed = 68No segmentation, Solid = 

n hit
0 2 4 6 8 10 12

co
un

ts
 / 

n 
hi

t b
in

1

10

210

310

Co60Ge, Dashed = 682x3 segmentation, Solid = 

n hit
0 2 4 6 8 10 12 14

co
un

ts
 / 

n 
hi

t b
in

10

210

310

Co60Ge, Dashed = 686x6 segmentation, Solid = 

Figure 8.11: N-hit in the relaxed 68Ge and 60Co background analysis. A lower n-hit limit of
3 eliminates 38% (29%) of counts from the 68Ge (60Co) unsegmented analysis, 13% (10%)
from the 2×3 segmentation, and 5%(4%) from the 6×6 segmentation analyses. The signal
reduction is 10%, 2%, and 0.3% for the three segmentation schemes, respectively.



158

Table 8.7: Background counts from 68Ge and 60Co in various segmentation schemes. These values
are the total number of expected background counts from 68Ge and 60Co internal to the crystals over
11 months of live time.

Segmentation 68Ge 60Co
scheme Strict Relaxed Strict Relaxed

1×1 0.001 5.804 0.018 5.169
2×3 0.003 15.28 0.007 13.48
6×6 0.002 23.01 0.007 20.09

number of expected counts in the strict analysis remains well below 1, even with higher degrees of

segmentation.

Thus we can use a strict analysis to virtually eliminate the background, or use a relaxed analysis

to capture as many events as possible. Given that we do not yet know what the half life of the ES2νββ

decay is, we may use a strict cut to perform the half life measurement, but perform a relaxed analysis

to plot the beta spectrum.

8.3 Reducing 0νββ Backgrounds in the Majorana experiment

As a further application of the utility of coincidence measurements, the backgrounds found in the

search for neutrinoless double-beta decay can be reduced using coincidence techniques. As a re-

minder, the signal for 0νββ decay in 76Ge is any event that survives all the cuts in a ±2 keV window

around the double-beta endpoint energy of 2039 keV.

Our approach takes two paths forward: sources internal and external to the germanium crystals.

This section is not meant to be an exhaustive search for and analysis of all backgrounds in the

0νββ signal, but rather to demonstrate a coincidence method that may identify these backgrounds as

distinct from the neutrinoless decay of 76Ge.

8.3.1 Reducing internal backgrounds

The internal sources of events in the region of interest are generally easier to reject than external

sources, but they have a greater efficiency than external sources, and must therefore be studied on

an individual basis to determine their levels in the neutrinoless ROI.

77Ge

One example of an internal background is 77Ge, which contains a gamma ray at 2037.78 keV. The

branching ratio of this gamma is 0.0612%. If we assume a photopeak efficiency of 2% at this
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energy for a 100-gram segment of germanium, and also assume that pulse shape analysis will reject

approximately 80% of the resulting gammas, approximately one 77Ge decay out of 400,000 will

result in a count in the 0νββ region of interest. The background goal for the Majorana experiment

of 1 count per tonne·year would be completely exhausted if there were 1 neutron capture in each

crystal per day.

Fortunately, we have an few extra signals to reject this background. The most immediately

useful signal is the beta particle emitted in the 77Ge decay, with an endpoint energy of 188.75

keV. This beta particle is most likely to be observed by the crystal in which the decay occurred,

so a simple single-crystal cut would eliminate the majority of these events. Unfortunately, if the

energy threshold of an individual crystal is just 5 keV, then 1.5% of these beta particles would not

be observed. Thus 1 neutron capture per crystal per day would consume 1.5% of the background

budget.

There is a second signal of use, however, which comes from the gamma rays associated with

the 2037.76 keV gamma ray mentioned above. The 2038 keV gamma is emitted from the 2513 keV

energy level, resulting in the long-lived 475 keV energy level (the same level used to extract the

beta spectrum shown in Fig. 6.9). The 475 keV level has a half life of 114 µs, thus if any energy

deposition in the 0νββ region of interest is followed within a few milliseconds by any other energy

deposition, it can be attributed to a decay of 77Ge.

76Ga

76Ga can be created via 76Ge(n, p) reactions. This isotope of gallium has a half life of 32.6 seconds,

so its resulting decay will not be coincident with any cosmic rays that led to the (n, p) reaction. 76Ga

β− decays back to 76Ge, and has an associated 2040.70 keV gamma ray with a branching ratio of

0.33%. As in the case with 77Ge decays, a single-crystal cut will eliminate most of the 2040.70 keV

energy depositions. In the current case, the accompanying beta particle has an endpoint energy of

3058 keV, so the proportion of betas with energy less than 5 keV is only 0.007% of the total number

of decays. Additionally, the 2040.70 keV gamma is accompanied by 1348 keV and 563 keV gamma

rays, greatly raising the probability that more than a single crystal will observe an energy deposition.

One interesting twist on this decay is that while it is probably not a concern for the neutrinoless

signal, the fact that it is a multiple-particle coincidence with one gamma energy at 563 keV makes

it a potential background to the excited-state double-beta decay of 76Ge. The rate of 76Ga creation

is related to the neutron flux through the detector, and as the detector will be deep underground and

surrounded by a neutron moderator, this background rate is anticipated to be much lower than that

from 68Ge or 60Co.
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74Ge

The last example of an internal background mitigated by coincidence techniques is that of neutron

captures on 73Ge. This capture results in an excited state of 74Ge, and emits two gamma rays in the

0νββ ROI: 2037.03 and 2040.50 keV. Because the reaction is a neutron capture, we cannot rely on

observing a beta particle with its high observation efficiency.

This background should be of little concern, for two reasons. One, these gamma rays are accom-

panied by other gamma rays that are likely to result in a multiple-crystal event. Two, the proportion

of 73Ge in the detector array is extremely small to begin with.

8.3.2 Reducing external backgrounds

Performing a single-crystal cut is very effective for eliminating internal sources of background, usu-

ally because they are accompanied by a beta particle with a very high energy-deposition efficiency.

In the case of external backgrounds, however, it is far more rare for a beta particle, if one is created,

to deposit energy in a germanium crystal.

206Pb

Inelastic neutron collisions with 206Pb nuclei can result in a 2041 keV gamma ray. These gamma

rays will always be coincident with a 1704.5 keV gamma. The 1704.5 keV energy level of 206Pb

may be fed by processes other than this 206Pb(n, n’γ) reaction, but Monte Carlo simulations coupled

with a measurement of the height of the final spectrum at 1704.5 keV in the experimental data will

provide an upper limit on this background.

65Cu

Similar to the 206Pb(n, n’γ) reaction, there is a 0νββ decay background in 65Cu(n, n’γ) reactions.

This copper gamma ray is at 2041 keV, and is accompanied 99.99% of the time by an 1116 keV

gamma ray. Also similar to the 206Pb-related background, Monte Carlo studies accompanied by a

measurement of the area of an 1116 keV peak will place an upper limit on the rate of this background

in the neutrinoless decay region of interest.

64Cu

Neutron captures on 63Cu result in prompt 2037.53 keV gamma. This gamma ray is accompanied by

multiple related gamma rays. This is both a curse and a blessing–a curse because there is no single

peak that can be used to limit the background around 2039 keV. It is a blessing because there are a
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number of gamma peaks to search for that can all place an upper limit on the 0νββ ROI. Because of

the complexity of this decay, the importance of careful Monte Carlo studies is increased.

66Cu

Neutron captures on 65Cu can result in a 2039.33 keV gamma. As in the case of 63Cu(n,γ) reactions,

there is more than one gamma ray accompanying the 2039.33 keV gamma. Careful Monte Carlo

studies are again necessary to place a limit on the number of decays in the neutrinoless decay ROI.
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Chapter 9

INTO THE FUTURE

The prospects of measuring the half life of 76Ge 2νββ decay to an excited state of 76Se are very

high in the proposed Majorana detector. The backgrounds discussed in the previous chapter are neg-

ligible using a strict analysis, and represent only a conservative upper limit. The triple coincidence

of this 2νββ decay allows for a backgroundless experiment, provided the target radiological contam-

ination of the germanium and copper parts of the Majorana module is achieved. The techniques for

finding excited state decays are applicable to background reduction in the search for neutrinoless

double-beta decay.

The MaGe simulation framework was used to calculate the sensitivity and background level

contributions to the ES2νββ decay. To verify the performance of the simulation framework, a triple

coincidence from 77Ge that mimics the 2νββ excited-state decay was generated in a CLOVER de-

tector. Using the most conservative results, the simulation and experimental efficiencies agree at

approximately the 20% level.

In the year and a half since data taking started and this final chapter written, there have been a

number of methods discovered that would improve the results. Some of these improvements would

have very little effect on the final numbers, while others may substantially reduce the uncertainty

of the experimental verification of the simulation. Here then, in no particular order with regards

to the effect on the final comparison, are suggested improvements that may be applied to related

experiments.

9.1 The CLOVER Detector

Trace length

The pulse signals were digitized and recorded from the CLOVER detector. These recordings were

intended for application to pulse shape analysis, and only the primary rise of the pulse needed to be

captured for offline analysis. The pulse record lengths only lasted 2 µs. Unfortunately, full charge

collection may as long as 6 µs, making recreation of the energy filter output impossible, as the full

pulse was not recorded. If the collaboration decided to write its own energy calculation software, we

would have no way of appling this new code to the previously-recorded data, as that data would not

be complete. The full charge collection time must be studied thoroughly for the Majorana crystals,

and pulses recorded for a corresponding length of time to allow for complete reconstruction of the
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pulse height.

Energy calibration

The energy calibration might be performed using a 4th- or 5th-order polynomial, rather than a

quadratic fit. To avoid divergences outside the calibration region, however, the energy calibration

needs to encompass as wide a range as possible. Calibration sources with high-energy gamma emis-

sion should be used to calibrate the detector, for example a 56Co source with gamma energies up to

3548 keV may be used. Alternatively, neutron capture within the germanium (e.g., 73Ge) may also

leads to prompt gamma rays with energies in excess of 10 MeV. If a calibration were found to cover

the full range of observed energies, then events in this work that fell outside the energy calibration

range might have their resolution improved by as much as 50%.

In the low-energy range, X-rays might be used to perform a calibration down to 5-10 keV. This

calibration may prove difficult, however, as there tend to be many X-rays very close in energy that

create an artificially wide peak, making calibration difficult. If necessary, a low-energy gamma ray

source such as 133Ba may be used instead.

Even though high-energy gamma rays sources may be found, if there are processes which create

energy depositions outside the calibration energy range, future calibrations may still decide to use a

quadratic energy calibration, depending on the performance of the detector.

Gain adjustment

The gain on the CLOVER detector was set to have the greatest resolution out to the 2.6 MeV

gamma from the decay of 208Tl and 208Pb(n,n’γ) reactions. Including a generous energy range

above this value, we made the decision to be sensitive up to ∼3 MeV. At this gain, our resolution

was approximately 19 bins / keV.

We might have been better served to decrease our gain by a factor of four or so. One relevant

tradeoff is how well the Gaussian curves might be defined. To this end, we would not recommend a

DAQ resolution lower than 5 bins per keV (though this value is somewhat subjective...a more careful

definition of the Gaussian curve would have, for instance, 10 bins per keV). Accuracy of peak width

measurements must be balanced against energy scale. It may be that the highest-energy process of

interest only deposits 5 MeV of energy, in which case the gain would be halved, giving a final 10

bins per keV.

And yet there is another wrinkle to consider. When binning the data into a histogram, care must

be taken to not have more bins in the final histogram than was available in the raw digitized data.

If rebinning is of concern, it may be possible to perform all analyses on the raw, uncalibrated data,

and convert the raw value to a standard energy unit (e.g., keV) only at the end.
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As far as this work goes, there would have been very little impact on the quality of the data if

the gain were turned up a factor of 3 or 4. Indeed, the analysis would improve as a whole because

of the ability to observe events at higher energies than previously obtainable.

77Ge creation rate measurement

The statistical uncertainty in the measurement of the CLOVER triple coincidence could be reduced

by straightforwardly taking more data. Unfortunately, the systematic uncertainties were almost as

large as the statistical.

It may be possible to directly count the creation of 77Ge nuclei by observing the decays of the
77mGe isomer. This isomer has a half-life of 53 seconds, and so will reach saturation in roughly 10

minutes. The isomer decays 19% of the time to the ground state of 77Ge, emitting a 160 keV gamma

ray in the process. With enough statistics during activation, the intensity of those 160 keV gamma

rays may be accurately measured. From this intensity, we could extrapolate to the total number of

decays from the ground state of 77Ge by taking a ratio of the thermal neutron capture cross sections.

This would eliminate the systematic uncertainties in the natural abundances of 74Ge and 76Ge

We would still need to take a ratio of thermal neutron capture cross sections of 76Ge to both the

ground and isomeric states of 77Ge, which in this case would be

76Ge→ 77Ge n capture cross section
76Ge→ 77mGe n capture cross section

=
(0.06 ± 0.01) b
(0.10 ± 0.01) b

= 0.60 ± 0.12
(9.1)

This uncertainty is 19%, and thus is smaller than the 27% systematic uncertainty in Table 7.3.

While with adequate statistics the method of focusing solely on the 77mGe decay rate may give

results with a slightly smaller uncertainty, we reiterate that the best way to reduce the systematic

uncertainty is to more accurately measure the thermal neutron capture cross sections, especially on
76Ge.

Neutron anisotropy confirmation or refutation

Figs. 6.3 and 6.4 show a deviation from a constant fast neutron flux or thermal neutron flux. The

results were unfortunately somewhat inconsistent with each other in that an increase in the fast

neutron flux for a given activation was not necessarily accompanied by an increase in the thermal

neutron flux. Yet in Figs. 5.8 and 5.9 we see that in keeping the neutron source in one place and

taking consecutive runs provides a reasonably constant flux in both fast and thermal energies.

A more thorough study of the AmBe source would have to be performed to search for a potential

anisotropy in the neutron emission. In the absence of a measured anisotropy, further study would be
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required to identify the systematic effect that leads to the seemingly large range of fast and thermal

neutron fluxes.

Indium placement

The 116mIn was a large background in the analysis of the 215 / 416 keV triple coincidence from
77Ge. In the future, a CLOVER detector manufactured with substantially less indium may be used.

The CLOVER detector was always activated, however, with the AmBe source from one side.

By activating the CLOVER from either the top or front of the cryostat, we might have been able

to reduce the indium activation. As a side benefit, we might also have been able to determine the

approximate cross-sectional area of the indium volume from three different axes, giving us further

clues as to the geometry of the indium within the cryostat.

As far as the focus of this work is concerned, the indium had little impact on the quality of

the results, because by looking for a 416 keV-coincident energy deposition at 215 keV, the indium

decays added to the continuum around the 215 keV peak. Of the approximately 8 days of cooldown

data, the time cuts to allow for indium to decay away removed only either 16 hours (for a 1-hour

time cut) or 48 hours (for a 3-hour time cut) from the final data set. The statistical uncertainty would

not have been greatly improved with the addition of this data. To bring the statistical uncertainty to

the 5% level would have required 6 times as much data, not 33% more.

9.2 The MaGe Simulations

ES2νββ decay sensitivity

The sensitivity of a single Majorana module to the excited-state ββ decay was calculated. The first

Majorana module will be installed and acquiring data for 11 months before the second (if funded) is

added. During this time, the calculation predicts that we will be able to observe roughly 25 counts

with no background using a strict analysis. With a relaxed analysis the efficiency increases, but so

does the amount of background. Table 9.1 shows the predicted number of signal and background

counts in a Majorana module when applying the ES2νββ analysis cuts.

If Majorana is funded for two modules, the sensitivity to the signal will increase by greater

than a factor of two, as there would be more crystals to potentially observe the cascade gamma

rays. Another MaGe simulation with both modules in place would be required to calculate the new

sensitivity.

Additional backgrounds

As the Majorana experiment moves forward, more backgrounds may be identified. Each background

needs to have a rate determined for every material in which it occurs, and contributions to the
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Table 9.1: Comparison of ES2νββ signal and background counts. Values assume 11 months of live
time with a ES2νββ half life of 1023 years. The strict-analysis background are augmented by 20%
over the values shown in Table 8.7. For example, from Table 8.7 the 68Ge and 60Co backgrounds
in the 1×1 strict analysis sum to 0.019 counts. Augmenting this value by 20% gives the 0.023
counts shown below. The relaxed-analysis background values have been augmented by 11%. See
Section 8.2.2 for details of the background values.

Segmentation Strict analysis Relaxed analysis
scheme Signal Background Signal Background

1×1 24.9 0.023 65.0 12.2
2×3 25.7 0.012 198 32.0
6×6 15.6 0.011 331 47.9

background calculated. It is assumed that additional backgrounds will be weaker than those already

identified, though, and given the already very low number of anticipated background counts, we do

not expect additional backgrounds to substantially alter the analysis.

Neutron simulations

The simulations performed in MaGe in this work have all been based in electromagnetic interac-

tions. We can, however, also use the neutron data to determine the level of accuracy of the neutron

simulations. This can be performed from a few standpoints:

1. Neutron capture on germanium

2. Neutron capture on hydrogen

3. Inelastic fast neutron collisions on germanium

4. Inelastic fast neutron collisions on lead

5. Neutron thermalization in polyethylene

As an example of the first study mentioned above, the efficiency of the 77Ge triple coincidence

can be recalculated. The simulation performed in this work assumed a homogeneous distribution of
77Ge decays throughout a crystal. Yet the leading face of the crystals as seen by the AmBe source

might have an observably higher activation rate. An exponential distribution of 77Ge decays may

change the observation efficiency, and may be required if the systematic and statistical uncertainties

are much lower.
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Other geometries

SEGA [27] and MEGA [28], two experiments closely related to Majorana, may be able to make a

measurement of the excited state decay half life before one is available from the Majorana detector.

As of this writing, these geometries are not yet a part of the MaGe simulation. These geometries

need to be entered, and sensitivity and background analysis performed along the lines of those in

Section 8.2.

Pulse shape discrimination

One method of background reduction barely mentioned in this work is pulse shape discrimination.

The backgrounds levels are already shown to be negligible with a strict analysis, even in the absence

of either segmentation rejection or pulse shape discrimination. Still, if a stray background count

does manage to enter the excited state regions of interest, PSD may be applied to the three energy

depositions, with the requirement that the 559 and 563 keV energy depositions be multi-site and the

presumed beta particle be single-site.

9.3 Excited-state 0νββ surrogate signals

A focus of this work has been experimental verification of the ES2νββ observation efficiency cal-

culations via Monte Carlo simulations. We performed this study by mimicking the ES2νββ signal

using triple coincidences found in the decay of 77Ge.

A natural extension of this work is experimental verification of the ES0νββ signal efficiency us-

ing a surrogate signal. What properties would this surrogate signal have? A fundamental difference

between the signature of excited-state zero-neutron and two-neutrino decays is that the former will

have the beta particles sharing a sharply-defined energy, rather than a continuous spectrum between

0 and the endpoint energy. In parallel with the list shown on page 43, we add a requirement to the

ES0νββ list:

1. Triple coincidence: ββ-γ-γ

2. β sum energy must be sharply defined

3. Homogeneously distributed throughout the germanium crystals

4. No β+ emission

5. Simultaneous decay particles

6. Plentiful

It turns out that a perfect candidate for an ES0νββ surrogate signal is pair production from a

high-energy gamma ray. Take for instance the 2614.5 keV gamma ray coming from the decay of
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208Tl. Within a germanium detector, this gamma ray may pair produce, turning into a β+β− pair,

with a sharply defined kinetic energy sum of 1592.5 keV. The positron then annihilates, emitting

two 511-keV gamma rays which can interact with the rest of the detector. This reaction has all the

required traits shown in the list above.

The question remains of how to determine how many β+β− pairs were produced. To this end,

we can run a relatively simple Monte Carlo simulation of two 511-keV gamma rays emitted in

opposite directions, with the starting locations homogeneously distributed throughout a crystal. We

then count the proportion of times that both gamma rays fully escape the crystal in which they were

created. Dividing the area of an experimentally-obtained double-escape peak by this proportion

gives a measure of how many pair productions occurred during data taking.

What other gamma rays would be good surrogates for an excited-state, neutrinoless double-beta

decay? The gamma ray should have a high branching ratio. Also, the higher the gamma ray energy

the more likely the gamma ray is to produce a β+β− pair. Unfortunately, the higher-energy gamma

rays also tend to have lower branching ratios. What sources would work?

One possible source is 232Th, as that contains the aforementioned 208Tl. The 2614.5 keV gamma

ray from the decay of 208Tl has an absolute intensity of 99.16%, so the double-escape peak should

be strong (indeed, this peak is visible in the background and cooldown spectra shown in Figs. 4.15–

4.17 and 5.10–5.12, respectively).

We might also be able to use other sources as a check on systematic effects. 56Co has a handful

of higher-energy gamma rays. While they are all potential candidates, we can determine which

gamma ray will give us the strongest signal by multiplying each gamma ray intensity by its cross-

section for pair production. Table 9.2 shows the results for the highest-energy and most-common

gamma rays from the decay of 56Co.

We see from Table 9.2 that the best 56Co candidates for the excited-state neutrinoless surrogate

are the 2598.5 keV and 3253.4 keV gamma rays, as these will result in the greatest number of pair-

productions. These gamma rays will create beta-energy depositions at 1576.5 keV and 2231.4 keV,

respectively.

The task of experimentally measuring this triple-coincidence efficiency can the proceed as out-

lined in this work, with both strict and relaxed analyses (see Section 8.2.1).

9.4 Non-Standard Physics

At this point, we have discussed two-neutrino and zero-neutrino double-beta decays to both excited

and grounds states of the final nucleus. With various mechanisms in place, we would like to reiterate

a subject introduced in Section 3.5. In the 0νββ case, the ratio of decays to the ground state to decays

to an excited state of the final nucleus may give an indication of the underlying decay mechanism

(e.g., light- or heavy-neutrino exchange or a SUSY mechanism).
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Table 9.2: 56Co candidates for an ES0νββ surrogate signal. The higher the energy of the gamma ray,
the more likely it is to pair-produce, but higher energy rays are usually less intense. We multiply
the pair-production cross-sections by the intensity to obtain a figure of merit. The higher the figure
of merit, the more β+β− pairs are created within the germanium. The cross-sections were obtained
from XCOM [99].

γ Energy
(keV)

Relative
Intensity

Cross-section
(barns / Ge atom)

Figure of merit

1771.4 15.69 0.125 1.961
2015.2 3.08 0.202 0.622
2034.8 7.88 0.209 1.647
2598.5 17.28 0.401 6.936
3009.6 1.049 0.542 0.569
3202.0 3.24 0.607 1.966
3253.4 7.93 0.623 4.941
3273.0 1.889 0.630 1.190
3451.2 0.953 0.688 0.656

Such a study would be far off in the future. Assuming the Klapdor-Kleingrothaus et al. claim [55]

is substantiated, zero-neutrino decays to an excited state would take roughly 100 times as long to

proceed, plus their efficiency of observation would only be on the order of 10%. Finally, the ratio

of half lives would have to have sufficiently low statistical uncertainty to be able to differentiate

between ratios of 50, 95, or 120. These factors combine to require a detector with 104 - 105 times

the sensitivity of what is currently available.

9.5 The last word. For now.

The last fundamental aspects of the neutrino are coming closer and closer to our grasp. 60 years ago

the neutrino question of the day was“Does it exist”. Science has made great strides since then, and

there are few yes/no questions left unanswered. “Is the neutrino its own antiparticle” is just such a

question. Wrapped up in this question is “what is the mass of the neutrino”.

If the neutrino is its own antiparticle, the mass can be determined from the half life calculation

only via nuclear matrix elements, the quality of which is the point behind this thesis. May this work

contribute in some way to this goal.
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Appendix A

77GE DECAY SCHEME

Table A.1: Dominant gamma rays from the decay of 77Ge. Data shown in order of decreasing
intensity. Data taken from [89], which has a full list.

Energy (keV)
Relative
intensity

264.44(3) 54
211.03(3) 30.8(9)
215.51(3) 28.6(9)
416.33(3) 21.8(5)
558.02(3) 16.1(4)
367.40(3) 14.0(3)
714.35(3) 7.17(16)
631.82(3) 6.95(16)
1085.19(3) 6.05(13)
1368.4(5) 3.3(3)
1193.26(3) 2.57(5)
810.35(3) 2.27(5)
634.39(3) 2.08(4)
194.76(3) 1.77(7)
784.77(3) 1.32(3)
461.38(3) 1.27(3)
419.75(3) 1.23(3)
928.85(3) 1.046(22)
781.26(3) 1.013(22)
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Appendix B

NEUTRON CAPTURE EFFICIENCY OF THE CLOVER CRYSTALS

The basic equation for calculating the efficiency of capturing a thermal neutron is

Capture efficiency = 1 − e−dσρ (B.1)

where σ is the thermal neutron capture cross section, ρ is the number density of the target nuclei,

and d is the thickness of the target. For natural germanium, σ is (2.30 ± 0.07) barns and ρ is

4.41 × 1022 cm−3

Since the crystals are hollow cylinders the value of d changes with the impact parameter; thus,

integration is required. This integral divides the crystals into two sections, one that extends the

length of the solid crystal, and the other that extends the length of the hollow core.

The derivation starts with two simplifications. One is that the paths of the thermal neutrons

through the crystals are all parallel, and are perpendicular to the axis of the crystal. The second

simplification is that the crystal is a simple, regular, hollow, right cylinder of nothing but germanium

(i.e., no curvature to the outside corner of the crystals, no dead layers, no inner electrical contacts),

though this second simplification will be refined by the end of the calculation. Fig. B.1 shows the

geometries used in the integrals.

Path of

thermal

neutron R1
r dr

d

!

(a) A simplified cartoon for the solid extent of the
CLOVER crystals

Path of

thermal

neutron R1 r dr
!

R2

d

2

(b) A simplified cartoon for the hollow ex-
tent of the crystals

Figure B.1: Geometry of solid crystal and thermal neutron path. The length of germanium
traversed by the neutron, d, is a function of the impact parameter r.
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The first integral involves the solid part of the crystal (i.e., the geometry in Fig. B.1(a)). For this

integral, the relevant path length is

d = 2 R1 sin θ

= 2 R1

√
1 −

(
r

R1

)2

The integral will be performed from r = 0 to r = R1. The ratio of neutrons hitting the crystal with

impact parameter r is therefore dr/R1. Performing the integral of Eq. (B.1) gives

Capture efficiency =
1

R1

∫ R1

0
dr

(
1 − e−2σρR1

√
1−(r/R1)2

)
(B.2)

Turning our attention to the geometry in Fig. B.1(b), we see that for r > R2 the integral is the

same. What about when r < R2? We subtract the hollow path length from the total path length to

obtain d/2. Also, the proportion of thermal neutrons with impact parameter r is still dr/R1:

d
2
= R1

√
1 −

(
r

R1

)2

− R2

√
1 −

(
r

R2

)2

⇒ Capture efficiency =
1

R1

∫ R2

0
dr

(
1 − e

−2σρ
(
R1

√
1−(r/R1)2 − R2

√
1−(r/R2)2

))
(B.3)

With the integrals in place, we must take into account the proportion of the crystals that are solid

and the proportion that is hollow. Let the solid length be L1 and the hollow length be L2. Then the

final expression for the thermal neutron capture efficiency of a CLOVER crystal is

Capture efficiency =
L1

L1 + L2

1
R1

∫ R1

0
dr

(
1 − e−2σρR1

√
1−(r/R1)2

)
+

L2

L1 + L2

1
R1

∫ R1

R2

dr
(
1 − e−2σρR1

√
1−(r/R1)2

)
+

L2

L1 + L2

1
R1

∫ R2

0
dr

(
1 − e

−2σρ
(
R1

√
1−(r/R1)2 − R2

√
1−(r/R2)2

))
(B.4)

At this point we include one refinement of the geometry. Instead of integrating r out to the original

radius of the crystal, 2.5 cm, we instead integrate out to 2.25 cm to take into account two of the flat

sides of the crystals. Thus in addition to the values of σ and ρ, we have the following values:
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L1 = 1.5 cm

L2 = 6.5 cm

R1 = 2.25 cm

R2 = 0.5 cm

Plugging these values into Eq. (B.4) and numerically integrating the expression gives the result

Capture efficiency = 0.288 ± 0.009 (B.5)

where the uncertainty, based on very generous machining tolerances, is 3% the final value.

If the crystals were simply modeled as a solid right rectangle 5 cm thick, the capture efficiency

would be 0.398, which would result in a 20% change in the measured thermal neutron flux. If

the average thickness of the solid crystal, 1.57 cm, were used in a solid right rectangle model of the

crystals, the neutron capture efficiency would be 0.147, a 50% deviation from the more careful result

of Eq. (B.5). These percentage differences are on the order of or larger than the largest uncertainties

involved in the calculation itself, so a simpler approach could have potentially had a noticeable

impact on the final results of this thesis.

The crystals themselves are not actually cylindrical, but have four sides machined flat and a

rounded outside corner. What effect might this have on the neutron capture efficiency? A right

cylinder with a hollow bore of the dimensions of the crystals would have a volume of

V = (8 cm) π (2.5 cm)2 − (6.5 cm) π (0.5 cm)2

= 152 cm3

This volume would have a mass of 809 g, but we know from Table 4.1 that the masses are roughly

750 g. Thus there is a volume difference between the modeled crystals and the actual crystals of 11

cm3. Yet we have already accounted for two of the four flat sides, so the volume difference is closer

to 5.5 cm3.

The volume of the hollow core is 5.1 cm3. Given the similar differences in volume, we may

estimate the effect of not taking into account the remaining flat sides of the crystals by measuring

the effect of not taking into account the hollow core. The efficiency of a solid right cylinder with

two flattened sides parallel to the neutron trajectory is 0.298, or a difference of 0.955%. This value

will therefore be subtracted from the value calculated in Eq. (B.5), giving
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Capture efficiency = 0.278 ± 0.008 (B.6)

Given that these corrections are second-order, the total uncertainty will be held at 3%. Note again

that this correction does not take into account either the bulletization or the internal electrical con-

tact.
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Appendix C

ACTIVATION / COOLDOWN DATASET CATALOG

Table C.1: Activation and cooldown timestamps. The units are in minutes, with minute zero being

the start of the first activation through the 4” moderator. The actions incorporating run numbers

(”Cooldown0001”, ”Cooldown0002”, and so on) refer to the details of the actual data taking. In

cases where a cooldown data run ended and the AmBe source put in place in the same minute, the

source was not placed until the data run ended.

CLOVER Activation Data run Time (m)

Activation start 0

Activation end Begin Cooldown0001 4256

End Cooldown0001 5777

Begin Cooldown0002 5779

End Cooldown0002 7046

Begin Cooldown0003 7047

End Cooldown0003 8143

Activation start 8211

Activation end Begin Cooldown0010 9690

End Cooldown0010 10402

Begin Cooldown0011 10403

Activation start End Cooldown0011 11222

Activation end Begin Cooldown0020 12689

End Cooldown0020 12891

Activation start 14105

Activation end Begin Cooldown0030 15443

End Cooldown0030 15451

Begin Cooldown0031 15465

End Cooldown0031 15467

Begin Cooldown0032 15468

End Cooldown0032 15736

Begin Cooldown0033 15831

Continued on next page



186

Table C.1 – continued from previous page

CLOVER Activation Data run Time (m)

End Cooldown0033 15915

Activation start 16029

Activation end Begin Cooldown0040 16893

End Cooldown0040 17133

Begin Cooldown0041 17261

Activation start End Cooldown0041 17420

Activation end Begin Cooldown0050 18212

End Cooldown0050 18862

Activation start 18895

Activation end Begin Cooldown0060 19711

End Cooldown0060 20507

Activation start 20533

Activation end Begin Cooldown0070 21882

End Cooldown0070 23388

Activation start 23423

Activation end Begin Cooldown0080 24110

End Cooldown0080 24598

Activation start 24639

Activation end Begin Cooldown0090 25469

End Cooldown0090 26099

Activation start 26181

Activation end Begin Cooldown0100 26921

End Cooldown0100 27543

Activation start 27560

Activation end Begin Cooldown0110 28335

End Cooldown0110 28971

Activation start 28973

Activation end Begin Cooldown0120 29699

End Cooldown0120 30474

Activation start 30569

Activation end Begin Cooldown0130 31393

End Cooldown0130 32026

Activation start 32033

Continued on next page
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Table C.1 – continued from previous page

CLOVER Activation Data run Time (m)

Activation end Begin Cooldown0140 32732

End Cooldown0140 33359

Activation start 33435

Activation end Begin Cooldown0150 34234

End Cooldown0150 35765
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Appendix D

MAGE CODE EXAMPLES

The power of using object-oriented code the MaGe framework can at times be seen most easily

in the code itself. This appendix displays examples of code used in MaGE to show how the various

parts of MaGe interact.

D.1 The Database subsystem

In this database code example, we see the MJGeometryCloverDetector object created with a pointer

to the database object:

MJGeometryCloverDetector::MJGeometryCloverDetector(G4String serNum):

MGGeometryDetector(serNum), theDBdetector(0) {

theDBdetector = MJDatabase::GetCloverDetector(serialNumber);

}

Each geometry detector object contains a ConstructDetector method, in which the relevant database

values are read in and stored for later use:

...

string *crystalSerialNumbers = theDBdetector->GetCrystalSerialNumbers();

...

Then later in the ConstructDetector method, the individual crystals are instantiated:

...

for( G4int index = 0; index<4; index++ )

theCrystals[index] =

new MJGeometryCloverCrystal(crystalSerialNumbers[index]);

G4PVPlacement *thePhysicalCrystals[4];

...

The MJCloverCrystal object has a similar setup, with a pointer to the CLOVER crystal database

object specified by the crystal’s serial number.
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D.2 The Geometry subsystem

Below is a demonstration of how a detector part is built within MaGe. These code fragments assume

a basic understanding of GEANT4 volume construction, so the specific calls and parameters will

not be explained in detail. In this example, the detector part is a CLOVER crystal, and the database

object has already been instantiated.

G4double crystalRadius = theDBcrystal->GetCrystalRadius();

G4double height = theDBcrystal->GetCrystalHeight();

G4double cornerRadius = theDBcrystal->GetCornerRadius();

G4double coreRadius = theDBcrystal->GetCoreRadius();

G4double coreDepth = theDBcrystal->GetCoreDepth();

G4double coreBubbleRadius = theDBcrystal->GetCoreBubbleRadius();

G4double topDeficit = theDBcrystal->GetTopDeficit();

G4double bottomDeficit = theDBcrystal->GetBottomDeficit();

G4double rightDeficit = theDBcrystal->GetRightDeficit();

G4double leftDeficit = theDBcrystal->GetLeftDeficit();

G4Material *crystalMaterial =

G4Material::GetMaterial( theDBcrystal->GetMaterialName() );

With the crystal dimensions and material set, the crystal itself is constructed:

In this section of code, two solids are combined to make a third.

G4Tubs *bulkCrystal1Solid = new G4Tubs( "bulkCrystal1Solid", 0*cm,

(crystalRadius-cornerRadius)*cm, (height/2)*cm, 0*deg, 360*deg );

G4Tubs *bulkCrystal2Solid = new G4Tubs( "bulkCrystal2Solid", 0*cm,

crystalRadius*cm, ((height-cornerRadius)/2)*cm, 0*deg, 360*deg );

G4double x = 0;

G4double y = 0;

G4double z = cornerRadius/2;

G4VSolid *bulkCrystal3Solid = new G4UnionSolid( "bulkCrystal3Solid",

bulkCrystal1Solid, bulkCrystal2Solid, 0,

G4ThreeVector(x*cm,y*cm,-z*cm) );

The fourth solid is created and combined with the third solid to create a fifth solid.

G4Torus *bulkCrystal4Solid = new G4Torus( "bulkCrystal4Solid", 0*cm,

cornerRadius*cm, (crystalRadius-cornerRadius)*cm, 0*deg,
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360*deg );

x = 0;

y = 0;

z = height/2 - cornerRadius;

G4VSolid *bulkCrystal5Solid = new G4UnionSolid( "bulkCrystal5Solid",

bulkCrystal3Solid, bulkCrystal4Solid, 0,

G4ThreeVector(x*cm,y*cm,z*cm) );

Continuing the theme, the fifth and sixth solids are combined to make a seventh.

G4Box *bulkCrystal6Solid = new G4Box( "bulkCrystal6Solid",

(crystalRadius - (rightDeficit+leftDeficit)/2)*cm,

(crystalRadius - (topDeficit+bottomDeficit)/2)*cm,

(height/2 + .01)*cm );

x = (leftDeficit - rightDeficit)/2;

y = (bottomDeficit - topDeficit)/2;

z = 0;

G4VSolid *bulkCrystal7Solid = new G4IntersectionSolid(

"bulkCrystal7Solid", bulkCrystal5Solid, bulkCrystal6Solid, 0,

G4ThreeVector(x*cm, y*cm, z*cm) );

With this last solid, bulkCrystal7Solid, a logical volume is created utilizing the material

obtained from the database.

theCrystalLogical = new G4LogicalVolume(

bulkCrystal7Solid, crystalMaterial, "theCrystalLogical" );

Note that in this geometry code, references to the values obtained from the database were used

throughout rather than hardcoded values.

D.3 The I/O subsystem

This first line sets the logging level. There are five levels, ranging from “debug”, which

prints out the most information, to “fatal”, which only prints out information related to

the simulation crashing.

/MG/manager/mglog routine

MaGe has the ability to read in a number from the /dev/random file, and use that as a

seed for the random number generator. MaGe includes the ability to explicitly set the
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seed so that the same simulation can be run multiple times for testing purposes. The

randomization algorithm used is the Mersenne Twistor [100] pseudorandom number

generator.

/MG/manager/heprandomseed 13015

To choose a different geometry, the name of that geometry would simply be substituted

in for the word “clover” in the following line.

/MG/geometry/detector clover

These next two lines set the output scheme to that of the Los Alamos CLOVER without

pulse shapes, and set the name of the output file.

/MG/eventaction/rootschema LANLCloverNoPS

/MG/eventaction/rootfilename ./Clover/Ge-77.root

In some instances, we are more concerned with higher-energy depositions, and do not

need to track down particles to the keV level. In the case of double-beta decay, however,

we do want to track energies to that level of detail. This next line tells the simulation to

track particle energies closely. In exchange for greater accuracy, the simulation might

take much longer to run.

/MG/processes/realm BBdecay

This next line sets up the progress reporting. In this case, a line will be written to the

log every 100000 events, with a time stamp for benchmarking purposes.

/MG/eventaction/reportingfrequency 100000

This next line instantiates the simulation subsystems, except for the generator.

/run/initialize

The generator is set in these next five lines. In this case, the Radioactive Decay Manager

creates decays from the ground state of Ge-77, with essentially no kinetic energy (the

isotope is at rest). The decays are homogeneously distributed throughout the active

parts of the germanium crystals. The active parts were defined in the geometry code.

/MG/generator/confine volume

/MG/generator/volume activeCrystal

/MG/generator/select RDMiso

/gun/energy 1e-20

/grdm/ion 77 32 0

Now that the detector, output file, generators, and supporting information is specified,

the simulation can be run. In this case, 10 million decays of Ge-77 will be created.

/run/beamOn 10000000
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