
ABSTRACT

KEPHART, JEREMY D. Method of Evaluating the effect of HPGe Design on the Sensitivity
of Physics Experiments. (Under the direction of Dr. Albert Young).

Motivated by planned double beta decay experiments in 76Ge I describe a com-

putational model for the electric fields of solid state diode detectors and the subsequent

charge transport. Aspects of detector performance determined by the impurity charge con-

centration are explored in a series of measurements of comparable “point contact” p-type

germanium detectors and compared to our computational model.

In particular, we measure the capacitance of the germanium detector as a function

of the bias voltage to determine the free parameters in a three parameter model of the

impurity charge density, effectively mapping out the density at all points within the detector

volume. We then use our impurity charge density map to refine the sensitivity of pulse shape

analysis applied to various classes of physics events detected in the crystal. When possible,

the impact of our refinements on a figure-of-merit for double-beta decay experiments is

described.
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Chapter 1

Motivation

1.1 Overview

Modern nuclear and particle physics experiments analyze individual pulse shapes

from many different detector geometries to help characterize the interaction giving rise

to a particular detected event. A complete model of the detector’s response, for each

physical region and each type of detected event can be helpful in the analysis of experimental

data and may also be key in optimizing the detector design and configuration before the

experiment begins. For instance, the utility of certain detector schemes depends critically

on the pulse-by-pulse analysis of events to categorize them as single or multiple site. The

response of the detector (or the segment of the detector) to these two classes of events is

critical in determining if a design is worth the additional cost, schedule delay, or difficulty

in handling. Modelling the response to individual energy depositions can help differentiate

among different detector configurations and guide the optimization of detector material,

size, electrode configurations and even relative placement.
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Many backgrounds anticipated in next-generation neutrinoless double-beta decay

searches involve multiple photon interactions. In contrast, neutrinoless double-beta decay

events deposit all of their energy at a single interaction location. Thus, event multiplicity

is a desirable way of discriminating signal from backgrounds. Event multiplicity discrim-

ination is done by decomposing detector signals using a basis, or library of pulse shapes

corresponding to interactions at each position in a detector. The single from multiple site

resolution of pulse-shape analysis depends on the accuracy of this library. A library is built

in two ways; a long and difficult experimental campaign, or using a highly-accurate, verified

model of the pulse formation process.

This first chapter outlines the physics needs which motivate our work, namely the

need of better detectors and detection methods to farther our limited knowledge of the na-

ture of neutrinos. To this end, a brief overview of neutrinos is given. In particular, neutrino

mass provides the motivation for several current and historic physics experiments each of

which may benefit from an increased pulse shape discrimination ability. These experiments

rely on the solid state technology of high purity germanium detectors. Several needs are

discussed about a single experiment, yet applicable to an entire series of experiments: the

ability to do pulse-by-pulse analysis, the need for extremely low background and the need

for detector material on the ton scale.

Double beta-decay is an extremely rare process in which the charge of the nucleus

changes by two owing to a second order charged current weak interaction [10, 11, 12]. Neu-

trinoless double beta decay is a double beta decay in which the neutrino acts as its own

antiparticle, and no neutrinos are actually emitted. This process has never been observed,

but it can only occur if the neutrino is a Majorana particle and is therefore its own antipar-
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ticle. The decay rate is also proportional to the mass of the neutrino squared. The unique

information these measurements provide, place them as one of the highest priorities of the

nuclear physics communities [13, 14, 15].

1.2 Introduction

1.2.1 Neutrinos

Neutrinos are a particle originally proposed by Enrico Fermi to retain the principle

of conservation of energy in beta decay. Neutrinos are spin 1/2 particles with no charge,

and known to have mass[16]. There are many unique and wonderful properties of neutrinos

which include but are not limited to its oscillating between three distinct states, each of

which with a unique mass matrix. As a result propagating neutrinos do not have a unique

mass, but are a superposition of mass states.

The fact that neutrinos have masses and oscillate between mass eigenstates repre-

sents the first real extension of the standard model of particle physics since it was formulated

[17] and has generated tremendous interest in the physics community. These experiments

have grown steadily larger and more complex[18]. A key remaining question is whether a

neutrino has a Majorana mass term [19].

Double beta decay is an extremely rare process in which the charge of the nucleus

changes by two due to the second order charged-current weak interaction. Neutrino-less

double beta decay is a double beta decay in which the neutrino acts as its own antiparticle,

and no neutrinos are actually emitted [20]. This process has never been observed, but it can

only occur if the neutrino is a Majorana particle and is therefore its own antiparticle. The

decay rate is also proportional to the mass of the neutrino squared. Because of the unique
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information these measurements provide, they have become one of the highest priorities of

the nuclear and particle physics communities.

1.3 Motivation

The basic operating premise for HPGe neutrinoless double beta decay experiments

is to use the ”target” mass is also the active detector[20]. This strategy utilizes the 76Ge

isotope as a semiconductor detector. This strategy has, to date, placed the most stringent

limits on neutrinoless double beta decay rates [21, 1]. Many new experiments intend to

extend this limit [14], this work focuses on two such experiments, the GERDA [22] and

Majorana [23] experiments.

1.3.1 IGEX

The International Germanium Experiment (IGEX) was a search for neutrinoless

double beta decay using approximately 6.5 kilograms of isotropically enriched to 86% in

76Ge. Three p-type detectors of ∼ 2kg each and three detectors of ∼ 1 kg each collected data

in three laboratories: Homestake gold mine(4000 meters water equivalent(mwe)), Canfranc

Tunnel (2450 mwe) and Baskan Neutrino Observatory (660 mwe). The detectors had a

detection efficiency of almost 100% relative to a 7.62 cm ×7.62 cm cylindrical NaI(Tl)

detector for a 1332 keV gamma peak. The total energy resolution of the summed data was

interpolated to be ∼ 4 keV at 2038 keV. IGEX used unique cryostat technology, ultra-low

background materials, ancient lead shielding, and pulse shape analysis to maximize the

signal to noise ratio.
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1.3.2 Heidelberg-Moscow

The HEIDELBERG-MOSCOW experiment used 10.96 kg active mass of 86% en-

riched 76Ge into five p-type HPGe detectors. The experiment ran August 1990 to May 2003

in the Gran-Sasso underground laboratory(3500 mwe). Four of these detectors were placed

in a common shield. In the construction of the cryostat, mainly made of electrolytic Cu,

only selected and cleaned low-level materials were used. Materials were stored underground

to minimize the activation due to cosmic rays [24].

All detectors except detector No. 4 were operated in a common Pb shielding of

30 cm of Pb, the 10 cm closest to the detectors were radio-pure LC2-grade Pb. The entire

cryostat is placed in an air-tight steel box pressurized with radio-pure nitrogen in order to

suppress the 222Rn contamination of the air [1].

Table 1.1: Characterization of the 5 enriched Heidelberg-Moscow HPGe detectors [1].

Technical parameters of the five enriched detectors
Detector Total Active Enrichment FWHM at

mass mass in 76Ge 1332 keV
[kg] [kg] [%] [keV]

No. 1 0.980 0.920 85.96±1.3 2.226±0.02
No. 2 2.906 2.758 86.66±2.5 2.436±0.03
No. 3 2.446 2.324 88.36±2.6 2.716±0.03
No. 4 2.400 2.295 86.36±1.3 2.146±0.04
No. 5 2.781 2.666 85.66±1.3 2.556±0.05

1.3.3 GERDA

GERmanium Detector Array (GERDA) experiment is an array of 86% isotopically

enriched 76Ge detectors, submerged in liquid argon for both shielding and cooling [25, 26].

The argon is very radon pure and will be surrounded by water as a low-Z shield. The liquid
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argon will act as an active shield as well as a bulk shield to the HPGe detectors inside.

This experiment has three phases. The first phase will combine the five detectors from the

Heidelberg-Moscow experiment with the three ∼ 2 kg detectors from the IGEX experiment.

GERDA will reduce the background lower then both Hiedelberg-Moscow and IGEX by using

ultra-clean materials, pulse shape analysis, segmentation, and novel shielding with liquid

argon.

1.3.4 Majorana

The Majorana collaboration proposes to operate 500 kg of 86% enriched Ge detec-

tors seperated into 60 kg modules. The cryostat’s will be constructed using electro-formed

copper[27], to avoid the production of radioactive impurities by cosmic ray activation the

copper will be electroformed underground. Presently, electrode configurations for Ge detec-

tors are under study to check the impact of parameters such as segmentation and granularity

on signal and background. The research and development phase will begin with a demon-

strator module with 30-60 kg of enriched and unenriched HPGe detectors. The goal is to

reach a background of less than 1 counts/ton/keV/y in the energy region of interest around

2038 keV through the use of ultrapure materials, improved pulse shape discrimination,

and detector granularity to reject multiple site events corresponding to background events

[11, 23].

1.3.5 Necessary advances addressed by this work

All of these experiments have used, or have proposed using high purity germanium

as both the source and the detector of the neutrino less double beta decay signal. Results

are recorded as lower limits and the reader is referred to the Particle Data Group publication
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for their comparison [28]. In order to place stringent limits on the neutrino signal, many

sources of background must be suppressed as much as possible.

Pulse Shape Analysis

The availability of digital electronics capable of recording and analyzing pulses

from an HPGe detector system has enabled the continued advancement of detector technol-

ogy and experimental sensitivity. Previous experiments would typically use sophisticated

analog electronics to reduce backgrounds by triggering on the pulses of interest, defined

by some criteria, and extract information such as the energy and timing of the event. By

digitizing the analog signals on the nanosecond time scale, we can easily record the pulse for

off-line analysis. This Pulse Shape Analysis (PSA) for HPGe detector systems allows for

the extraction of information about the event that was difficult if not impossible in previous

systems [29].

With the ability to record and analyze each pulse a new door has opened. In

addition to the energy of the incident interaction, geometrical localization of the event can

be extracted [30]. Multiple site events can be separated from single site events. Even gamma

ray tracking can be done to locate the source position relative to the detector [31].

The electronic noise is a fundamental limitation of any PSA method. Charge car-

rier production in an ionizing event has fluctuations described by the Fano factor. There is

thermal noise in the solid state detector and there is noise in the electronics. Where possi-

ble, all of these sources must be minimized to extract the maximum amount of information

from the signal.
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Low Background

The half life of neutrinoless double beta decay in 76Ge is greater than 1.2 × 1025

years [14, 32]. With such a small decay rate, true decay events will be very few and far

between. In order to tell the signal of interest from the background radiation, all back-

grounds must be minimized. Existing experiments have gone to great lengths to minimize

backgrounds, however future experiments must go further. Experiments must be located

deep underground with both passive and active shielding to reduce high energy cosmic

backgrounds. Ultrapure materials must surround the detectors to reduce local radiological

backgrounds. In short, every means within the resources available to the experimenters

must be utilized to drive backgrounds low enough to see such rare events.

One source of background is the detector itself [33]. Even though these detectors

are made of a high purity germanium, the highest purity material known to man [6], there

still exists a radioactive contamination in the detector. Two of the most troublesome con-

taminants are U, Th and K. Also, when exposed to cosmic radiation, as is present on the

earths’ surface, detector material can be transformed into radioactive isotopes such as 57Co,

60Co,68Ge.

1 Ton

As mentioned earlier, the decay rate of the signal of interest is exceedingly small.

One way to increase the likelihood of seeing a signal, assuming that the background is low

enough, is simply to increase the amount of mass. Current calculations indicate that at

least 1 ton of material is needed to achieve a statistically significant result within 10 years

for a Majorana neutrino mass of ≈ 50 eV. A common HPGe detector is between 1/2 and
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1 kg, with up to 2 kg detectors possible. There are, however, limits to the size of a crystal

that can be made and this means that arrays of detectors must be used to establish 1 ton

of active mass.

1.3.6 Wrapping it all up

There are many more factors to consider. The ones listed above are the ones

directly affected by this work. In order to maximize our ability to do pulse shape analysis,

an electronic model of each detector must be made. The better the model, the better our

ability to discriminated between signals of interest and noise. The number of detectors

necessary, combined with the very urgent need to minimize the time spent above ground

dictates that any characterizations needed above ground must be done quickly. The number

of detectors limits the amount of characterization time that can be spent on each detector.

Optimizing the performance of an array of HPGe detectors involves a delicate trade off

between ease of characterization, background reduction capability, and intrinsic background

introduced by the instrumentation required for signal readout. As the parameters of this

problem have clarified, so has the opportunity for new detector geometries and analysis

methods to make an impact.

1.4 Scope of this work

This work includes investigation of a new method to quickly characterize high pu-

rity germanium detectors. The new method is a simple two hour test that can be preformed

with no more than a working detector, suitable electronics and a pulser. Our method is

compared and contrasted with other methods to obtain the same information. Each alter-
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native is found inadequate or too time consuming to be viable. A second key method is

introduced for optimization of the design parameters using simulations of HPGe response

and the actual analysis software to maximize the signal to noise ratio in the region of inter-

est. An example of this method optimizes a novel detector design and optimizes the height

and diameter of the detector to maximize a specific analysis method. As such, this work

provides current experiments a method to quickly optimize the efficacy of pulse shape analy-

sis methods while minimizing ingrown backgrounds and remaining tractable for performing

in an experiment with a large number of detectors.
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Chapter 2

Fundamentals of radiation
interaction with high purity
germanium detectors

2.1 Introduction

The interaction of a photon with the detector material results in all or part of

the photon’s energy being transferred to one or more charged particles. These charges are

transported through the detector and collected, producing an electrical signal which can

be recorded and analyzed to extract information such as the energy and location of the

interaction.

Pulse shape analysis of photon interactions with high purity germanium semicon-

ductor detectors requires an understanding of the physical processes associated with the

interaction of electromagnetic radiation with matter, the basic properties of germanium

semiconductor as related to its use as a semiconductor detector, and the factors involved

in the electronic signal formation within the detector material. Each aspect contributes to

the ability to accurately model and analyze pulse shapes formed by photon interactions.
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2.2 The Detection Process

A detector will produce an electrical signal that contains information from the

photon interaction. In addition to the energy it has deposited in the detector, other infor-

mation is available as well. The detection of photons is an indirect process, involving an

interaction between the photon and the detector material that results in all or part of the

energy being transferred to one or more charge carrying particles. From one keV to tens

of an MeV the interaction mechanisms that a photon can undergo in a solid state detector

are restricted to photoelectric absorption, Compton scattering and electron-positron pair

production. The relevance of each interaction mechanism as a function of energy will be

investigated in subsequent sections.

An HPGe detector with an appropriate contact forms a p-n junction [6]. This

junction is reverse biased by applying the appropriate voltage to the appropriate detector

contact, creating an electric field across an empty conduction band. A photon moving

through the region can interact through processes of photoelectric absorption, Compton

scattering or electron-positron pair production. Photon interactions result in all or part

of the energy being transferred to the charge carrying particles, traversing the forbidden

band gap of the crystal lattice to the conduction band which are then swept away to the

contacts by the electric field. The signal formed by the movement of this charge contains

the information of the interaction.

2.3 Photon Interactions with Matter

As mentioned previously, there are three main photon interactions considered in

this thesis. In the most general form, we have the statistics formula for the photon interac-
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tion probability.

I = I0e
−µx (2.1)

where x is the distance traveled in the the material and µ is the probability per unit length of

removal of that photon called the linear attenuation coefficient [34]. The linear attenuation

coefficient µ has three contributions:

µ = PPA + PCS + PPP (2.2)

The PPA is the probability per unit length of photo absorption. The PCS is the probability

per unit length of Compton scattering. The PPP is the probability per unit length of pair

production. Each probability can be expressed as a cross section as Pi = σiNZ

Note that this formula applies to a specific material and photons at a specific

energy. It cannot account for altering of the energy or production of new photons of any

other methods. This is a limited methodology.

2.3.1 Compton Scattering

For the probability of Compton scattering above the probability is given by P (σ) =

σcNZ where N is the number of atoms and Z is the atomic number. The the differential

cross section per electron, σc, is given by the Klein-Nishina formula:

dσ

dΩ
= r20

(
1

1 + α(1− cosθ)

)2(1 + cos2θ

2

)(
1 +

α2(1− cosθ)2

(1 + cos2θ)[1 + α(1− cosθ)]

)
(2.3)

where α is the photon energy in units of the electron rest energy α = Eγ/mc
2. The r0 is a

parameter given by r0 = e2/4πε0mc2 = 2.818 [34].
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2.3.2 Photoelectric Absorption

The photoelectric effect is the main interaction mechanism for photons at low

energies (up to about 200 keV for Ge). The photon interacts with an atom in such a way

that the entire photon energy is transferred to a bound electron which leaves the atom. The

energy of the resulting free electron is given by the difference between the energy of the

photon hν and the binding energy of the electron Eb

E = hν − Eb (2.4)

The nucleus will recoil due to conservation of the impulse. Photons undergoing photoelectric

absorption are predominantly absorbed by the K shell electrons. Part of the binding energy

Eb will be transferred to X-rays emitted from the atom when the vacancy left by a photo-

electron is filled by a less bound electron. The X-rays are in turn absorbed by the other

atoms producing further photoelectrons.

The probability of photoelectric absorption is given as the cross-section:

σpe = kpe ·
Z4.5

E3
γ

, (2.5)

where kpe is a proportionality constant, Z is the atomic number of the material, and Eγ is

the energy of the incident photon [35]. For compounds, the different atomic numbers (Z)

are averaged according to their weight fractions. The probability of interaction occurring at

constant atomic densities is proportional to the path length of photon through the detector.

2.3.3 Pair Production

Pair production is the production of electron-positron pairs in the presence of an

electromagnetic field due to the presence of a near by massive atom. The conservation of
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energy gives the equation:

Eγ = T+ + T− + 2mc2 (2.6)

Thus no pair production happens below 1.022 MeV.

No simple expression exists for the probability of pair production per nucleus,

however an empirical formula exists for the cross section for high energies. For photon

energies E >> 20 MeV the cross section has roughly a Z2 dependence. It can be written

σPP = 4αr20Z
2

(
7
9
ln

(
183
Z1/3

)
− 1

54

)
(2.7)

where α represent the fine structure constant [36].

The electron and positron produced then can further interact with the detector

material through several means. The charges can produce additional photons by annihila-

tion or Bremsstrahlung in strong electric fields.

2.3.4 Other forms of interactions

In addition, photons can undergo Rayleigh scattering, Thompson scattering and

muon-antimuon pair production. These processes are typically not important in double beta

decay experiments, and so we do not consider them further, for a more extensive review see

[36, 35, 33].

2.4 HPGe as a radiation detector

Germanium and silicon are semiconducting material which can be made to exceed-

ingly high purity standards [7]. They can also be made into very large crystals. A crystal

of germanium is made from germanium atoms arranged in a diamond lattice, as in Fig. 2.4.
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Figure 2.1: Representation of the diamond lattice structure of high purity germanium.

Figure 2.2: The band structure of Germanium. Used with permission [2].
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Figure 2.3: The range of an electron of given energy in high purity germanium.

Germanium atoms arranged in a diamond lattice are close enough that their orbital

electron shells of overlap. Given the Pauli exclusion principle and multiple atoms, the

electrons form bands in the allowed energies they can take. As more atoms are brought

into the diamond lattice, more electrons fill the allowed energy band. For semiconductors,

there exist both allowed and forbidden energy bands.

The outer most electrons are only loosely bond to the atom. When the atoms come

together to form a semi-conductor crystal lattice these outer electrons form an energy band

called the valence band. Above this is the forbidden band which no electron can occupy.

Above this is called the conduction band. In the conduction band electrons are free to move

around the crystal.

Electrons in the conduction band are not geometrically free to zip through the
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crystal. From Newtons laws we know that a mass will move in a straight line until acted

on by a force, its momentum is constant unless changed by a force. This is true of electrons

traveling in the conduction band of a crystal. The changes in the charge carriers momen-

tum as they scatter through the crystal lattice gives rise to the concept of resistance in a

conducting material. The motion of electrons in a crystal lattice is only approximately a

classical process, described by quantum mechanics through a Bloch wave-function. This

wave-function describes an electron traveling through a crystal lattice and can be used to

accurately calculate the band structures of a semiconductor in a self consistent manner.

2.4.1 Charge Carrier Mobility

The model of charge carriers in a semiconductor used by many radiation textbooks

[6, 36] is derived from the Drude model. The model of conduction would be simple if it

were not for [37]:

1. Scattering which depends on k and q

2. Statistical effects of electron propagation of multiple electrons

3. Band structure effects

Using the Drude model of conduction we can easily bypass these processes with averaging.

We begin with Newton’s second law:

mv̇ = F0 (2.8)

To include effects of the band structure we would replace the mass (m) with the effective

mass (m∗) [38]. In order to avoid we an ever increasing velocity we add a frictional force:

m∗v̇ = F0 −m∗
v
τ

(2.9)
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Letting F0 go to 0 we have a solution for the velocity v ∝ e−
t
τ with τ as the decay time

constant. In the presence of an electric field the force is F = qE giving:

m∗v̇ = −eE−m∗v
τ

(2.10)

combining this equation with the assumption of steady state we have:

m∗v̇ = 0 = −eE−m∗v
τ

(2.11)

Solving for the velocity we have:

m∗v = eEτ (2.12)

We know from Ohm’s law that the current density is defined as j = σE. From electrody-

namics [39] we have the current density is given by j = env. Plugging in v from above we

have:

j = env =
e2τn

m∗
E = σE (2.13)

where σ is the conductivity, σ = e2τn
m∗ = enµ, and µ is the mobility. This model is good

for low field, low frequency conduction where the velocity is on average isotropic in the

semiconductor, such as exist in HPGe detectors.

The source of the frictional force is scattering through the crystal lattice. By far the

most important scattering process for low energy electrons affecting conductivity is lattice

vibrations (phonons) [37]. Phonons take energy away from the electrons and keep them

energetically close to the conduction band edge. There are other scattering mechanisms,

which are elastic but still influence the conduction substantially. Among these are scattering

by charge impurities, neutral impurities, and surfaces. Phonons traverse the crystal lattice

as well and scatter by impurities in the crystal lattice as well as different isotopes of which

the crystal is composed
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In this model we have the velocity as a function of the electric field strength

v = µ|E| where the coefficient is given by µ = eτ/m∗. The electrons scattering through the

crystal lattice gives rise to an effective mass of the charge carriers. This lattice dependence

also introduces a directionality to the effective mass, thus an effective mass is a tensor

relative to the crystal lattice. This directionality, coupled with the electric field results in

a directional dependence of the velocity in the crystal lattice as well. This directionality in

the charge carrier velocity is called the anisotropic drift velocity.

2.4.2 Statistics of charge collection

To understand the statistics of electron-hole pair production, let us assume that

the energy deposited by the incident radiation goes into causing lattice excitations and

ionization. If εi and εx represent the average energies needed to produce ionization and

excitation respectively, then the total deposited energy can be written as

Edep = εini + εxnx (2.14)

where ni and nx represent the total number of ionization and excitations produced by the

radiation. If we now assume that these processes follow Poisson statistics, it would mean

that the variance in the number of ionization and excitations can be written as

σi =
√
ni (2.15)

σx =
√
nx (2.16)

These two variances are normally not equal because of differences in the thresholds for

excitation and ionization processes. However if we weight them with their corresponding
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thresholds, they should be equal for a large number of collisions, i.e.,

εiσi = εxσx (2.17)

εi
√
ni = εx

√
nx (2.18)

Combining this with equation 2.14 gives

σi =
εx
εi

[
Edep
εx
− εi
εx
ni

]1/2

(2.19)

Let us now denote the average energy needed to create an electron-hole pair by wi. Note

that this energy includes the contribution from all other non-ionizing processes as well. This

means that it can be obtained simply by dividing the total deposited energy by the number

of electron-hole pairs detected ns. Hence we can write

wi =
Edep
ns

(2.20)

or

ns =
Edep
wi

(2.21)

If we have a perfect detection system that is able to count all the charge pairs generated,

then we can safely substitute ns for ni. In this case the above expression for σi, yields

σi =
[
εx
εi

(
wi
εi
− 1
)
Edep
wi

]1/2

(2.22)

Using Edep/wi = ns, this can be written as

σi =
√
Fns (2.23)

where

F =
εx
εi

(
wi
εi
− 1
)

(2.24)
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is called the Fano factor. It is interesting to note here that even though we assumed that the

individual processes of ionization and excitations were Poisson in nature, but the spread in

the output signal can be described by the Poisson process only if we multiply it by another

factor. The reason, of course, is that these processes are not uncorrelated as required by

a strictly Gaussian process. The Fano factor was first introduced to explain the anomaly

between the observed and expected variance in the signal [40]. The simple calculations we

performed above do not produce very accurate results and they were only meant to motivate

the Fano factor. For detailed calculations see van Roosbroeck, W and Alkhazov.

2.4.3 Charge Impurity

The impurities found in a HPGe crystal play a crucial role in the operation of

the crystal as a radiation detector. Impurities have many classifications depending on

their effect. Uncharged impurities are elements in the crystal lattice with strongly bound

electrons such that they contribute minimally to the electrical properties of the crystal.

These impurities can however decay producing an internal source of background to signals

of interest. For many 0νββ decay experiments using HPGe detectors, impurities that can

contribute background to the region of interest are U,Th,K [41, 42, 43, 44, 24]. Impurities

are removed through the method of zone refining [7, 45]. The model for how impurities

move during zone refining is given as:

N = N0k(1− L)k−1 (2.25)

where N0 is the concentration of the impurity in the starting melted germanium, L is the

fraction of the original melt has solidified, k is the segregation coefficient of the impurity.

Known segregation coefficients are listed in Table: 2.2.
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Charged impurities are those elements which contribute significantly to the elec-

trical properties of an HPGe crystal. Of these type of impurities are donors and acceptors.

Donors have a loosely bound electron which it shares with the germanium crystal lattice.

Acceptors are the opposite of donors in that they want to loosely accept an electron from

the crystal lattice. Charged impurities play a crucial role in HPGe detectors. At the purity

levels germanium crystal are grown, manufactures must add charged impurities to make

a functional HPGe detector, these are referred to as dopant’s. The need for dopant’s is

illustrated in Fig. 2.4. The electric field without the dopant’s is very high at the inner

contact and very low at the outer contact, resulting in very poor charge collection. The

application of large voltages cannot compensate. By doping the high purity material with

the appropriate donors or acceptors, the initially neutral material must remove the donor

or acceptor charge leaving behind a net charge which extends the electric field through the

entire volume. Dopant’s enable high purity germanium detectors. Many common dopant’s

are used in HPGe detectors, many common in the semi-conductor industry are listed in

Table: 2.1. All High purity material

Table 2.1: Common shallow donors and acceptors that can be used in high purity germanium
semiconductors [2].

Common dopant’s for use in Germanium
Shallow Donors As P Sb Bi Li

Shallow Acceptors Al B Ga In Tl

After the material is zone refined and the proper dopant’s added, it is fabricated

into a large single crystal by the Czochralski method [45]. This method involves growing a

single crystal from melted material in a quartz crucible. The system is heated by a radio

frequency induction coil wrapped around the crucible in a process called RF heating. A
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Figure 2.4: Comparison of the magnitude of the electric field for a coaxial HPGe detector
with and without a charged impurities. The radius goes from an inner radius of 1.5 mm
to an outer radius of 14 mm. The impurity density was given as constant at 0.0003 C/m3.
The black line illustrate the electric field at depletion at 100 Volts up to 150 Volts applied
to the contact. The red line shows the electric field without charged impurities at 150 volts.
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Table 2.2: Segregation coefficients for elements in germanium as reported by Trumbore
[3].The elements U,Th and K are not known but of particular interest as sources of back-
ground in HPGe detectors.

Elemental Segregation Coefficients in Germanium
Element Coefficient Element Coefficient

Co 1.00E-06 Sb 3.00E-03
Zn 4.00E-04 Li 0.002
Mn 1.00E-06 As 2.00E-02
Fe 3.00E-05 P 8.00E-02
Tl 4.00E-05 B 17
Bi 4.50E-05 U -
P 8.00E-02 Th -
Pt 5.00E-06 K -
Cd > 1E-05 Ag 4.00E-07
V < 3E-07 In 0.001

Au 1.30E-05 Si 5.5
Cu 1.50E-05 Pb 1.70E-04
Al 7.30E-02 Bi 4.50E-05
Ga 8.70E-02 Te 1.00E-06
Sn 2.00E-02 Ni 3.00E-06

small dislocation free seed crystal is slowly pulled out of the melt as the material solidifies

into a single crystal. The seed is rotated as it is pulled to obtain a cylindrical ingot. To

prevent absorption of impurities the process takes places under argon gas [7].

2.5 Electronics

One of the key components in modern detector systems is the electronics readout

system. Many experiments and detector systems use many different electronics technologies,

however the all share the same basic principles for the electronic readout and optimization

of signal to noise ratio. Ultimately, the purpose of these pulse processing systems is to:

1. Acquire electrical signal from the detector.
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Figure 2.5: Impurity profile of a germanium ingot [7]. The crystal growth seed is located
at the 0 % end of the crystal.

2. Optimize the response of the system to:

• the minimum detectable signal

• energy measurement

• event rate

• timing

• insensitivity to variations in the pulse shape due to detector characteristics

3. Digitize and store the signal for subsequent analysis

Generally, these properties cannot be optimized simultaneously, so compromises

are necessary. In addition to these primary properties of the electronics readout system,

other considerations can be equally important like: resistance to radiation damage, low
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power, portable, temperature, etc. . . . Many modern and accessible texts exists so the topic

of electronics will not be discussed any further here except when necessary.
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Chapter 3

Charge Transport Simulation

3.1 Introduction

The Shockely-Ramo theorem is the basis for charge transport simulation in High

Purity Germanium (HPGe) detectors [46, 47, 48]. In this chapter we review this method and

present a computer code (CRT) to perform charge transport simulations in HPGe detector.

We discuss the most significant input parameters such as the geometry and impurity profile.

3.2 Charge Transport Code

Our charge transport code developed solves for the potential of a complex geomet-

rical germanium detector in three dimensions. The code was developed from scratch for

many reasons, including the high cost of commercial software to the scientific community

in general, and the lack of free software capable of solving for complex three dimensional

geometries in particular. Instead of patching several programs and data formats together

a complete solution provides seamless compatibility, as well as high level transparency. Fi-
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nally, being general in the scope of the geometry but specific in the ultimate form of the

solution provides for efficient development, computational efficiency and design stability.

An accurate, verified model of the pulse shape formation process is needed. Such

an accurate simulation model has been developed (CRT), with experimental validation.

The model covers aspects necessary to completely describe the pulse formation process:

(1) Modeling of the electric fields, with and without space charge effects.

(2) Transport of the deposited charge, including second-order effects such as drift velocity

anisotropy from lattice orientation effects.

(3) Calculation of induced charge signals, using the weighting field formalism.

(4) Convolving with the electronic response of the analog readout system, e.g. a charge-

integrating preamplifier.

3.2.1 Field Solutions

CRT can solve for the fields given the applied voltages, the geometry and the

charged impurity profile. Solving for the electric field in a given region is most easily done

by first solving for the potential. Given boundary conditions, the relaxation method [39] is

a simple yet powerful method of solving the potential in the bounded region. However, it

proves difficult to solve the boundary conditions do not match up with the grid coordinate

system being used. HPGe detectors are often of very complex shapes and most often include

cylindrical and spherical regions.
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Figure 3.1: A simple HPGe detector showing cylindrical, spherical and conic shaped regions.

Geometry

The geometry is described with Congruent Solid Geometry, where simple shapes

are operated on by a subtraction, intersection, or a union of one of more shapes to another.

A simple implementation of this method allows for the combination of simple shapes to ac-

curately represent a complex volume. The shapes are combined with the relevant material

properties. With the description of the geometry a Cartesian grid is built and superimposed

with a surface grid. The surface grid imposes the proper boundary conditions of the geom-

etry on the fields. Given a charge density profile, the code can then solve for the necessary

electric and weighting fields.

CRT constructs geometries using derived classes for each simple shape. Adding a

derived object that performs a Union, Intersection, or Subtraction function on two objects

we can make complex volumes from simple ones. We pass the constructed object to a

logical class providing material information about the object, like its permittivity or density.
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Figure 3.2: Illustration of how congruent solid geometry descriptions can represent complex
geometries. Starting with a simple cylinder on the right, we can apply a subtraction of
another smaller cylinder to produce a coaxial cylinder. We can then use a union to join
another cylinder to the top to generate a semi coaxial detector shape.

Finally we pass the logical object to a physical volume class handling the actual placement of

the volume. The physical volume represents the object in question, defining its boundaries,

its position and any material properties. Any information needed, is passed through the

physical volume, and given the correct offsets to be passed to each constituent simple solid.

Grid

A graphic of a cylinder represented on a course Cartesian grid is shown in Fig. 3.3.

We can see the short comings inherent to this method. Even with very small grid spacing,

there will be significant error near the surface which can collectively increase the error of

the integral cells and final solution. Besides the inability to account for the volume and

total charge, the greatest error comes from not being able to correctly enforce the boundary

conditions of the electric field at the surface.
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Figure 3.3: Illustration of how a cylinder super-imposed on a Cartesian grid. In red are the
grid points of a regular Cartesian grid. With the cylinder superimposed the blue shows the
volume of our effective solution.

CRT superimposes several grids. The basis is a Cartesian grid used to represent

the potential at any point in the volume. A second non-regular grid represents the surface

at any intersection of the surface with the Cartesian grid. This method faithfully reproduces

the correct boundary conditions at the surface, most notably that the electric field is normal

to the metallic surface [39].

CRT is written in the C++ language [49] making use of many of the key concepts.

Defining base classes, inheritance, along with the extensive use of pointers. Each regular

grid point contains the potential and charge at that point, as well as pointers to each of

the six nearest neighbors and the distance to each. The CRT code uses relaxation to solve

for the potential [39] and using pointers to get the nearest neighbor information relieves

the code of costly overhead with the use of a little extra memory. The consequent speedup

makes this simple relaxation implementation more than sufficient for calculating electric
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Figure 3.4: This figure demonstrates the relationship between each grid point and the super-
imposed surface grid point. The Blue connections are pointers from each grid point to its
neighbor. The Red connections are pointers to the surface grid point potential. These links
have the correct distance to the correct nearest neighbor. These surface elements can be
understood as the superposition of two different grid systems. These two grids allow us the
ease of a regular Cartesian grid while using the surface grid to correctly enforce boundary
conditions. The ability to build the surface grid in any non-uniform way allows for the
construction of complex geometries.

fields within the scope of this problem. These nearest neighbor pointers of the regular grid

point to the necessary value at the surface for unambiguous calculation.

3.2.2 Charge Transport Dynamics

CRT can build directly or read from a file the weight potentials for each contact as

well as the electrical potential given a charge impurity profile and applied voltage. From this

CRT builds the electric field. For charge transport dynamics, a third order, 3D polynomial

interpolation of the potential is built and stored for each grid point. This allows for a

second order electric field such that the electric field and derivatives are smooth at any cell

boundary. For dynamics,the interaction locations and deposition energies are read in from
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a file. The energies are mapped to charge in Germanium [6, 50] producing electron hole

pairs.

This charge is propagated via a fourth-order Runga-Kutta (RK4)integration [51]

of the charges from their initial positions to the boundaries. The velocity at each point is

a function of the electric field and crystal lattice orientation given by [52, 4]:

v =
µ0E

(1 + ( EE0
)1/β)β

− µnE (3.1)

Where the parameters come from the sign of the charge carrier and the crystal orientation

relative to charge propagation.

Table 3.1: Coefficients for the velocity equation Eq. 3.1 from [4].

Velocity coefficients
Orientation µ0 β E0 µn

[V/cm]
< 100 >e 40180 0.72 493 589
< 111 >e 42426 0.87 251 62
< 100 >h 66333 0.7444 181 -
< 111 >h 107270 0.580 100 -

The weighting potentials permit the calculation of all proper current and charge

signals for even highly segmented detectors with complex geometry. CRT handles multiple

depositions in a single event to produce a total signal. A record file is then produced of the

current and charge signals. [50, 46, 53, 51, 54, 4, 48, 55, 52]

3.2.3 Pulse Processing

A separate code reads in the resulting current signal and convolves it with the

transfer function of the readout electronics to produce the observed voltage signal. The

voltage signal is stored in a binary file of the format used by the DGF4C digitizer from
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X-ray Instrumentation Associates. This allows us to run the same analysis code on both

the simulated and experimental signals for consistent comparison.

The transfer function captures the effect of a charge integrating preamplifier. The

functional form of the response can be read in from a file that has been produced from a

measurement or from a SPICE model [56]. The default behavior is to use a two parameter

analytical model to approximate the electronics response. This analytical model works very

well in general cases. Reading a response function in from a file allows one to fine tune

the simulation to an electronics design or existing electronics package [57]. The analytical

model is given as [58]:

R(t) =
A

Td − Tr
√
π

2
√

1.3

(
exp(− t

Td
)− exp(−1.3t2

T 2
r

)
)

(3.2)

3.2.4 Verification and Validation

Validation of the electric field solution has been relatively straight forward. A

comparison for geometries with analytical solutions has been performed 3.5. The electric

fields are normal to the metallic surface in all cases tested. Explicit enforcement of this rule

is not necessary with the super-position of the surface grid.

The energy histogram in Fig. 3.6 sums up the three main systematic tests necessary

for this code. An input file was generated where an energy distribution was spread out

along a constant radius but varying angle. The model has crystal lattice anisotropic drift

velocity capabilities, however these results used an isotropic model where all charges moved

at the same speed given the magnitude of the electric field. This tested the ability of the

code to interpolate the electric field in 3D coordinates. The sensitivity of the current on
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the weighting field made this very difficult. Thus the systematic tests we felt were most

significant for this code were:

• Charge conservation, charge is lost as a particle steps out of the volume, with such

high fields the velocities must have good integration method. We use RK4 integration,

charge is conserved in this model.

• Sufficiently smooth interpolation methods, the current is very sensitive to the weight-

ing field, so we must have a good interpolation method, otherwise the results are both

non-conservation of charge and inaccurate signals.

• Correctly account for non-Cartesian system in Cartesian coordinates. Interpolating

along an axis on a grid is fairly easy, interpolating in a 3D grid, is straight forward

as long as the point is sufficiently contained by Cartesian grid point. If we are near

a surface, most interpolation schemes introduce errors. Correct geometric accounting

ensures that every path gives the correct pulse for the same energy for the same radius.

3.3 Charge Impurity Profile

The signal is a function of the velocity. The velocity and path depend on the

electric field in the detector. The electric field is a direct result of the boundary conditions

combined with the charged density of the charged impurities, both acceptors NA and donors

ND. The total charge density is the difference in these two impurities per unit volume.

The charge density is one of the most critical parameters in the computational

model. Ironically, the charge density, from the dopant’s, is the most difficult parameter

to measure and insufficiently understood. The underlying processes are understood, the
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Figure 3.5: The potential of a true cylindrical coaxial HPGe from simulation compared to
the analytical solution [6].
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Figure 3.6: Comparison between simulated energy depositions uniformly distributed
through an HPGe detector and the energy given after charge transport simulation. This
type of systematic test shows that the energy is preserved across the crystal volume. This
type of test also shows that charge is conserved as well.
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models exist, but few studies have been preformed to examine the nature of charge density

profiles in working high purity germanium detectors. A method to quickly obtain a charge

density profile is given in chapter 6.

The lack of these studies is a critical shortcoming in the current status of detector

characterization methods. A proper handle on the charged impurity profile is necessary for

any functional model of the detector response [7]. The impurity profile determines many

physical aspects of an HPGe detector performance, including the depletion voltage, the

capacitance, and the pulse shape characteristics directly. How to find the charged impurity

profile is given in chapter 6, along with a comparison to other methods.
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Chapter 4

Single from Multiple Site Rejection

The signatures of events encountered in double beta decay experiments can be

classified according to the the spatial distribution of ionization in the semiconducting de-

tector. A detailed classification for these events is given in addition to the importance of

multiple site rejection and single site acceptance. A simple analytical model of the pulse

shape discrimination is presented as well.

4.1 Why we need it

The 0νbb-decay process has, in addition to the daughter nuclei, two electrons and

no neutrinos in the final state. The sum of the kinetic energies of the electrons is therefore

approximately equal to the Q-value for the decay. For the germanium isotope 76Ge this

energy release is Qββ = 2039 keV [59]. Electrons in the relevant energy range predominantly

deposit their energy in germanium via ionization. The range of the electrons is of the order

of millimeters [60]. Since the germanium detectors under consideration has a volume of the

order of 400cm3, the energy of the electrons will be fully contained within a small volume

of the crystal, if no hard bremsstrahlung is present. The signature of 0νbb-decay events is

thus a peak at the energy of 2039 keV.



41

Background events are produced from a wide variety of physical processes with

alpha’s, beta’s, gamma’s, pion’s, muon’s, neutrons, etc. . . , in this work we concentrate

on the dominant background contributions in underground low background germanium

experiments resulting from gamma radiation. Background rocesses not treated here are

considered more fully elsewhere [61] as is the overall neutron flux from radioactive elements

in the surrounding bed-rock.

All radioactive materials with Q-values larger than Qββ are potential background

sources for the 0νββ-decay process. A fraction of the released energy can be deposited

inside a detector, such that the measured energy is in the region of interest (ROI) the

Qββ-value. Photons in the MeV range predominantly deposit their energy via Compton

scattering. Their absorption length is of the order of centimeters. Considering the size of

the germanium crystals under study, process with photons in the final state are likely to

deposit only a fraction of the total energy inside one detector. The signature of the 0νββ

decay signal and the main background signatures are classified according to the particles in

the final state1.

• Single Site:

– Two electrons: This class encompasses the neutrino-less and neutrino accompa-

nied double beta decay processes. If the energy resolution is better than 10keV,

the two modes of double beta decay can be separated, since the energy region

around the Qββ-value is not populated by 2νββ-decay process. The two electrons

deposit their energy locally, i.e. on a millimeter scale, see Fig.4.1.
1The Single Site versus Multiple Site categorization was adapted from Abt[62], indicating wether energy

deposition occurs entirely within a single detector region or if energy deposition is divided amoung several
detector regions.
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• Multiple Site:

– Photon(s) and electron: This class contains all β− decay processes accompanied

by the emission of one of more photons which occur inside the detector or close

to its surface. The energy of the electron is deposited locally, whereas the photon

scatter and not all of its energy is necessarily deposited inside the detector. An

example for this class is the decay of 60Co inside the germanium.

– Photon(s) and positron: Similar to above, this class contains all β+-decay pro-

cesses accompanied by the emission of one or more photons inside the detector.

The positron deposits most of its energy locally and annihilates. The photons

(the two 511 keV gammas plus any additional photons) scatter and mostly do

not deposit all of their energy inside one detector. The most prominent example

for this class is the decay of 68Ge inside the germanium.

– Photon(s) only : If the decay occurs outside the germanium detectors, α-particles

of electrons can be stopped before they reach the crystals. Most prominent

examples are the decays of 208Tl and 214Bi which come from radio-impurities in

the detector surrounding.

– α-particles: Surface contaminations with 210Pb or other isotopes which decay

via α-emission can contribute to the background. α-particles in the 2-10 MeV

range deposit their energy on a 2-50 µm scale. α-particles emitted at the surface

therefore potentially deposit only a fraction of their initial energy inside the

active volume of the crystal.
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Figure 4.1: The electron range in HPGe versus initial energy. The solid horizontal line
shows the 1 mm electron path length close to 0.9 MeV.
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4.2 Statistical Moments

In this section we discuss the use of a pulse shape discrimination method derived

from statistical moments but not normalized to a normal distribution. The properties of

this parameter space provide an excellent basis for a complete framework to describe pulse

properties.

In order to arrive at a distinct formulation of statistical problems, it is nec-
essary to define the task which the statistician set himself: briefly and in its
most concrete form, the object of statistical methods is the reduction of data.
A quantity of data, which usually by its mere bulk is incapable of entering the
mind, is to be replaced by relatively few quantities which shall adequately rep-
resent the whole, or which, in other words, shall contain as much as possible,
ideally the whole, of the relevant information contained in the original data. [63]

4.2.1 Statistical Moments properties

In the statistical description of any distribution of data point we use the statistical

language of moments. When a set of values has a sufficiently strong central tendency, that

is, a tendency to cluster around some particular value, then it may be useful to characterize

the set by its moments. A moment in this sense derives its meaning from physics and is

given mathematically by the nth moment of a real-valued function f(x) of a real variable

about a value c is

µn =
∫ ∞
−∞

(x− c)nf(x)dx (4.1)

The real value c is the mean of the function at the origin. Given the subtle assumption that

all moments are about the origin leading to the subtlety c→ µ.

The zeroth moment (n = 0) gives the area under the curve.

µ0 =
∫ ∞
−∞

(x− c)0f(x)dx =
∫ ∞
−∞

f(x)dx (4.2)
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In the context of signal filters, this moment is preserved for most filters including a moving

window average. Few filters guarantee the preservation of higher moments. For discrete

signals this takes the form:

µ0 = area =
N−1∑
j=0

xj (4.3)

The next moment for n = 1 is the mean of the function and is given by:

µ1 =
∫ ∞
−∞

(x− µ)1f(x)dx =
∫ ∞
−∞

(x− µ)f(x)dx (4.4)

where µ is the mean. This may be confusing to have the mean defined in terms of itself,

but this is because this gives us the translated mean about the origin. If we assume that

the mean is already at the origin, then c = 0 in what follows. For discrete signals we have

the form:

µ1 = mean =
1
N

N−1∑
j=0

xj (4.5)

The second moment, n = 2, is the variance of the function given by:

µ2 =
∫ ∞
−∞

(x− µ)2f(x)dx (4.6)

For discrete signals we have the form:

µ2 = variance =
1

N − 1

N−1∑
j=0

(xj − x̄)2 (4.7)

We note that σ is defined as σ =
√
variance.

The third moment, n = 3, is the skewness of the distribution. The skewness of a

function is a measure of its lopsidedness. A symmetric distribution will have a skewness of

zero. The skewness is given in the usual way:

µ3 =
∫ ∞
−∞

(x− µ)3f(x)dx (4.8)
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Again, for discrete signals this has the form:

µ3 = skewness =
1
N

N−1∑
j=0

{
xj − x̄
σ

}3

(4.9)

A distribution that is skewed to the left has a negative skewness and one to the right has a

positive skewness.

The fourth moment, n = 4, is the Kurtosis of the distribution. The kurtosis

measures if a given distribution has a peak or a flat shape to it.

µ4 =
∫ ∞
−∞

(x− µ)4f(x)dx (4.10)

Again, for discrete signals this has the form:

µ4 = kurtosis =

 1
N

N−1∑
j=0

{
xj − x̄
σ

}4
− 3 (4.11)

We will note that the value 3 subtracted from the end make the value zero for a normal

distribution.

These moments are important to the application of filters to noisy data. Few filters

preserve moments higher than n = 0. One exception is the Savitsky-Golay filter (SG) [51].

This is a filter in the time-domain as opposed to the frequency domain. SG preserves up

to a designated nth moment. Each physical characteristic of a pulse is related to one of

these moments, and if we want to be able to discern signal from noise we must preserve the

necessary moment. SG can remove noise in a very simple way in the time domain while

retaining a designated nth moment of the information. Thus SG is very important to pulse

shape analysis applications.

Another important statistical quantity to the field of radiation detection is the

Fano factor. The Fano factor relies on moments one and two, n = 1 & n = 2. The Fano
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factor is defined as the ratio of the variance to the mean:

F =
σ2

µ
(4.12)

This is a measure of the dispersion of a probability distribution. It was formulated to

explain integrated charge of a specific energy in radiation detectors had a spread due not

only to the electronic noise but also due to the detector material properties [40].
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4.3 Pulse Shape Discrimination

4.3.1 Introduction

Pulse Shape Discrimination (PSD) is the process of extracting information from

each pulse produced by radiation interaction with a detector. Pulses often go through

several stages of amplification. As the signals travel through the detector and associated

electronics noise accumulates in the signal. This noise must be minimized in order to extract

the maximum amount of information from a pulse [50, 64].

Assuming reasonable minimal noise, there exists a great deal of information that

can be extracted from pulse shapes. Current off-the-shelf systems use the pulse to deter-

mine the energy deposited from an interaction. However, particle identification, geometric

information, and even particle paths can be extracted from these pulses [9, 57].

The PSD technique used to distinguish multi-site events from single-site events in

the IGEX experiment is based on 3 moments of the current pulse. Unlike the statistical

moments of the previous sections, these moments were designed to maximize the ability to

discriminate specific information from current pulses of characteristic shape [9]. The first

parameter is the pulse rise time, the second is the full width from the half width, the third

is a normalized moment about the center of mass.

4.3.2 Aalseth PSD Method

The discrimination technique explored here is the method developed by Aalseth

et.al.[9, 65], using three energy independent parameters to discriminate multiple site events

from single site events. This method takes a raw current pulse from a digitizer, and ap-

plies any of several Digital Signal Processing (DSP) techniques. The only necessary DSP
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Figure 4.2: Theoretical PSD parameter space with color indicating the distance between
multiple interactions.

techniques is smoothing, which is done with the Savitsky-Golay filter [51]. This filter was

discussed previously.

The first parameter is the timing information. Given a voltage signal, the most

obvious timing is the rise time (τ) of the voltage pulse, often taken as the time it takes to

go between 10% and 90% of the maximum height of the voltage pulse. The 10% to 90% is

often called the constant fraction discriminator (CFD) and it used to truncate noise from

the measurement. Techniques to measure the rise time of a voltage pulse are given by the

IEEE [66].

The rise time can come from the CFD of the voltage pulse, however in this method

all of the parameters come form the current pulse. The current pulse, I(t), comes from

discrete differentiation of the voltage pulse. The rise from from the CFD applied to the
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Figure 4.3: A current pulse with the 10% to 10% of the maximum enclosed in a box. The
timming points needed are the start time, the end time and the time directly in the middle
of these two, called the mid time.

current pulse begins at the 10% level to the left of the maximum and goes until it reaches

the 10% level to the right of the maximum. Fig. 4.3 shows a typical current pulse with a

box encompassing the timing information.

The second parameter used is the front back half back area (FHBH). If we start

at the center of the current rise time, and integrate the area before this we have the front

area. If the we integrate the area after this, we have the half back area. This is illustrated

in Fig. 4.4.

FrontHalf = B =
∫ τ1/2

τi

I(t)dt (4.13)

BackHalf = C =
∫ τf

τ1/2

I(t)dt (4.14)
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Figure 4.4: The front back area and the half back area as measured from a current pulse.

Then we define this parameter as:

B − C
B + C

(4.15)

The third parameter is the normalized moment (I), similar to the moment of

inertia in mechanics. If we take the moment of inertia for a plane in x and y, with the axis

at x = 0 and rise time τ , parallel to the y-axis we have a moment given by:

I =
mτ2

2
=
∫ τ/2

−τ/2
mx2dx (4.16)

Then we can find the moment of the front half via:

IB =
∫ τ1/2

τi

I(t)(t− τ1/2)2dt (4.17)
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and the back half is given by:

IC =
∫ τf

τ1/2

I(t)(τ1/2 − t)2dt (4.18)

Then the normalized moment is given by:

IN =
IB − IC

I
(4.19)

The first note about these parameters is that the interaction location is lost. This

is to say that these parameters are degenerate to the azimuthal angle and height of a

cylindrically symmetric detector, so we cannot extract from a current pulse. This, however,

is not a weakness because for experiments such as Majorana there is a much more important

piece of information that can be extracted. We can extract whether an event was single site

or multi site.

A single site event is exactly that, a photon interacts with an electron in a re-

stricted, contiguous region of space. If a photon is completely absorbed by an electron,

or in a detector a photon Compton scatters only once and then escapes the crystal, single

site events are produced. Ultimately, we are limited by the spatial resolution of our PSD

techniques, and cannot resolve events as single or multiple site if they occur too together.

Hence, a photon which Compton scatters several time in a very small volume of the detector

may be classified as single site by our PSD technique, even though, from a physics perspec-

tive events occur at several distinct regions. From a functional perspective any event which

can be identified as multiple site cannot be double beta decay [23], so ultimately, our spatial

resolution limits our ability to cut background events from a double beta decay experiment.

The Aalseth PSD method is excellent at discriminating if a current pulse was in fact

due to one ionization event or several within the time of the pulse duration. This technique
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is often called a radial discriminator because it is assumed that two events, happening at

the same time at the same radius, will look like a single event because it will take them the

same mount of time to get to the collecting electrode. Thus, the current pulse will look like

a single event.

4.3.3 Analytical Model for PSD

We can write a simple model for a current pulse given an interaction radius if we

deal only with a coaxial detector. Second, if we assume that all charge carriers travel at

saturation velocity at all times. These assumptions are not very restrictive and produce a

surprisingly good model of the current pulse coming from the detector. We can write this

model as

I(r0, vc, t) = Q
1

ln(Ri/Ro)
vc

1
r0 + vct

(4.20)

where r0 is the energy deposition radius, vc is the saturation velocity for a given charge

carrier, since the distinction of electron or hole can make a significant difference. Given

the constant velocity, we can easily solve for the time it takes to reach the corresponding

electrode with

τe =
Ro − r0
ve

(4.21)

τh =
r0 −Ri
vh

(4.22)

A function can be used with a Heaviside step function to account for the finite path while

integrating over all time. However with careful consideration of individual integration limits,

the Heaviside step functions are not necessary.

The first parameter is simply the maximum of the two charge carrier collection

times, which is the rise time as it would be measured. If the electron transport time is
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longer than that of the hole, we use it, or vice versa. For multiple site events, we simply

use the longest transport time. The longest transport time, for any event whether single or

multiple site, is τ .

The second parameter space is the front half back half (FHBH) area, given by

the integral of the front half and the back half of the current:

B =
∫ τ/2

0
I(r0, t)dt =

∫ τ/2

0
(Ie(r0, t) + Ih(r0, t))dt (4.23)

So,

B =
∫ τ/2

0
(
QDve
−r0 + vet

+
QDvh
r0 + vht

)dt (4.24)

with D = 1/ln(Ri/Ro). It must be pointed out that the integration to τ/2 could be greater

than the transport time for that charge carrier τc/2. So care must be taken with this

integration limit.

We need the other side of this integral which is given as C:

C =
∫ τ

τ/2
(
QDve
−r0 + vet

+
QDvh
r0 + vht

)dt (4.25)

We have the FHBH parameter B − C given by the integral equation:

B − C =
∫ τ/2

0
(
QDve
−r0 + vet

+
QDvh
r0 + vht

)dt−
∫ τ

τ/2
(
QDve
−r0 + vet

+
QDvh
r0 + vht

)dt (4.26)

Thus, given τ we can easily integrate to find the FHBH parameter in this model.

4.3.4 Velocity and the PSD parameter space

The focus of this analytical parameter space model is to show that by including

anisotropic drift velocities in our models, we can improve our ability to get at the relevant

information in these experiments. If the Aalseth PSD method is to be improved on, then
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Figure 4.5: The PSD line for single site events as the interaction point moves along the
radius. The different lines indicate the effect of different combinations of drift velocities for
electrons and hole respectively.

there must be an affect on the PSD parameter that can be discerned. One parameter to

explore is the effects of different electron(ve) and hole (vh) drift velocities. Such an effect is

illustrated in Fig.4.5.

From Fig.4.5, we can see that velocity of the charge carrier not only affects the

signal site curve through PSD space, but the velocity of each charge carrier affects this

curve differently. This can be translated into the statement that the single site curve

through PSD space contains information about the velocity of the charge carriers. The

question that remains is the nature of noise in the PSD space and if the differences due to

velocity are significant enough to be extracted from this noise.
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4.3.5 Notes on PSD

We had to discern if an anisotropic drift velocity will affect the PSD results. We

have established that it will. Next we must show significance in that some of this information

can be extrapolated out of the noise inherent in the signal. So we asked how the noise in

the current pulse affected the PSD data.

For the pulse time information, the current pulse is a set of discrete data points in

time. If there is jitter (error in the timing of the data point) it cannot be distinguished from

an error in the current pulse. This is due to the fact that the current is in fact a continuous

signal and displacement from noise in the time direction is the same as a displacement

current value. Error in the timing is the same as error in the current, so we will refer to a

single error and assume it is simply of the current.

For the discrete current data points any error will effect the pulse width parameter

space by inducing an expansion or contraction in the space. This effect is linear with the

error and to be expected. This is not magnified in any way, neither is different in part of the

space as it is from another. In fact this error is greatly reduced by using a Savitsky-Golay

filter [51].

The error introduced to the FHBH area parameter space is different from that of

the rise time. If we assume the error is additive to the current (as opposed to multiplicative)

we can use the toy model above to ascertain its effect in this parameter space.

B′−C ′ =
∫ τ/2

0
(I(t)+e(t))dt−

∫ τ

τ/2
(I(t)+e(t))dt = B+EB−(C+EC) = (B−C)+(EB−EC)

(4.27)
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The denominator gives us:

B′+C ′ =
∫ τ/2

0
(I(t)+e(t))dt+

∫ τ

τ/2
(I(t)+e(t))dt = B+EB+(C+EC) = (B+C)+(EB+EC)

(4.28)

The resulting equation with error is:

B′ − C ′

B′ + C ′
=

(B − C) + (EB − EC)
B + C + EB + EC

(4.29)

Given that the error EC is approximately the same size as EB the contribution to the

numerator is very small, but the contribution to the denominator will push this parameter

toward the origin. Given that the error at any given point can be greater than or less than

the current at that point, but it cannot be negative due to the choice of baseline, given

that it is part of the pulse and well removed from negative values. The sum of the error

cannot be negative given the CFD level is much greater than the error as a requirement of

a good CFD [66], any error will push this parameter toward the origin. The range of this

parameter is both positive and negative due entirely to the numerator. Thus adding error

to the denominator will contract this parameter range toward the center.

The error contribution to the normalized moment is very different from the other

two parameters. If the error is once again additive, then it can be separated from the

current in the integral like so:

M ′ =
∫ τ

0
(t− τ

2
)2(I(t) + e(t))dt =

∫ τ

0
(t− τ

2
)2I(t)dt+

∫ τ

0
(t− τ

2
)2e(t)dt = M + E (4.30)

while the denominator gives:(∫ τ

0
(I(t) + e(t))dt

)
τ2

12
=
τ2

12
(B + C + E) (4.31)

Thus the error in the denominator will contribute in a linear fashion, meaning here uniform

everywhere in the PSD space. The numerator, however, multiplies the error by its distance
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from the mid-point squared. This is a very non-linear contribution not only in time but

also in the parameter space. One conclusion is that error will have the greatest affect for

the longest pulses. Given the error term in the denominator is linear while that in the

numerator is multiplied by a square term, the error will push the normalized moment away

from the origin, and in a non-linear fashion. The error in the normalized moment maybe

by far the most significant in the PSD parameter space.

The ultimate result of errors introduced into this PSD method are a contraction

of data in each dimension. Error in the timing information is referred to as timing jitter

whose effects are nominal compared to the other two dimensions. The FHBH and Moment

dimensions contract with the introduction of error, or noise, to the signal. The effect is

linear, but given the discrete nature of the PSD algorithm a contraction of the space will

make discrimination more difficult. The acceptable levels of error for any signal of interest

can be evaluated with this simple analytical model. In order to asses the impact of this

method, however, we must introducea figure or merit capable of directly comparing alternate

methods.

4.4 Figure of Merit

A figure of merit,(FOM), is in general some quantity used to characterize the effi-

cacy of a method relative to alternative methods. The FOM commonly used in neutrinoless

double beta decay experiments, and used through out this work, is defined by Aalseth et.

al. [67] with the form

FOM =
εββ√

εbackground
(4.32)
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where εββ and εbackground are the acceptance fractions of the discrimination for 0νββ decay

events and background events, respectively. The usefulness of this FOM definition is that

it is a multiplier to the standard half-life limit. This gives the direct improvement that one

might gain in half-life sensitivity of the experiment due to the method of discrimination.

Thus any analysis method can be compared by the FOM that it produces to any other

analysis method.
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Chapter 5

A P-type Modified Electrode
Detector: Overview of Detector
Properties

5.1 Introduction

An n-type germanium crystal with a small with a small point contact was reported

by Luke [68] in 1989. Barbeau et al. [8] recently presented, for the first time, the implemen-

tation of this geometry as a p-type point contact (PPC) detector. Having a 330 eV energy

threshold and energy resolution of 1.8 keV at 1332 keV, the performance of this detector

has generated interest in the nuclear science community working on ultra-low background

radiation measurements. At the time of the Barbeau et al. [8] paper , only one such

PPC detector had been extensively studied, thus the question arises regarding the future

availability and potential production rate of this detector design. This chapter presents an

overview of the influence of the impurity concentration1 and the impurity profile of the ger-

manium crystal on the performance of an operational PPC detector. We present the results
1Throughout this paper the term “impurity concentration” is used as short hand for “net electrically-

active impurity concentration”. Similarly, the term “impurity profile” is short hand for “net electrically-
active impurity concentration spatial profile”.
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of field modeling and charge transport simulations of PPC detectors. We use consistency

with the depletion voltage, the charge transport time and the depletion capacitance curve

of the existing PPC detector to establish the reliability of our models. The results of our

simulations and comparison to known germanium ingot characteristics suggests that the

PPC design is a feasible detector for regular manufacture, not unlike typical p-type coaxial

detectors.

5.2 Motivation for the P-type Detector Geometry

There are two consequences to the electrode configuration of a PPC detector, as

shown on the right in Fig. 5.1[8]. The first consequence is a reduction of the detector

capacitance to ∼ 1 pF in comparison to ∼ 40 pF for a typical semi-coaxial detector [6].

The reduced capacitance permits a lower energy threshold [50], and an improved ability to

resolve spatially separated charge depositions through pulse shape analysis (PSA). Barbeau

et al. [8] have already reported one potential application of this detector design – the

measurement of neutrino-nucleus coherent scattering. Another important application, the

use of HPGe detectors in searches for neutrino-less double beta decay [23], provides a

stringent set of performance requirements. Those requirements include excellent energy

resolution (better than 0.2% FHWM at 2MeV), high mass detector elements(≥∼ 0.5 kg),

amenable to implementation in an ultra-low radioactive background environment and the

ability to distinguish events of interest from background events.

The predominant event identification method is based on neutrino-less double beta

decay producing a single-site energy deposition while gamma-ray backgrounds often produce

multiple site energy depositions [9]. Although several commercially available germanium
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Figure 5.1: This notional diagram shows the comparison of an ordinary p-type detector
(left) and a p-type point contact detector (right) showing a dead layer (dark), bulk p-type
material (light), and an implanted contact on the central hole (thinned).

detector designs satisfy the energy resolution and mass requirements, there is typically

a trade off between event identification capability and the requirement to minimize the

introduction of radioactive contaminants in the electrical instrumentation and cabling com-

ponents needed for readout. Typical p-type coaxial HPGe detectors allow the greatest

control over radioactive backgrounds in detector construction materials; having only two

contact electrodes, there are a minimal number of readout components. However, the event

identification in typical p-type coaxial detectors is limited to PSA sensitive only to energy

depositions spatially separated in radial position [69]. An alternative is to use highly seg-

mented detectors which provide segment position, PSA-based radial position, and vertical

and phi-cylindrical coordinate through PSA of adjacent segments citation. The price paid

for this 3-dimensional event localization is the number and complexity of the read-out elec-

tronics (and their potential contaminants) required for the segmentation. In the absence of

a clearly superior choice of detector design, investigation into alternative designs, such as

the PPC detector, is warranted.

The central point-contact PSA for a PPC detector is substantially more powerful
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in differentiating single vs. multiple site energy depositions than obtainable from standard

coaxial p-type detectors. This results from the stretching out of the charge collection

signal in time due to decreased weight fields and increased charge transport path lengths

relative to a standard p-type design. In contrast to segmented detectors, this improved

event discrimination ability does not increase the number or mass of cabling and local

electronics components, relative to the coaxial p-type. Likewise the PPC design does not

increase the complexity of the read-out instrumentation and subsequent analysis as will a

fully instrumented segmented detector [70, 71]. In the specific case of neutrino-less double

beta decay experiments, the PPC design profits from the thick (≈ 0.5 mm) dead layer

covering most of the crystal surface, which acts as a shield against external betas, x-rays,

and surface alpha particles. Hence the PPC detector design is compatible with good ultra-

low background design while improving upon the event discrimination capabilities of coaxial

p-type detectors.

For a successful future neutrino-less double beta decay or dark matter program, the

benefits of the PPC detector design may be desirable, but cost, difficulty in manufacturing,

and the rate of production are important considerations, especially in light of the number

of detector elements required for a future large-scale experiment. For these reasons it is

important this new detector design be straightforward and cost effective to manufacture. For

comparison, the cost of a generic p-type detector of 1 kg mass is approximately 1/3 the cost

per kg of a highly segmented n-type detector. If the cost and difficulty of manufacturing

a PPC detector is only incrementally higher than a common, p-type coaxial detector of

similar mass, broader applications are possible and essentially every detector manufacturer

will be able to produce them. The goal of this chapter is to investigate the likelihood of
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Figure 5.2: Impurity profile of a germanium ingot [7]. The crystal growth seed is located
at the 0 percent end of the crystal.

this outcome.

The driving factor for determining the type (p- or n-type) and the quality of

the detector is the distribution (amount and profile) of impurities throughout the ingot.

Fig. 2.5, reproduced here as Fig. 5.2, shows the typical impurity concentration and profile

of a germanium ingot. The impurity profile arises in the production of germanium crystals

due to the different segregation coefficients of the electrically-active trace impurities in the

Czochralski crystal pull method [7]. The analysis presented in this paper suggests that a

reasonably wide range of impurity profiles will lead to an acceptable p-type point contact

detector. To facilitate comparison, the same dimensions given in [8] for the first PPC

detector were used for this study (2.5 cm radius and 4.4 cm length).
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5.3 Method

A study of the impact of the impurity profile on the acceptability of a PPC detec-

tor requires defining “acceptable performance”. The limits due to practical considerations

are: reasonable maximum applied depletion voltage and a maximum charge collection time.

These requirements together bound the usable parameter space of the model used for these

calculations. We use a model to pair impurity profile and the charge transport properties

of the detector to identify acceptable impurity profiles. Our impurity profiles can be some-

what arbitrary, therefore we use consistency with the measured depletion voltage, charge

transport time and the depletion capacitance curve of the existing PPC detector to establish

the reliability of our models. The calculation method uses a simulation of charge transport

through a germanium crystal in the presence of the appropriate electric field. Two such

codes have been developed at PNNL, an earlier 2-D model [57] and more recently a 3-D

version [72]. The earlier code was validated in the IGEX experiment [73] while the new 3-D

code has been shown to reproduce the 2-D solutions. The dynamics are handled with the

application of the Shockley-Ramo theorem2 [47, 46, 48, ?] and a parametric description of

charge carrier mobility [4].

In this study, the equation describing the impurity concentration of a crystal cut

from the p-type region of the ingot is given as a function of the crystal height alone [7].

The impurity density is given as:

ρ(z) = A+B

√
z

H
(5.1)

where A is the crystal’s minimum impurity concentration and B is the coefficient describing

the shape of the impurity profile. Both A and B have units of net electrically-active impurity
2See Appendix A. for a derivation of the Shockely-Ramo theorem
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concentration (i.e., atoms/cm3) with the radial dimension accounted for. The constant H is

the detector’s height. The independent parameter, z, is the distance between [0,H]. Using a

two parameter equation simplifies the description of the net charge impurity concentration

distribution, such that only the boundary values at either end ( ρ(z = 0) = A and ρ(z =

H) = A+B) are necessary. This is equivalent to the parameterization used for the detectors

of the GRETINA experiment [71] and is implicit in the discussions of Haller et al. [7]. As

the difference between the impurity concentrations at either end of the crystal decreases,

the profile becomes more linear. As the difference increases, the profile has more curvature

due to the square root dependence on z, as in Fig. 5.2.

Using the simulation, the voltage necessary for depletion is determined for the

(A,B) parameter space, this calculation is described in section 6.3. This parameter space

is bounded by a maximum allowable depletion voltage at 5 keV, consistent with typical

instrumentation, preamplifier high voltage filters, and achievable crystal surface dielectric

strength. The acceptable parameter space is compared with that for an equivalent p-type

coaxial detector in Fig. 5.4. In this context, an equivalent p-type coaxial detector has the

same external dimensions as the PPC detector, but with a central contact hole of depth

3.0 cm and radius 0.5 cm. Rather than comparing equal masses, this definition allows

comparison of the potential detectors that could be prepared from equally-sized crystal

blanks.

The time needed for full charge collection due to radiation interaction is determined

using the dynamics of charge carrier propagation in a semiconductor following Ramo and

Shockley [47, 46, 48]. Full charge collection time for the idealized PPC detector is generally

longer than an equivalent idealized p-type coaxial detector. As already stated, the charge
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Figure 5.3: Simplified schematic of a typical HPGe preamplifier circuit focusing on the
contributions to the front end capacitance. The PPC preamp may or may not have a
Feedback loop in the circuit.

collection time is a constraint on the acceptability of the detector. Low electric fields,

charge trapping, and ballistic deficit are important additional considerations with respect

to the PPC design. Relative to a typical coaxial p-type, the PPC detector design will have

larger regions of volume where the charge carrier velocity is below the saturation velocity

due to low electric field strength along the axis [74, 75, 68]. Furthermore, on average the

PPC design has longer path lengths for the charge carriers to reach collection electrodes.

These two features conspire to increase the probability of charge trapping resulting in poor

detector performance. However this possibility can be assessed using an IEEE measurement

standard [66].

At full operating bias voltage, a high purity germanium detector is in essence a

very large reverse biased pn-junction where the p (or n) region extends over the entire

volume of the crystal. As the voltage on one contact is increased the width of the depleted

region extends further into the crystal volume until it extends all the way to other electrode.
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At this bias voltage (V Depleted
bias ) the crystal is fully depleted and the detector capacitance

(CDepleted
PPC ) is determined by the physical geometry of the electrodes combined with the

permittivity of the material. The detector capacitance is determined from FWHM =

(41eV )Vn(CF +CD)/
√

∆t from Ref. [8]. The FWHM value is known from Fig. 8 of Ref. [8]

by inspection of the series noise at short shaping times (∆t = 0.5 ms). Information on

the EuriFET (CFET = 0.9 pF and Vn = 1.6 nV/
√

Hz) provide the remaining values to

determine the detector’s capacitance: CDepleted
PPC = 1.8 pF. This value was used to determine

the diameter (0.62 cm) of the point contact. This dimension was not supplied by the

manufacturer but is needed for modeling the detector’s electric field at bias voltages less

than depletion.

Detector capacitance measured as a function of bias voltage is sensitive to the

impurity profile of the crystal. It is possible to make a depletion capacitance measurement

of a germanium detector using a standard pulser. The relevant consideration is the total

capacitance of the detector and front end circuit shown in Fig. 5.3 and mathematically

represented by

CTotal =
1

1
CPPC

+ 1
CPulser

+ CFET + CCR. (5.2)

The capacitance of the FET and test pulser input (CPulser = 10 nF) are known. Gamma-

rays of known energy are used to establish an energy scale for the acquisition system at

full depletion bias. The test pulser is connected and the output voltage is adjusted to place

the pulser peak at a chosen energy in the gamma-ray spectrum. The centroid energy of

the pulser peak, EDepleted
Pulse , corresponds to a fixed amount of charge injected by the pulser,

QDepleted
Pulse , as determined by the 2.96 eV of energy needed to liberate a single charge car-

rier pair on average in germanium. Setting CTotal equal to QDepleted
Pulse /V Depleted

Pulse determines
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V Depleted
Pulse , the voltage seen at the FET gate induced by the pulser. When the bias voltage is

less than the depletion voltage the test pulser voltage remains fixed. However, the capaci-

tance of the detector has changed and becomes a function of the bias voltage, CPPC(VBias).

The changed detector capacitance results in a changed amount of charge injected at the

FET gate. This effect is measured as a displacement of the location of the pulse peak in the

gamma-ray spectrum. From the gamma-ray spectrum’s energy scale, the amount of charge

represented by the location of the pulser peak is determined as a function of bias voltage,

QPulse(VBias). Setting QPulse(VBias)/V
Depleted
Pulse equal to CTotal gives the detector capacitance

as a function of bias voltage, CPPC(VBias). A measurement of the prototype PPC detector

was conducted in the manner described above.

5.4 Results

A successful impurity profile for a common p-type coaxial detector has the greatest

impurity concentration at the closed end of the detector, decreasing toward the open end. If

a point contact is simply substituted for a common p-type coaxial detector, the simulation

predicts a local minimum in the potential above the central contact. This local minimum is

difficult if not impossible to to remove except with the most extreme voltages applied. The

solution is to reverse the direction of the impurity gradient. This is essentially a flipped

orientation relative to the common p-type coaxial design.

The depletion voltage for the PPC detector as a function of the parameter space

is given in Fig. 5.4. The figure shows the depletion voltage as a shaded surface in the

2-D parameter space The lightest part, the lower edge, represents the maximum reasonable

depletion voltage of 5000 V. The darkest part, the upper left corner, represents the lowest
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Figure 5.4: Calculated depletion voltage for given values of minimum charge impurity and
charge impurity profile. Dark to light shading represents low to high depletion voltage
respectively. The computation was cutoff at 5000 V. The darkest shading represents 0 V.
Imposing a lower bound of 1000 V would only remove a small region very close to the origin.
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depletion voltage. A cutoff for a lowest depletion voltage is not included in this graph. Note

that low depletion voltages imply long collection times, which is undesirable and discussed

further below. There are other practical limitations imposed by the crystal growth; intrinsic

germanium radiation detectors are rarely reported to have impurity concentrations less than

0.1 × 1010 cm−3 or greater than 5 × 1010 cm−3. These rough bounds set the reasonable

range of the impurity. The wide range of impurity profiles producing acceptable detectors

in terms of attainable depletion voltage as shown in Fig. 5.4. The typical coaxial p-type

detector design has a larger acceptable range of A and B values (shown by the dashed line),

yet given equivalent external crystal dimensions the two are not significantly different.

The charge collection time as a function of the A and B parameter space is given

in Fig. 5.5. The figure shows the maximum charge collection time as a function of the

parameter space. The charge collection time has a range from 250 to 2000 ns. Very long

collection times such as 2000 ns would lead to poor detector performance. PPC detectors

will generally have longer charge collection times in comparison to common p-type coaxial

detectors of the same external crystal dimensions.

Investigating the capacitance of these detectors, the prototype PPC detector [8]

capacitance (CPPC) was measured as a function of bias voltage. Fig. 5.6 compares this

measurement to simulation using the same dimensions and the two parameter model in

equation 5.1. A suggested relation of B = A [76], which is consistent with those impurity

concentration values reported in [68], is needed for a solution of the depleted detector capac-

itance using the measured detector depletion voltage, 2500 V. The simulation reproduces

the charge collection time of 700 ns as seen in the bottom of Fig. 11 in Ref. [8].

Note that the two capacitance curves do not match up at voltages below the
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Figure 5.5: Calculated charge collection time surface parameterized by A and B. The
prototype PPC showed a charge collection of up to 700 ns.
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Figure 5.6: Capacitance versus bias voltage for the prototype PPC [8] compared with
simulation.

full depletion voltage. This likely demonstrates demonstrates the need to add a radial

component to the model of the impurity concentration, equation 5.1. This hypothesis is

based on the results from an impurity concentration model having an ad hoc exponential

dependence on the radius. The degree of freedom provided by the radial dependence allows

different capacitance values at voltages less than full depletion. We explore the details of

the depletion capacitance and it measurement in chapter 6.

5.5 Conclusion

This work explores the relationship between germanium crystal impurity concen-

trations and the performance of detectors having the PPC design. Using a field simulation

for high purity germanium crystals, the range of charge impurity concentrations and pro-
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files that will produce acceptable detectors is predicted. Detector acceptability is defined

by explicit calculation of depletion voltages and charge collection times. These measures

are used to compare with the first operational PPC detector [8].

This work shows that with current manufacturing methods, production of the

PPC detector design is confined to a range of impurity concentrations and profiles only

slightly smaller than a typical p-type coaxial germanium detector. Thus it is concluded

PPC detectors have the potential to become a moderately priced and universally available

resource for future applications.

Finally, this work suggests greater attention must be given to the radial impurity

concentration profile for complete understanding of the charge collection properties of the

PPC detector design. This subject is explored in chapter 6.
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Chapter 6

Determination of the Impurity
Profile for a PPC Detector

6.1 Introduction

In the previous chapter we have shown that a PPC type detector may be made

from a wide range of impurity profiles. In this chapter we seek to demonstrate how to

measure the profile of a PPC detector. A method for using the measured capacitance

versus the applied voltage combined with appropriate simulations to model the impurity

profile is developed. A similar method for using an efficiency versus applied voltage, as

well as the commonly used four point resistance method is explained and contrasted to the

capacitance method developed.

Experimental characterization of an impurity profile for a detector can be resource

intensive and time consuming. Advanced PSA often uses a library of pulse shapes. To

statistically characterize the pulse shapes based on interaction position can take months.

However, the only alternative is simulation of the pulses as a function of position. If

simulations are to be used to build a library of pulse shapes, then a very good model for

the charge impurity density must be obtained. We demonstrate a method of solving for
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the charge impurity density as a function of height and radius with a simple capacitance

measurement. This measurement gives the solution for a three parameter 2 dimensional

charge impurity density model. This can be used to simulate the electrical properties and

response of a solid state radiation detector.

There are only three ways to find the charge impurity model, one is an efficiency

scan and subsequent fit, another is a resistance measurement done at the manufacturer, the

third is a capacitance measurement and a subsequent fit. A scan to statistically characterize

the pulse shapes based on interaction position can only be used to build a pulse shape library,

and without a good model for the charged impurity profile. However, no modeling work can

be done to optimize any of the parameters for a particular experiment or physical process

signature without a charged impurity profile.

Pulse shape analysis (PSA) can be distinguished into two categories: parametric

and library. Parametric PSA uses specific parameters of the pulses to establish whether a

given pulse satisfies a given set of criteria. Common parameters include energy and charge

collection time. Library PSA builds a library of basis pulse shapes from which any pulse

can be reconstructed. Each experimental pulse is then compared to the library of pulses to

find a best match or a set of best possible matches. This corresponds to the position of the

interaction [77, 6, 78].

There are two approaches to making a library of pulse shapes. One can experi-

mentally scan a detector with highly collimated sources to produce a statistical pulse shape

for a set of interaction positions [31]. This can take months to complete for a single crystal.

The alternative is a parametric approach that uses computational modeling techniques to

build the pulse shape library. The computational method is very fast, yet its effectiveness
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depends on the level of validation with experimental observables that can be achieved.

We present a method of doing a simple capacitance versus voltage measurement

to solve for the 2 dimensional charge impurity density equation with the third dimension

being symmetric. Given boundary conditions on the radius and height a 2 dimensional

solution guarantees a unique solution for this set of 2 dimensional boundary conditions.

Given this insight, the question becomes one of how sensitive are these measurements to

computational solutions and local deviations.

6.2 Physics of HPGe Detector Capacitance

For a depleted detector, the capacitance is completely determined by the geometry

of the conductors and the dielectric constant of the materials. Therefore the capacitance of

a true coaxial detector is given by the capacitance of two cylinders [6, 36]. If the crystal is

not depleted, then the capacitance takes a very different form.

In many modern text books on materials and their electrical properties we will

find the capacitance that relates the charge on a conducting surface to the voltage applied

for a p-n junction is termed the depletion capacitance [45]. The capacitance for reverse

biased p-n junctions is defined this way and using the energy stored in the electric field can

give very different and incorrect results.

A p-n junction has two basic types of capacitance. The first type is the differen-

tial storage capacitance or diffusion capacitance which arises from a rearrangement of the

minority carrier distribution due to diffusion into the bulk semiconductor as the voltage is

changed [79]. Differential storage capacitance is dominant under forward bias conditions.

The second type of junction capacitance is the transition capacitance or depletion-layer
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capacitance. It is due to the variation of space charge with voltage in the depletion region

and is dominant under reverse bias conditions [45].

A transition capacitance is the result of the flow of majority carriers that changes

the widths of the total n and p space charge regions in response to a change in the applied

reverse bias potential V . A capacitance calculated from the total energy of the electric field

will give an incorrect result because it cannot account for energy lost to the lattice due to

scattering of the charge carriers as the boundary changes.

The variation of the space charge with an applied bias is due to the movement

of majority carriers in and out of the depletion zones. This is a very fast process that

takes on the order of picoseconds. Time constants associated with these charge variations

can therefore be neglected, and the associated capacitances can be considered frequency

independent [45].

Using the definition of the transition capacitance

Ct =
∣∣∣∣dQdV

∣∣∣∣ (6.1)

as we increase the voltage, the depletion region of the junction changes. The dopant or

acceptor is neutral until this voltage sweeps away the neutralizing charge creating a space

charge. HPGe detectors are neutral except for the very thin natural p-n junction. As the

reverse bias inducing applied voltage to an electrode increases this p-n junction grows toward

the opposing electrode. This wide p-n junction region forms an active detector region. As

this active detector region grows charges from the dopant’s are swept away leaving a net

charge in the region as in Fig. 6.1. This net charge induces its own electric field which

adds by the principle of linear super position to the electric field due to the applied voltage

as illustrated in Fig. 2.4. In a p-type material the resulting space charge in the active
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Figure 6.1: Effects of a reverse bias on a p-n junction. As the voltage increases, the amount
of the charge in both the acceptor and donor regions increase by the regions increasing in
volume.

region is thus negative, conversely for an n-type material the active region is positive. The

charge is not completely displaced as a current to ground, but instead redistributed onto

the boundary between the active and inactive regions. The contacts and the undepleted

region are thus treated as conductors.

Given this definition of the depletion capacitance, we can integrate the depletion

capacitance to get the total impurity charge in a crystal.∫
V oltage

CtdV = Q =
∫
V olume

ρ(r′)dτ ′ (6.2)

Integrating over the space charge in the active region and dividing by the voltage

applied is the calculation that gives you the true capacitance of the undepleted detector.

Using the energy stored in the fields will often produce the wrong result [79, 39].

If we assume a simple function for the charge impurity profile of

ρ(r, z) = A+Br + Cz (6.3)
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We can then use the definition of the capacitance to pin down one of the parameters. The

most obvious parameter being the constant term A. The integration limits are therefore the

radius R and the height H of the detector. Integrating over the experimentally obtained

capacitance as a function of voltage, up to the depletion voltage, we have a value for the

charge Q. Then

∫
C(V )dV = Q =

∫
ρ(r, z)dτ = 2π

∫ H

0

∫ R

0
(A+Br + Cz)rdrdz (6.4)

giving a parameterized limit to the three parameters {A,B,C}. Using this integrated charge

as a limit will greatly decrease the size of the parameter space that must be modelled.

6.2.1 Electronic noise and capacitance

The capacitance of an HPGe detector is not of secondary consideration. The

capacitance of the system including the HPGe detector influences strongly the electronic

noise of the system. The noise level of an HPGe detector is conveniently given as the

equivalent noise charge Qn. The equivalent noise charge is amount of deposited charge that

gives a signal to noise ratio of one [66]. For and HPGe detector the equivalent noise charge

is:

Q2
n = i2nFiTS + e2nFv

C2

TS
+ FvfAfC

2 (6.5)

where C is the sum of all of the capacitances shunting the input. The constants Fi,Fv and

Fvf come from the shape of the pulse, TS is a characteristic time of the circuit [58]. We can

see that the electronics noise contributions are related to the capacitance.

In Pulse Shape Analysis (PSA) methods the slope of the pulse to the noise must be

optimized in addition to the signal to noise ration alone. The jitter of the timing distribution
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is:

σt ≈
tr
S/N

(6.6)

where tr is the rise time of the amplifier. To increase dS/dt without excessive noise the

amplifier bandwidth should match the rise time of the voltage pulse. Often the rise time of

the voltage pulse is given as the 10% to 90% CFD rise time of the pulse [66]. The rise time

of the amplifier is given as:

tr =
0.35
fu

(6.7)

with fu being the amplifier bandwidth in Hertz. When amplifiers are chained together the

individual rise times add in quadrature as:

tr ≈
√
t2r1 + t2r2 + . . . (6.8)

Thus for good PSA, improving the signal to noise ratio will improve the time resolution so

minimizing the total capacitance at the input is very important.

6.3 Capacitance Measurement

The capacitance of an undepleted crystal can be measured at any applied voltage

by injecting a small voltage pulse into the crystal. Most HPGe detectors are made such that

the test pulse input bypasses the detector. In some detectors, like the PPC, the test pulse

input connects to the high voltage line allowing the pulse to travel through the crystal. A

simplified circuit diagram is given in Fig. 5.3. If the test pulse input bypasses the detector,

a line can be placed is such proximity to capacitively couple to the high voltage line and

inject test pulses through the crystal.
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The voltages pulses were 20 mV square waves with a 20 ms duration. The 20

mV test pulse, ∆V is on top of the constant applied voltage V . At each applied voltage,

the detector system was run in multi-channel analyzer, (MCA), mode recording the ADC

values of the test pulses as if they were radiation events. The test pulses will produce

a Gaussian peak in the histogram whose peak position and FWHM is recorded for that

applied voltage. This procedure is repeated for each applied voltage of interest. The test

pulse peak will stop changing once the applied voltage is above the depletion voltage. The

results of this procedure on the PNNL PPC detector are recorded in Fig. 6.2.

A radiation source of know energy is used to calibrate the energy histogram. The

calibration will give the gain of the system

G =
Epeak(eV )
ADCpeak

(6.9)

Using this gain on the test pulse peaks Pi, for each voltage i, we have the number of electrons

produced

Ne =
Pi ·G

2.96(eV/e−)
(6.10)

, where 2.96 eV per electron is the energy per electron hole pair in germanium [6]. The

number of electrons can then be easily converted into Coulombs of charge produced in the

detector for use in the capacitance at each applied voltage.

C(Vi) =
(1.602×10−19C)Pi·G

2.96(eV/e−)

20(mV )
(6.11)

The capacitance as a function of applied voltage is now correctly in units of farads as show

in Fig. 6.3.
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Figure 6.2: Capacitance measurement of a HPGe detector using injected voltage pulse,
compared to 60Co 1332 keV peak.

6.4 Impurity profile from Capacitance

The model for the charged impurity profile is a three parameter 2 dimensional

equation given by:

ρ(r, z) = A+Br + Cz (6.12)

where A,B and C are simply the parameter space with the appropriate units. The parameter

set is exceedingly large and until we calculate the capacitances we do not know how close

we are to a good model. Calculating the capacitances is a very CPU intensive process, thus

we must use a small subset of the {A,B,C} parameter set. The necessary limit is given

by integrating the capacitance as a function of voltage, giving the total charge Q of the

detector.

Q =
∫
C(V )dV =

∫
V olume

ρ(r, z)dτ (6.13)
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The model for ρ(r, z) given above is easily integrated given the radius and height. The

measured capacitance as a function of voltage does have an associated error as well as lower

limit of 300 Volts. To account for this unknown region of the capacitance we set a 10%

upper and lower bound on the integrated charge. Thus we generate a parameter space file

for all {A,B,C} sets whose integrated value is in the range Q ± 10%. The range needs

to wide enough to account for the unknown region of the capacitance measurement while

being small enough to allow the problem to be tractable. The parameter space should allow

for negative values of parameters B and C.

A model of the charged impurity density will allows simulation of the capacitance

at any voltage below depletion. The capacitance is simulated using the CRT code. CRT

calculates the capacitance very simply, by first calculating the potentials at the applied

voltage V . The total charge in the active region is integrated as Q1. Then a ∆V of 20 mV

is added to the applied voltage and the potential is calculated. The total charge is again

calculated in the new active region as Q2. Thus the capacitance is simply:

C(V ) =
Q2 −Q1

∆V
(6.14)

CRT reads in each parameter set {A,B,C} giving the charged impurity density

ρ(r, z). CRT then calculates the capacitance at each voltage given in the measured ca-

pacitance curve. The χ2 is then calculated using the resulting capacitance curve and the

measured capacitance curve. This process is repeated for each parameter set until χ2 is

less than 1. Associating the χ2 with each parameter set in the parameter space shows a

very non-linear solutions set. The fitted parameter coordinates are surprisingly sensitive to

the parameter space. Thus minimization methods do not become effective until they are

sufficiently close to the solution coordinates. Several minimization routines were used, but
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Figure 6.3: Iterating over a parameter space of the charge impurity profile, a fit to the
capacitance was found.

none proved more efficient than straight forward iteration until a solution was found. This

calculation will remain CPU intensive until an effective minimization routine is found.

6.5 Efficiency Method for Impurity Profile

In this method a count of the events in a given peak at each voltage with a

collimated γ source at several positions along the height of the crystal. The number of

counts in the peak, for each height for each voltage is proportional to the amount of volume

exposed to the γ rays. Taking many such measurements with a good knowledge of the total

volume should allow one to solve for the area of each height at a given voltage. This in turn

could produce a charge impurity profile as well as active volume versus voltage.

A 60Co source was placed between two lead slabs and aligned such that the col-

limated source irradiated a thin slice if the detector perpendicular to its axis. At a given
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voltage, below depletion, only the active area will respond. The energy histograms were

recorded for 30 seconds with the collimated source at each of four heights from the base for

each voltage. The number of counts in a peak for some height at some voltage should relate

to the relative active area of the detector at that voltage. The measurement was made at

the University of Chicago and the results are given in Fig. 6.4.

The computational approach is much the same as with the capacitance approach.

CRT reads in the parameter set for the charged impurity model, and solves for the potential

at the given voltage. CRT then records the active region due to the calculated potential.

CRT then reads in a Monte Carlo of the detector with the appropriate collimated source,

recording the energies in a histogram of all events depositing energy in the active region.

The energy peaks are then compared to the measured energy peaks. The errors were to

significant to differentiate between a wide range of parameter sets.

There are many other drawbacks to this method. A fairly hot source needs to be

used to achieve a high signal to background as well as to be able to perform the measure-

ments in reasonable time. The γ rays scatter such that the radiation field volumes overlap

leading to spatial errors. As the voltage decreases below the depletion voltage the error, due

to very poor charge collection, increases well beyond any usable form. Thus the changing

nature of the charge collection as a function of voltage adds a great deal of uncertainty to

this method. Ultimately this method was determined to be inadequate due to the statistical

errors inherent to the measurement and the insensitivity of the computational solution set.
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Figure 6.4: The Number of counts for a collimated 60Co source placed at four different
heights versus the applied bias voltage of the University of Chicago PPC detector. As the
applied voltage increases, the active volume increases thus the number of counts should
increase proportionately.

6.6 Four point Resistance Measurement

This method is common for manufactures to use on an HPGe crystal. The benefit

to manufactures is that it must be performed on an HPGe crystal before any surface treat-

ments, thus it can act as a quality control where the crystal can be rejected before expensive

treatments if the resistance is not in a specific range for a functioning HPGe detector.

This method measures the resistance which is related to the charged impurities.

The drawbacks of this method are that it measures the resistance very close to the surface,

it is only performed when necessary, it supplies only a couple of points, it can be off by as

much as 30%. The method can only be performed by the manufacture and gives insufficient

information with which to base simulations.
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The resistivity of a semiconductor is defined as:

R =
1

nq(µe + µh)
(6.15)

where n is the free electron and hole concentrations, and µe and µe are the electron and

hole mobilities[80]. This resistivity can be measured in many ways, but sharing some very

common traits. The most common from semi-conductor manufactures is the four point

probe[80]. The four probes are generally arranges in-line with equal spacing between them.

Two probes carry the current while the other two probes measure the voltage derived from

the simple relationship:

V =
RI

2πr
(6.16)

Assuming equal spacing (s) between the probes, the total resistant can be given

as

R = 2πsF (
V

I
) (6.17)

where the most common spacings are 0.635 mm and 1.588 mm [80]. F is the correction

factors necessary to account for the edge effects, thickness effects, probe placement effects

and several other independent correction factors. The correction factors needed are much

more complex than the simple equation for the resistance. Common sources of error in-

clude sample size, minority carrier injection, probe spacing, current effects and temperature

effects.

According to Schroder:

Conventional four-point probe measurements give an average resistivity. This
is suitable for uniformly doped substrates but is not sufficient for non-uniformly
doped samples in which the resistivity profiles need to be determined. [80].

The charge carrier dopant concentration (majority carrier) is related to the resis-

tivity, but it is not usually derived from it. Resistivity measurements are often preformed
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by HPGe detector manufactures. given that the current flows at only very shallow depths it

will not give detailed information about a detector. Assuming a well behaved impurity con-

centration, measurements typically measure the resistance at four points, two at either end

of crystal center and two at either end of the outer radius. Giving a linear profile. These

measurements differ from the absolute impurity concentration by as much as 30 percent

[9, 81], however maintain good relative information.

The path of the current typically will have a small diffusion width and direct

path between the source and drain of the current. Only with extensive and complex sets

of measurements could the bulk of the material be sampled. Even if this were feasible

for HPGe detectors, the effort required would dissuade any manufacture from attempting

it. Manufactures apply a passivation and metalized surface to HPGe crystals, resistance

measurements must be made on bare crystal, thus a resistance measurement can only be

done by the manufacture.

6.7 Pulse Shape Library from a Scan

A library of pulse shapes can be made for an HPGe detector. The general method

involves two setup in a Compton scattering technique. A collimated source is incident on

the detector of interest, while a second detector is placed relative to the detector of interest

to maximize a Compton scatter. This second detector will also be collimated to the fist

detector and shielded from the source. A data set is collected with these two detectors in

coincidence and analyzed for a specific combined energy. With large statistics, this method

will produce a dataset of dominated by energy depositions from the intersection of the

source and second detector collimation paths in the detector of interest. A scan is very
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resource intensive, as well it takes a very long time to complete, on the order of months per

detector.

6.8 Conclusion

We have reviewed the physics of capacitance in an HPGe detector. We have

written code that can correctly give the capacitance for an undepleted HPGe detector, given

a charged impurity density. The dependence of the capacitance on the charged impurity

profile for an undepleted HPGe detector allows an iterative search for the best charged

impurity model. A three parameter 2D model of the charged impurity density was used to

fit the measured capacitance curve for the PNNL PME detector.
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Chapter 7

Position Resolution

7.1 Overview

The position resolution for ionizing events in HPGe detectors fundamentally limits

the efficacy of multiple site cuts The position resolution is difficult to analyze in general,

however, as it it depends on a host of factors which we divide broadly into intrinsic factors

characterizing the spatial ionization distribution and technical factors associated with de-

tector and readout design. In what follows we explore these factors and how they influence

the position resolution of P-type Point Contact detectors.

7.2 Factors affecting position resolution

7.2.1 Intrinsic Factors

A number of physical aspects closely related to the detection process impose a fun-

damental limit in the attainable position resolution. The finite length of the photoelectron’s

ionization path, and the spatial distribution of the charge carrier clouds formed following

photoelectron-induced excitations place a lower bound on the precision with which we can
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identify the formation of charge carriers that take place in an extended volume. The de-

tector technology we consider does have the capability to reconstruct the three dimensional

path of the ionization. We must model the effect of the ionization distribution on the time

profile of the current signal.

The energetic electrons produced following a γ- interaction in the Ge detector loose

their energy in the detector material through ionizations and excitations according to the

formula derived by Bethe formula for the linear stopping power Sc [6] of free electrons in a

material.

Sc =
4πe4z2

m0ν2
NZ

[
ln

(
2m0ν

2

I

)
− ln

(
1− ν2

c2

)
− ν2

c2

]
(7.1)

The velocity and charge of the primary particle are ν and ze, while N and Z are the

number density and atomic number of the absorber atoms, m0 is the electron rest mass.

The parameter I represents the average excitation and ionization potential of the absorber

atoms. Besides the energy loss through excitations and ionizations, the electrons lose energy

by radiating bremsstrahlung due to deflections of their trajectories, but the proportion of

energy loss through this process is small for the energies of interest here. Eq. 7.2 represents

the radiative stopping power Sr for energetic electrons[6].

Sr =
NEZ(Z + 1)e4

137m2
0c

4

[
4ln

(
2E
m0c2

)
− 4

3

]
(7.2)

where E is the energy of the primary particle. An approximation for the ratio between the

two specific energy losses is given by the formula:

Sr
Sc
≈ EZ

700
(7.3)

with the photoelectron energy E expressed in MeV, and Z = 32 for Ge. Fortunately, the

produced bremsstrahlung is predominately low energy and is absorbed in close proximity
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the the site of the initial bremsstrahlung interaction.

Besides the spatial range of the charge carrier formation during the event ion-

ization, the charge carriers diffuse as they drift through the detector and its electric field

leading to a spatial distribution often referred to as a charge cloud. As a consequence, the

electrons and holes will have individual paths through the weighting fields for each elec-

trode, thus forming different induced signals on each detector electrode. Hence the resulting

signal on a given electrode will be an integral over a distribution of signal shapes.

7.2.2 Technical Factors

In the category of technical factors which influence the position sensitivity are those

which result from the design of the detector and of the read-out electronics. Theoretically,

these factors can be adjusted for better performance, through better knowledge of the

involved physical processes and a better technical design.

Good control of the signal shapes corresponding to a particular interaction site,

and to be able to accurately simulate these signals, the charge collection process must be

well known within the entire active volume, and the weighting fields of each electrode must

be be carefully calculated. There are a few factors which hinder precise characterization of

charge collection processes and the weighting fields. The normal design of any HPGe detec-

tor involves the existence of at least one active surface between the electrodes of opposite

polarity. This surface is treated to minimize surface leakage currents by etching and pas-

sivation. Unfortunately, the influence of the passivation material on the electrostatic fields

is not very well understood. Ideally, such surfaces should behave as electrostatic mirrors,

corresponding to Neumann boarder conditions [39]. Since for the moment, the technology
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is not fully developed and the knowledge of the influence of surfaces on the electrical field is

approximate, one should account for the existence of electric field inhomogeneities especially

at the edges of the detector. This limits the knowledge of the charge collection process, as

well as the accuracy of the calculated weighting fields of the segments which are adjacent

to the open surfaces.

As presented in chapter 4, the electrostatic field in the detector varies with the

concentration of the spatial charges which exist in the depleted detector volume. These

charges are formed at the places where impurities exist, and therefore, the distribution of

the impurity concentration will determine the charge distribution, and consequently, will

affect locally the electrostatic field. In the detector production, variations of the impurity

concentration are unavoidable. An accurate determination of this distribution will improve

our estimate of the local electrostatic field.

The empirical model of the charge carrier drift velocity, Eq. 3.1, and its variation

with the electric field is also an model. Moreover, variations of the bias voltage or tem-

perature lead to variations in the drift velocity of the charge carriers, inducing different

signals.

The influence of the limited preamplifier bandwidth on the shapes of the detector

segment signals is often referred to as ballistic deficit. Ballistic deficit comes from the

read out electronics and directly affects the energy resolution [66]. This is an important

limitation, since valuable information which exists in the detector signal is typically lost in

the preamplifier output signal. Moreover, the unavoidable detector and electronics noise

will further distort the signal shapes.
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7.2.3 Consequences

Due to uncertainties in the charge collection process, the assumptions taken for

pulse shape simulations used in creating the database of signal shapes for each discernible

interaction site must be checked and directly compared with experimental values. By mea-

suring experimental signals produced by single interactions in several well defined regions

using a Compton spectrometer, the parameters used in the simulation can be adjusted to re-

produce the experimental shapes. In this way, variations in the distribution of the impurity

concentration and the charge carrier drift velocity can be estimated.

Another possible method to circumvent the missing knowledge in the signal shape

formation is to preform a scan with highly collimated γ-ray sources over the entire volume of

the detector, and to directly use the experimental shapes in the data base of patterns. The

resultant grid of signal types can be refined by interpolation between the experimentally

determined pulse shapes. Obviously, such a procedure is time-consuming, and impractical,

more so when applied to a very large number of detectors, as would be required for a large

neutrinoless double beta decay experiment. In any case, one of the two methods must be

applied to avoid systematical errors in position determination.

For single interactions, the position resolution will be finite, the ultimate limitation

being the dimension of the charge carrier clouds. Besides this, depending on the local vari-

ations of the signal features, which can have different levels of discrimination applicability

for different positions, the position reconstruction precision will vary at different interaction

locations. Finally, the signal-to-noise ratio of the detected signal, which is a function of the

deposited energy, will influence also the precision of the position resolution. Ultimately, the

signal-to-noise ratio can be improved simply by reducing the noise, by an improved design
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of the analog section of the electronics, and by using sampling ADC’s with a larger number

of bits.

For multiple interactions, due to the distribution of the charge carrier clouds,

electronic noise and preamplifier shaping, the decomposition of the signals will be a math-

ematically ill-posed problem. Especially for interactions lying close together, for other

particular combinations of interactions, it will not be possible to decompose them uniquely.

In principle, this limitation has to be considered in the design of an optimized tracking

algorithm. Moreover, to optimally extract the available information by pulse shape analy-

sis, a Bayesian approach for the decomposition of multiple interactions can be followed by

taking into account the statistics of the γ-ray scattering process. Thus, the distribution of

the multiple interactions can be estimated by calculating an a-priori probability using the

known released energies. This information can then be included in the pulse shape analysis

methods to estimate the relative positions and energies of the interactions.

7.3 Effect of Anisotropic Drift Velocity

HPGe detectors are semiconductors as well as crystals, subject to crystal lattice

effects. One such affect is called anisotropic drift velocity [37]. This refers to each charge

carrier having a velocity dependence on the crystal orientation relative to the direction of

travel. This was discussed in chapter 2 and expanded on in chapter 3. To review, we see

from Fig. 2.4 that the band structure is different for different crystal axes. Charge carrier

traveling through this lattice scatter to some certain degree off of the charges held tight

in the lattice. Different orientations offer different scattering properties and therefore limit

the maximum velocity differently.
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This effect is known in the field but no current publications address this effect in

regards to pulse shape analysis. We built a rotating source holder such that we can place

a collimated low energy source at different angles relative to the detector. We used a 57Co

source with a 122 keV γ incident on a p-type semi-coaxial 120% relative efficiency HPGe

detector, such that all full energy depositions occurred close to the surface, maximizing the

path that holes must travel to reach the inner contact. This allowed us to measure the drift

velocity at different angles.

The spectra collected are shown in Fig. 7.1. The source was in place for 9 hours

in each orientation, the time was monitored closely. We can see the dead layer results in

a significant difference in the relative efficiency of each orientation. To account for this

the dead layer thickness must be accounted for. Only the relative dead layer needs to be

accounted for since the ultimate measures is a difference for the spectra.

To account for the non-uniformity of the dead layer, we begin with the attenuation

formula for photons through matter:

N = N0e
−µtρ (7.4)

where N0 is the number of incident photons, t is the thickness normal to the beam, ρ is the

density of the material, and µ is the mass attenuation coefficient of the incident material

given a specific energy E. The mass attenuation coefficients came from NIST standards,

and are given in the Table. 7.1. We find the following simple correction for the number of

incident photons in the active region of the detector:

N = N0e
[−µtρ]Al+[−µtρ]Ge (7.5)

where tAl is the Al thickness and tGe is the HPGe detector dead layer thickness. Given all of

the parameters being known we can solve for the thickness of the Germanium dead layer tGe
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Figure 7.1: Spectra for a 120% HPGe detector for a colimated 57Co source at different
angles to the front of the detector.

Figure 7.2: The relative dead layer thickness as parsed from the low energy efficiency.
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Figure 7.3: Rise time data extracted from the 122 keV peak of the 57Co spectra.

for each angle relative to some well chosen reference position. For this measurement we chose

5◦ as the relative angle since it gave the thinest dead layer, all other angle measurements

are the thickness in addition the thickness at 5◦. The results of the dead layer uniformity

are given in Fig. 7.2.

Table 7.1: Mass attenuation Coefficients, density, and thicknesses for the materials
used in the measurement [5]. Dead layer thicknesses are typically ”several hundered
micrometers”[6].

Mass attenuation Coefficients of the materials involved
Material Attenuation Density Thickness

Coefficient
[cm2/g] [g/cm3] [cm]

Aluminum 0.155 2.702 0.050
Germanium 0.405 5.3234 ≈ 0.02

Correcting for the dead layer of the detector we can fit a Gaussian peak to the

charge collection time of the given energy peak, as in Fig. 7.4, to extract the charge
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Figure 7.4: A fit to the rise time extracted from the 122 keV peak of the 57Co spectra at
25◦.

Figure 7.5: The timing for full charge collection of electrons in a p-type HPGe versus angle.
The error bars indicate the FWHM of the peak.
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Figure 7.6: The velocity of holes in a p-type HPGe versus angle. Including corrections for
dead layer thickness.
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collection time. Comparing these charge collection peaks we see the difference in the total

charge collection time as illustrated in Fig. 7.3. We can see the difference in the time it

takes for the different angles for a p-type semi-coaxial HPGe detector is maximally about

15 ns from Fig. 7.5. Using the results of these fits the dead layer thickness, relative to 5◦,

and timing information for each angle we can reconstruct the anisotropic drift velocity of

the charge carriers versus the angle in Fig. 7.6.

The effect of the anisotropic drift velocity of the charge carriers for an 80 mm p-

type semi-coaxial HPGe detector was measured. The maximal difference in the timing for

different angles was approximately 15 ns. When the Aalseth PSD method was applied to

multiple angular data sets, the difference in the PSD spaces were below the noise threshold.

Thus, for this detector it is determined that no angular information can be extracted with

this PSD method. Given the design of this detector it is unlikely that angular information

can be extracted, using this PSD method, from any semi-coaxial HPGe detector.

7.4 Effect of Finite Carrier Lifetimes

The charge carrier path lengths for a PPC can be significantly longer than those in

a semi-coaxial detector. The maximum length a charge carrier will move in a semi-coaxial

detector is from the outer radius to the inner radius. In a PPC where the height is roughly

equal to the radius then 1
3 of the volume of the crystal has a path length further then the

maximum path length in a semi-coaxial detector. If the height of the PPC is roughly equal

to the diameter, then the approximately 4
3 of the volume of the crystal extends beyond the

maximum path length of an equivalent semi-coaxial detector. Given that PPC detectors

come in various lengths, the volume that extends beyond the maximum path length of an
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equivalent semi-coaxial detector can be approximated by:

δV ≈ (β − 2
3

)VPPC (7.6)

where β relates the PPC height to the PPC Radius as HPPC = βRPPC .

This increase is path length increases the time it takes to collect charges from

energy depositions. This increase in time stretches out the signal enabling greater PSD

analysis. This increase in the charge collection time is not without drawbacks which must

be balanced for optimal detector design. The most significant drawback comes from the

charge carrier lifetime in germanium.

Q(t) = Q0e
− x
µτE = Q0e

− x
vτ (7.7)

where Q0 is the initial charge, x is the distance traveled, µ is the charge carrier mobility, E

is the electric field and τ is the charge carrier mobility coefficient. In simulations this Q(t)

would be inserted into the Shockely-Ramo equation for the current in Appendix A.

A separate consideration is the greater likelihood of low field regions in a PPC

detectors as opposed to a semi-coaxial detector. Low fields regions allow the charge carriers

to slip below the maximum drift velocity and allow for increased trapping and lattice effects.

From Eq. 7.7 we can easily see the dependence of the charge carrier lifetime on the electric

field. This model uses the simplified velocity from the Drude model of v = µE. In HPGe

detectors the velocity term should be replaced with the much more accurate velocity from

Eq. 3.1. Using Eq. 7.7 with the more accurate form of the velocity, we can plot the energy

loss of an event versus its distance traveled versus the strength of the electric field in HPGe

detectors using the upper limit of the charge carrier lifetime in Fig. 7.7. A good HPGe

detector systems will have a FHWM of approximately 2 keV for a 1 MeV peak as compared

to the energy loss in Fig. 7.7.



104

Figure 7.7: A plot of the charge carrier lifetime limit in high purity germanium at 77 k
versus path length and electric field strength. This is for holes and is the loss of energy
given a 1 MeV energy deposition with τ < 1E − 4 seconds [6].
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Based on this simple model, we can measure the charge carrier loss of a given energy

if we can establish the distance the charge traveled. For semi-coaxial HPGe detectors, this

correction would be insignificant except for crystals with significant lattice damage and

trapping regions. For a PPC detector, however, the path lengths of the charge carriers

can give rise to significant energy losses due to even a reasonable charge carrier lifetime.

The two requirements for this type of measurement are that, first, we can identify events

belonging to a specific full energy deposition even with charge trapping losses. Using a

coincidence γ-source we can easily identify the energy of the deposition. Second, we must

be able to identify the distance which the charge carrier has traveled.

A PPC detector has a very different pulse shape from a semi-coaxial detector.

One major difference is that for a PPC pulse, the start time is often unknown. However, if

we place a NaI detector in coincidence with the PPC detector for a 60Co γ-source we can

measure the start time of the pulse independently of the PPC detector. We compare the

total charge carrier lifetime measured by the NaI detector to the 10− 90% rise time of the

PPC detector. Fig. 7.8 thus verifies the simple linear relationship between the total drift

time to the 10− 90% rise time of the PPC detector. The first implication is that if a drift

time correction is necessary, then it can be done for this and similar PPC detectors. The

second implication is that the 10 − 90% rise time of a PPC pulse carries spatial and drift

time information for the entire volume.

A measure of the charge carrier lifetime for the UC PPC detector was made using

the 60Co coincident data set. By fitting an energy peak versus the 10 − 90% rise time,

as in Fig. 7.9, we can demonstrate the effect of the charge carrier lifetime on the energy

peak through its losses. Fig. 7.9 graphs the energy peaks versus rise time at depletion
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Figure 7.8: A plot of the total charge carrier drift time in the UC PPC versus the 10-90%
rise time of the integrated current pulse. For the 1332.5 keV gamma of a 60Co source tagged
with a NaI detector. Data courtesy of Phil Barbeau and Juan Collar at the University of
Chicago.

(2500 Volts) as well as at the operating voltage (3000 Volts). The charge carrier lifetime

measured is 1.654E − 4 s at 2500 Volts and 0.878E − 4 s at 3000 Volts, demonstrating the

need for significant electric field strengths in the PPC detector.

7.5 Optimizing a Geometry

Combining the models with a Monte Carlo we can evaluate the figure of merit for

different HPGe radii and height given the same impurity density. The figure of merit to be

used has previously been defined in in chapter 4 folowing from that developed by Aalseth

[67]. We show the geometry space below and the results of the figure of merit calculations

using a 228Th source distributed uniformly around the detector.
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Figure 7.9: A plot of the Energy versus the duration for the UC PPC.
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Figure 7.10: Representation of the geometric parameter space. We can see the change in
diameter and height for the parameter space in question.

The parameter space consists only of the diameter and height of a P-type Point

Contact detector. This parameter space is illustrated in Fig. 7.10. The point contact itself

is 6mm in diameter. The impurity density equation is

ρ(r, z) = A+Br + Cz (7.8)

Where A is −100E−5 C
m3 , B is 200E−5 C

m3 and C is 1000E−5 C
m3 . This choice allows the

entire range of diameters and heights to easily be depleted under 4000 volts. Each detector

had a dead layer thickness of 0.5 mm over the entire surface except the bottom passivated

surface. The thorium source surrounds the detector on all sides without any absorbing

material. The source include the entire thorium decay chain.

The depletion voltage for each detector was solved given the the impurity density.

Each detector was simulated at 500 Volts above depletion. This gives a fairly uniform

electric field throughout the detector except very close to the point contact. The potential

and electric field for each detector is then stored from later use.

Once the detector geometries were defined a Monte Carlo of the radiation inter-

actions for each detector geometry was performed. The data listed each energy deposition
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as part of the parent event. Each event corresponds to a single iteration through the entire

decay chain. Thus no two independent decays can interfere as background or summing.

Each energy deposition has an interaction time relative to the parent event. In the

charge transport simulation all energy depositions are simulated with the given location and

relative timing. The signals are recorded and passed through the electronics transfer func-

tion into the appropriate file format for analysis. Thus very realistic signals are generated

for analysis by the same code used to analyze experimental data.

The analysis is a pulse by pulse based parametric method developed in the IGEX

experiment [73, 9, 65]. The code uses a training set of predominately single site events.

Thus a single site event library can be fed directly into the analysis code, or one can use

the events from a given energy whose interactions are predominately single site. In this

case events from the 1592 keV peak have been shown to be > 90 percent single site through

Monte Carlo simulations [65]. Using these events from the energy peak to train the analysis

code, we can evaluate our ability to discriminate background, in this case the 1620 keV peak

is dominated by multiple site events, also show by Monte Carlo simulations, as seen in Fig.

7.11. This method is used to evaluate the efficacy of the pulse shape discrimination method

for an experiment with similar event interaction characteristics. The resulting figure of

merit for the geometric parameter space (Fig. 7.10) is presented in Fig. 7.12.
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Figure 7.11: A 232Th spectrum illustrating the PSD method used to remove most of the
multiple site events while retaining most of the single site events. Using these peaks from
this type of spectrum follows the method outlined in [9].
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Figure 7.12: The resulting figure of merit interpolated for the geometric parameter space
shown in Fig. 7.10 of different radii and heights for a simple Point Contact Detector design.
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Chapter 8

Conclusion

8.1 Overview

Physicists have and will continue to explore the nature of the neutrino through

a variety of experimental techniques [15, 13, 82, 32]. Neutrino-less double beta decay is a

process specific to certain fundamental properties of the neutrino [12, 83, 20]. Experiments

must continue to improve beyond present detector sensitivity in order to explore these

properties. Advancement is required in many areas to achieve this lofty goal, detector

design optimization is one such necessary advancement [84, 14, 20]. This work does not

address the requirements of any specific experiment, instead it addresses the key components

and develops the necessary models to optimize HPGe detector design parameters to meet

experiment specific goals.

Many neutrino-less double beta decay experiments employ isotropically enriched

high purity germanium detectors as both source and detector [20, 73, 23, 22]. For greatest

sensitivity these experiments must build a detector that maximizes the 0νββ-signal while



113

simultaneously minimizing backgrounds and noise. If a background free condition can be

obtained in the signal region within a width determined by the energy resolution, the

sensitivity scales as the square root of the exposure [14]. Great efforts have gone into

eliminating sources of radioactive contamination [41, 42, 43, 44, 24, 85, 86] via extreme

shielding [12], evaluation and screening of all material [87], minimalistic suspension and

contact design [22], the use of ultra-pure materials [27] and pulse shape analysis [65, 62, 88,

89].

A factor of 1.56 in the half life sensitivity by pulse shape analysis has been demon-

strated [90], further an increase from electrical contact segmentation has also been demon-

strated [62, 91]. Novel electrical contact design has also shown increase in half-life sensitivity

[8]. Clearly that the sensitivity to the neutrino-less double beta decay signal in these ex-

periments is greatly affected by many factors of the detector design and subsequent signal

analysis. To truly maximize experiment efficacy, each experiment must seek an optimal

detector design and operational parameters based on both initial experimental conditions

and ultimate scientific goals.

In this work, models for electric field, charge transport, and signal formation are

developed given an electrode geometry description, charged impurity density equation, and

electrical response function as input parameters. A novel detector characterization is pre-

sented to address the difficulty of characterizing the charge impurity equation, with exper-

imental validation. A pulse shape analysis method is also developed from previous work.

The combination of these elements provides a robust evaluation of detector design and

operational parameters impact on the specific goals of an experiment.

Highlights of the computer code are explained, including the geometrical repre-
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sentations, electrostatic solutions and signal generation dynamics. The code includes func-

tionality for including the electrical response, nevertheless this work uses a general HPGe

preamplifier response function from the appropriate literature. Results are shown to pass a

series of systematic and experimental validations. The importance of the charged impurity

profile to this model requires its characterization beyond current standards or even capa-

bilities. A method is presented to iteratively solve for the charged impurity profile within

the error of a χ2 fit [51] using the measured capacitance as a function of voltage. Chapter

6 shows an example of this technique.

We provide a simple example of one possible use of this model for the optimization

of input parameters for some defined experimental result. We use a simple equation for the

charged impurity equation, combined with the contact geometry of a p-type point contact

detector. Reasonable limits were set on the allowed depletion voltages and detector size

were used. The a figure of merit for a well defined physics goal was used to find the optimal

diameter and height combination given the simulation limits.

8.2 Extension of this work to future 0νββ decay experiments

Great efforts have gone into eliminating sources of radioactive contamination [41,

42, 43, 44, 24, 85, 86] via extreme shielding[12], evaluation and screening of all material [87],

minimalistic suspension and contact design [22], the use of ultra-pure materials [27] and

pulse shape analysis [65, 62, 88, 89]. Radiation transport and Monte Carlo simulations may

be used to study the effects of material radio-purity and spatial distribution of radioactive

sources within an experimental geometry. The data from these Monte Carlo simulations

can then be used to couple in detector design and property limits such as impurity density
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Figure 8.1: Parameterized model for for simulation of the detector response.
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and charge carrier lifetime. The final step of applying the actual analysis methods directly

to the simulation data will allow a realistic evaluation of the total detector design toward

the science specific goals.

Our model simulates the response of high purity germanium detectors to radiation

based on a large set of physical parameters. This parameter set includes the geometry, the

electrode layout, the charged impurity density and even the electronics response. The model

will evaluate any parameter set from simulated radiation event data completely through to

the specific analysis performed on the data. Given quantifiable experiment specific goals,

this entire model can be used to evaluate many possible parameter sets. This model even

allows the optimization of the input parameters to achieve maximum efficiency in some

appropriate experiment specific goals.

Neutrino-less double beta decay experiments will have a certain set of well defined

goals for experiential success embodied in an appropriately defined figure of merit. The

model can be used to optimize increasingly complex parameter spaces, within the limits

set, for a maximal probability of positive outcome for this defined set of physics goals. In

the case of Germanium detector experiments, at least two major experiments explore a

number of alternate designs in an attempt to identify the optimal strategy for experiments

scalable to one ton or more of active germanium mass. This huge undertaking will be

substantially aided by the analysis tools we have developed.
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Figure 8.2: Total parameterized model for general consideration of physics experiments.
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Appendix A. Shockely Ramo theorem for calculation

Consider the equation for the total rate of work done by the fields given a contin-

uous distribution of charge and current in a finite volume: (Eq. 6.103 [39])∫
τ

E · Jtdτ (A-1)

where Jt = J + ∂D
∂t such that ∇ · Jt = ∇(J + ∂D

∂t ) = 0. Let us assume a quasi-static case:

E = −∇φ (A-2)

We can write the current equation:∫
τ

E · Jtdτ =
∫
τ
−∇φ · Jt = −

∫
τ
∇ · (φJt)dτ +

∫
τ
φ∇ · Jtdτ (A-3)

The last term is equal to zero. We can apply the divergence theorem to the next to the

remaining term to get:∫
τ

E · (J +
∂D
∂t

)dτ = −
∫
S
φJ · dS =

n∑
k=1

VkIk(t) (A-4)

with Vk as the voltage applied to the kth electrode and Ik(t) is the current on the kth

electrode. We can separate out the relevant parts by the principle of linear super position

such that E = E1 + E2 + E3 with E1 being the electric field due to the electrodes with no

space charge, E2 is due to static space charge ρ2 and E3 is due to the moving charge ρ3

with a velocity u3. Note that ρ = ρ2 + ρ3, such that the boundaries are at zero potential

due to the presence of charge. φ1(r → S) = Vk and φ2(r → S) = φ3(r → S) = 0 at all

electrodes.

Let Vk → 0 for all k, while retaining ρ2 and ρ3.∫
τ

E · (J +
∂D
∂t

)dτ =
∫

(E2 + E3) · (ρ3u +
∂

∂t
(D2 + D3))dτ = 0 (A-5)
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where D2 = εE2 and D3 = εE3. Then:

∂D1

∂t
= 0 =

∂D2

∂t
(A-6)

We write E2 + E3 = E−E1 to get

∫
(E−E1 · (ρ3u +

∂D3

∂t
)) = 0 (A-7)

⇒
∫

E · (ρ3u +
∂D3

∂t
)dτ =

n∑
k=1

VkIk(t) =
∫

E1 · (ρ3u +
∂D3

∂t
)dτ (A-8)

Such that:
n∑
k=1

VkIk(t) =
∫

E1 · (ρ3u +
∂D3

∂t
)dτ (A-9)

Taking the second term in the integral

∫
E1 ·

∂D3

∂t
dτ (A-10)

Using

∂

∂t

∫
E1 ·D3dτ =

∫
∂E1

∂t
·D3dτ +

∫
E1 ·

∂D3

∂t
dτ (A-11)

We can see that ∫
∂E1

∂t
·D3dτ = 0 (A-12)

Since E1 is constant in time, we can pull the partial differential outside of the integral to

get: ∫
E1 ·

∂D3

∂t
dτ =

∂

∂t

∫
E1 ·D3dτ (A-13)

We can use the definition of D3 = εE3 to write:

∫
E1 ·

∂D3

∂t
dτ =

∂

∂t
ε

∫
E1 ·E3dτ (A-14)
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We can then use the relationship of the electric field to the potential E = −∇φ to write:

∫
E1 ·

∂D3

∂t
dτ =

∂

∂t
ε

∫
∇φ1 · ∇φ3dτ (A-15)

Using Green’s first identify [39]

∫
τ
(φ3∇2φ1 +∇φ1 · ∇φ3)dτ =

∮
S
φ3 ·

∂φ1

∂t
dS (A-16)

From this equation we know that ∇2φ1 = ρ1 = 0, as well we have φ3 = 0 at the surface. So

this part of the integral is zero. We are left with:

n∑
k=1

VkIk(t) =
∫

(E1 · ρ3u)dτ) (A-17)

With the applied voltage on electrode k being Vk we can divide through to get the current

Ik(t):

Ik(t) =
∫

(Wk1 · ρ3u)dτ) (A-18)

where Wk1 = E1
Vk

is the weight potential. Thus we are left with the current on electrode k

as a function of time due to the movement of the charge ρ3, the applied voltage on electrode

k and the electric field due to the electrodes with no space charge.




