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ABSTRACT

PADRAIC SEAMUS FINNERTY: A Direct Dark Matter Search with the
Majorana Low-Background Broad Energy Germanium Detector.

(Under the direction of Dr. Reyco Henning.)

It is well established that a significant portion of our Universe is comprised of invisible,

non-luminous matter, commonly referred to as dark matter. The detection and characteriza-

tion of this missing matter is an active area of research in cosmology and particle astrophysics.

A general class of candidates for non-baryonic particle dark matter is weakly interacting mas-

sive particles (WIMPs). WIMPs emerge naturally from supersymmetry with predicted masses

between 1− 1000 GeV. There are many current and near-future experiments that may shed

light on the nature of dark matter by directly detecting WIMP-nucleus scattering events.

The Majorana experiment will use p-type point contact (PPC) germanium detectors

as both the source and detector to search for neutrinoless double-beta decay in 76Ge. These

detectors have both exceptional energy resolution and low-energy thresholds. The low-energy

performance of PPC detectors, due to their low-capacitance point-contact design, makes them

suitable for direct dark matter searches.

As a part of the research and development efforts for the Majorana experiment, a custom

Canberra PPC detector has been deployed at the Kimballton Underground Research Facility

in Ripplemead, Virginia. This detector has been used to perform a search for low-mass

(< 10 GeV) WIMP induced nuclear recoils using a 221.49 live-day exposure. It was found

that events originating near the surface of the detector plague the signal region, even after

all cuts. For this reason, only an upper limit on WIMP induced nuclear recoils was placed.

This limit is inconsistent with several recent claims to have observed light WIMP based dark

matter.
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Chapter 1

Introduction

The work outlined in this dissertation is a subsidiary project of the Majorana experiment.

The two main physics topics are (1) dark matter and (2) the nature of neutrinos. The main

goal of this dissertation was to directly search for particle dark matter. In this chapter I

will give an introduction to Dark Matter (DM) and follow up with a brief introduction to

neutrinos and the Majorana experiment.

1.1 Dark Matter in the Universe

Isaac Newton’s theory of gravity works remarkably well at explaining the motions of celes-

tial objects, for example the motions of planets around a star or a star around a galactic

core. However, small deviations from the expected trajectories have been measured. When

questions arose on anomalies in the motion of planets in the Solar system, the scientific com-

munity asked themselves: Is Newton’s theory wrong or is there something there that we just

can’t see? In the case of Uranus’ orbit, the answer was that there was indeed something we

couldn’t see: Neptune. However, by similar logic, the motion of Mercury led scientists to

claim there had to be a planet nearby1. Astronomers found no evidence of a ‘missing planet’

near Mercury and it turned out that the solution would have to wait until Einstein’s theory

of general relativity (GR) [1], i.e. the introduction of a more refined description of the laws of

gravitation. The Dark Matter Problem is strikingly similar to the scenarios outlined above.

1They called it Vulcan



Is something really there that we can’t see or is our understanding of the Universe still in its

infant stages? After a brief introduction to cosmology and the history of the Universe, I will

discuss how we have irrefutable evidence that there is in fact DM in the Universe and what

it is thought to be comprised of.

1.1.1 The Standard Cosmological Model

Cosmology is theoretical astrophysics at its largest scales. It deals with the Universe as a

whole – its origin, distant past, evolution, and structure. When looking at the world at such

grand scales, locally ‘flat’ and ‘slow’ approximations (the realm of the Newtonian mechanics)

are no longer justified. For more details on cosmological theory and the evidence that supports

it, see any of these modern textbooks [2–6]. Additionally, throughout the remainder of this

dissertation, we will use natural units (i.e. c = 1 and ~ = 1).

Theoretical Framework

The framework for understanding the evolution of our Universe is referred to as the Standard

Cosmological Model (SCM, sometimes referred to as Λ-CDM) [7]. The SCM is deeply rooted

in Einstein’s theory of GR and assumes that the Universe, on its largest scales, is homogenous

and isotropic. These features have been confirmed observationally. The SCM has proven to be

an excellent model, as it can satisfactorily explain several key features of the early Universe:

– Thermal history, how long a species of particle will take place in fundamental inter-

actions before the interaction rate becomes negligible during various epochs, see Sec-

tion 1.1.1.

– Relic background radiation, the cosmic microwave background (CMB) and relic neutrino

background, see Section 1.1.2.

– Abundances of the elements, the amount of various elements present in the Universe

today, see Section 1.1.2.

– Large scale structure of the Universe, meaning the observed density of galaxies present

in the Universe today.

2



The SCM has three key foundations that help us explain the physical world [8]:

(1) Einstein equations, relates the geometry of the Universe with its matter and energy

content

(2) Metrics, describing the symmetries of the problem, e.g. what space-time are we in: flat?

curved?

(3) Equation of state, specifying the physical properties of the matter and energy content,

e.g. what is the relation between pressures and densities?

The Einstein equations of motion are given by [7–9],

Rµν −
1

2
gµν = −8πGN

c4
Tµν + Λgµν , (1.1)

where Rµν and R are the Ricci tensor and scalar respectively, gµν is the metric tensor, GN

is Newton’s constant, Tµν is the stress-energy tensor and Λ is the cosmological constant or

Dark Energy component. For now, if we ignore the term with the cosmological constant in

it (Λgµν), this equation is easily understood. In simple terms, this equation states that the

geometry of the Universe is determined by the energy content of the Universe.

To solve these equations, we need to specify a line element or metric, and the most common

metric used is

ds2 = −c2dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, (1.2)

where a(t) is the scale factor and the constant k describes the spacial curvature of space-time.

The value of k can either be -1 (open), 1 (closed) or 0 (flat). In the simplest case, for a flat

space-time, Equation 1.1 reduces down to ordinary Euclidian space. We can then solve the

Einstein equations to derive the Friedmann equation [8, 10],

(
ȧ

a

)
+

k

a2
=

8πGN
3

ρtot, (1.3)
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where ρtot is the average energy density of the Universe. It is common to introduce a parameter

referred to as the Hubble parameter given by

H(t) =
˙a(t)

a(t)
, (1.4)

and is a measure of the rate at which space-time is expanding or contracting. The current

value of the Hubble parameter is referred to as the Hubble constant and is denoted by H0. A

recent estimate of the Hubble constant with the 9-year WMAP data alone givesH0 = 70.0±2.2

km s−1 Mpc−1 [11]. We can see from Equation 1.3 that the Universe is flat when the energy

density equals a critical density ρc,

ρc ≡
3H2

8πGN
. (1.5)

Here we adopt the notation used by [8, 12], which expresses the abundance of a substance

in the Universe (matter, radiation, vacuum energy, etc.) in units of the critical density ρc.

Therefore, a quantity Ωi of a substance of species i is given as

Ωi ≡
ρi
ρc
, (1.6)

it also follows that the mass-energy density of the Universe in these units is

Ω =
∑
i

Ωi ≡
∑
i

ρi
ρc
. (1.7)

With these new definitions of Ω and ρc, the Friedmann equation (Equation 1.3) can be written

as

Ω− 1 =
k

H2a2
(1.8)

The sign of k is thus determined by whether Ω is greater, less than or equal to unity. In order

to understand how the energy content of the Universe evolves according to the Friedmann

equation, we split Ω up into its individual components as mentioned previously. We now

introduce the redshift parameter, z, which relates the observed wavelength (λobs) to the

emitted wavelength (λemitted) from distant astronomical objects. Redshift is then directly

4



proportional to the distance of the object. The difference in scale factor a(t) between the

source and observation points can also be expressed in terms of z:

z ≡ λobs
λemitted

− 1 =
a(tobs)

a(temitted)
− 1. (1.9)

The Friedmann equation can be rewritten in more general form as,

H2(z)

H2
0

=
[
ΩΛ + ΩK(1 + z)2 + ΩM (1 + z)3 + ΩR(1 + z)4

]
, (1.10)

where ΩM , ΩR and ΩΛ refer respectively to the present day matter, radiation and dark energy

(fractional) densities and sum to Ω0. ΩK = −k
a20H

2
0

contains the curvature sensitive part of the

equation.

Thermal History

The differing z dependencies in Equation 1.10 for matter, radiation and dark energy provide

a method for disentangling their respective contributions to Ω through astrophysical observa-

tions at different redshifts. As is illustrated in Figure 1.1, the history of the Universe divides

into three distinct epochs during which a different component of Ω dominates the evolution

of the scale factor [13]:

(1) Radiation Dominated (z & 3265): Photons and neutrinos dominated the evolution

of the scale factor in the earliest moments following the Big-Bang. During this period,

several events occurred:

– Neutrino Decoupling : Neutrinos were in equilibrium until ∼0.1 seconds after the

Big Bang, at which time the rate of their interactions with other weakly-interacting

matter dropped below the rate at which the scale factor was expanding. The tem-

perature of the Universe at this time was ∼3 MeV [14]. A direct consequence

of neutrino decoupling is that the weak processes that maintain thermal equilib-

rium between protons and neutrons quickly turned off as the decoupled neutrinos

continued to cool. Approximately one second later, the neutron-to-proton ratio

5



Figure 1.1: Radiation, matter, and dark energy densities as a function of redshift. This shows
how the Universe is at first radiation dominated (large z to the left), then matter dominated
and finally dark energy dominated, Figure from Ref. [13].

became fixed and played a critical role in the next stage.

– Nucleosynthesis: Light nuclei began to form once the temperature of the Universe

cooled to less than 2.23 MeV, below which the average nucleon energy is less

than the deuteron binding energy, allowing the p + n → D + γ reaction to occur.

Due to the large density of the photon-background, it was not until the Universe

cooled to 100 keV that the deuteron-dissociating photons fell below the number

of nucleons and reaction could produce a stably increasing deuteron density [4].

Most nucleosynthesis occurred roughly 100 seconds after the Big Bang, and the

abundances of light nuclei froze out after about a half an hour. These abundances

place strong constraints on the baryonic contribution to ΩM . See Section 1.1.2 for

more details.

– Recombination: The Universe cooled down to below the electron binding energy

of hydrogen (13.6 eV) and neutral hydrogen began to form out of the plasma

6



of electrons and protons. The rate of photodissocitation was superseded by the

expansion rate at a temperature of about 0.3 eV, resulting in the recombination

of protons and electrons into neutral hydrogen several hundred thousand years

after the Big-Bang [4]. Prior to recombination, the Universe was opaque to elec-

tromagnetic radiation due to Thomson scattering of the photon background by

free electrons. After recombination, the free-electron density dropped significantly,

causing an equally dramatic increase in the photon mean free path and resulting

in a Universe that is transparent to light. Recombination is often referred to as the

surface of last scattering since the photons that emerge from this event traverse

the Universe largely unscathed. Due to the expansion of the Universe, the surface

of last scattering is seen today as a uniform glow with a characteristic temperature

of 2.73 K. This glow is referred to as the Cosmic Microwave Background (CMB).

See Section 1.1.2 for further details.

(2) Matter Dominated (0.5 . z . 3265): Matter, or baryons and DM, dominated the

evolution of the scale factor for redshifts between ∼3265 and ∼0.5. During this time,

the Universe expanded more rapidly than during the radiation-dominated era. The den-

sity perturbations from the surface of last scattering continued to grow and eventually

formed the first stars and galaxies. Between recombination and the formation of the first

stars, there is a period referred to as the “dark ages” where the only significant source of

light was the CMB radiation. The first celestial objects to form radiated sufficient heat

to initiate a period of neutral hydrogen reionization that lasted for hundreds of millions

of years (zreion = 10.1) [11]. The expansion of the Universe had diluted the distribution

of matter sufficiently enough such that the Universe remained largely transparent to

light despite the reionized hydrogen. However, the reionization caused a ∼10% opacity

that can be seen in the pattern of the CMB fluctuations today. Supernovae that oc-

curred late in the matter dominated era provide some of the most convincing evidence

that the expansion of the Universe deviates from Hubble’s law [15], in which the galaxy

redshift is linearly proportional to its distance. In fact, the present-day expansion is

7



accelerating, indicating a need for a non-zero cosmological constant and leading to the

following epoch.

(3) Dark Energy Dominated (z . 0.5): Around z ' 0.5, the scale factor transitioned

into a dark-energy-dominated era. The expansion rate is accelerating and will eventually

yield an a ∝ eHt behavior. If the Universe continues to expand in this nature, it

will expand forever. The evolution of gravitationally bound structures will become

increasingly more complicated and nonlinear, while unbound structures will gradually

disperse until all of the matter in the Universe is effectively isolated.

1.1.2 Observational Evidence

By now it is well established that a significant portion of our Universe is invisible and non-

luminous matter that we ignorantly refer to as DM [8, 12]. In Section 1.1.1, I showed that

modern cosmology splits up the energy content of the Universe into three main components:

matter, radiation and dark energy. The reasons for this are well motivated by experimental

observations and in the following sections I will outline several of these. It is important to

note that about 95% of the the SCM’s energy content is comprised of an unknown or dark

component (dark energy and dark matter).

Galaxies

The earliest indication for the possible presence of DM came from the dynamical study of

our Galaxy. In 1922 British astronomer James Jeans [16] analyzed the vertical motions of

stars near the plane of our Galaxy. From these data, Jeans calculated the density of matter

near the Sun and also estimated the density due all stars near the Galactic plane. The results

indicated that there was twice as much matter there than he could see. The second piece

of evidence was provided by a Swiss astrophysicist, Fritz Zwicky, in 1933 [17]. He used the

virial theorem to show that the observed (luminous) matter was not nearly enough to keep

Coma cluster of galaxies together. This led Zwicky to infer that there was more matter in

the Coma cluster than could be seen with optical instruments. The missing mass reported by

8



Zwicky was largely ignored for 40 years until Rubin & Ford [18–20] measured the rotational

velocities of edge-on spiral galaxies. To the astonishment of the scientific community, they

showed that most stars in spiral galaxies orbit the galactic core at roughly the same speed –

this is shown in Figure 1.2. This observation suggested that the mass densities of the galaxies

were uniform well out to the largest visible radii. This was consistent with the spiral galaxies

being embedded in a much larger halo of invisible mass, a DM halo. The mathematical details

are simple, the rotational velocity v of an object on a stable Keplerian orbit with radius r

around a galactic core is given by

v(r) =

√
GM(r)

r
, (1.11)

where M(r) is the total mass inside an orbit with radius r. They found that instead of a

v ∝ r−1/2 relationship, the galactic rotational velocities were constant, or flat, out to large

r even beyond the edge of the visible disks, as shown in Figure 1.2. This holds true in

most spiral galaxies, and in the case of the Milky Way, the rotational velocity in our solar

neighborhood is ∼ 240 km/s with little change out to the largest observable radius.

Gravitational Lensing

Gravitational lensing is a direct consequence of GR, in which the trajectory of a photon is

affected by the curvature of space-time induced by a nearby massive object thus causing a

lensing effect. In the weak field limit, the refractive index of a gravitational lens is directly

proportional to its gravitational field. This allows one to extract a mass-density map from a

lensing object, including DM.

Some of the most spectacular results obtained regarding the nature of DM using gravi-

tational lensing are those on the ‘Bullet Cluster’ 1E0657-558 [22] and more recently on the

lensing cluster MACS J0025.4-1222 [23]. In both clusters, the reconstruction of the mass

distribution show two massive substructures that are offset with respect to the baryon distri-

bution observed in X-rays. Figure 1.3 shows two images of the Bullet Cluster that indicate

a large separation between the sub-cluster mass densities inferred by gravitational lensing
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Figure 1.2: Rotation curve of NGC 6503. The dotted, dashed and dash-dotted lines are the
contributions of gas, disk and DM, respectively. Figure from Ref. [21].
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but a smaller separation and a bow shock between clumps of baryonic gas, inferred by X-ray

imaging. The conclusion is that the two clusters’ member galaxies and DM halos passed

through one another relatively intact, while their intracluster gas clouds were stripped away

by drag forces such that they appear to lag behind. The Bullet Cluster provides compelling

evidence for the existence of particulate DM.

Figure 1.3: Left : Optical image of the Bullet Cluster from the Hubble Space Telescope with
lensing contours indicating the mass-density distribution. Right : X-ray image of the Bullet
cluster with the Chandra X-ray Observatory with lensing contours indicating the mass-density
distribution. Figure from Ref. [22].

Big Bang Nucleosynthesis

According to the Big Bang model, the Universe began in an extremely hot and dense state.

For about the first 0.1 seconds, it was so hot that atomic nuclei could not form – space was

essentially filled with a hot soup of protons, neutrons, electrons and photons. Even if a proton

and neutron collided to form a deuterium, the high temperatures caused the nucleus to be

immediately broken up by photons [24].

From around times 0.1-104 seconds, the Universe cooled off enough so that light nuclei could

form:

– 2H (Deuterium): p(n, γ)D;

– 3He: D(p, γ)3He;

– 4He: 3He(D, p)4He;
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– 7Li: 3He(4He, γ)7Li.

This era is referred to the Big Bang Nucleosynthesis (BBN) era2. The amount of baryonic

matter in the Universe today is connected to the ratio of baryons to photons during the BBN

era,

η =
nb − nb̄
nγ

∼ nb
nγ
, (1.12)

where nb, nb̄, and nγ are the baryon, antibaryon and photon number density respectively.

Models of BBN predict the primordial abundances of light nuclei (A < 8). One exampling

being the mass fraction of 4He, given by

Yp =
2(n/p)

1 + n/p
, (1.13)

where n/p is the ratio of the neutron to proton number density, as a function of η. In

summary, BBN refers to a set of highly constrained calculations that predict the abundances

of light nuclei (A < 8) as a function of a single parameter, the baryon-to-photon ratio (η); η

is directly related to the to the fraction Ω contained in baryons, Ωb. According to Ref. [7],

5.1× 10−10 < η < 6.5× 10−10, and

Ωb = 3.66× 107ηh−2 or 1010η = 274Ωbh
2, (1.14)

where h is the Hubble constant (H0) in units of 100 km s−1 Mpc−1 [7]. The elemental

abundances can then be calculated and plotted as a function of η, as shown in Figure 1.4.

After a detailed analysis, it is possible to extract limits on the baryonic density in the Universe

based on BBN,

0.019 ≤ Ωbh
2 ≤ 0.024. (1.15)

According to these calculations, baryons cannot close the Universe. Furthermore, since ΩM ∼

0.3 [7], most of the matter in the Universe is not only DM, but it also is predominantly non-

baryonic. These calculations agree quite well with what will be presented in the next section.

2For a detailed review, please read [25, 26]

12



3He/H p

4He

2 3 4 5 6 7 8 9 101

0.01 0.02 0.030.005

C
M

B

B
B

N

Baryon-to-photon ratio η × 1010

Baryon density Ωbh2

D___
H

0.24

0.23

0.25

0.26

0.27

10−4

10−3

10−5

10−9

10−10

2

5
7Li/H p

Yp

D/H p

Figure 1.4: Abundances of 4He and 2H (D), 3He and 7Li as a function of η as predicted by the
standard model of BBN. The bands show the 95% C.L. range. Boxes indicate the observed
light element abundances (smaller boxes: ±2σ statistical errors; larger boxes: ±2σ statistical
and systematic errors). The narrow vertical band indicates the CMB measure of the cosmic
baryon density (see Section 1.1.2) while the wider range indicates the 1σ confidence intervals
associated with recent measurements (both at 95% C.L.)., Figure from Ref. [7].
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Cosmic Microwave Background

In 1964 the Cosmic Microwave Background (CMB) radiation was detected [27, 28]. This

discovery was a powerful confirmation of the Big Bang theory, that the Universe started in a

very hot and dense state and expanded rapidly. Several hundred thousand years after the Big

Bang, the Universe reached a critical temperature in which the gas became neutral, causing

the baryons and photons to become decoupled. Before this time, baryons and photons were

tightly coupled (referred to as the baryon-photon fluid). After decoupling, the baryons were

free to collapse into potential wells generated by gravitational instabilities (widely thought to

be caused by DM [4]). The CMB is in essence a record of the conditions at the time of last

scattering (surface of last scattering). The detailed pattern of the matter-density-fluctuation

power spectrum anisotropies, shown in Figure 1.5, depends upon all of the cosmological

parameters. The CMB and its anisotropies provide standard measures to characterize various

cosmological parameters and are a critical component of the precision cosmology of today

[29]. The relative amplitude of the peaks of the CMB angular power spectrum, shown in

Figure 1.5, constrain the baryon density and non-baryonic DM density. The 9-year WMAP

data [11] alone finds that the density of baryons in the Universe (Ωb) is given by

Ωb = 0.0463± 0.0024, (1.16)

while the density of physical matter (ΩM ) is given by

ΩM = 0.279± 0.025. (1.17)

These values tell us that a significant amount of DM is non-baryonic. Furthermore, this non-

baryonic DM cannot have coupled strongly to the baryon-photon fluid prior to last scattering

or have been moving at relativistic speeds. This implies that DM is moving at non-relativistic

speeds (COLD) and non-luminous (DARK) matter, or Cold Dark Matter (CDM).
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Figure 1.5: The angular power spectrum of the CMB temperature anisotropies from WMAP-
9 [11]. The solid line shows the fitting after incorporating all the cosmological parameters
within the ΛCDM model. Figure from Ref. [7].

Summary of Dark Matter Evidence

The evidence presented in this dissertation is not comprehensive; a full discussion on the

evidence for DM is beyond the scope of this work. The existence of DM was established via

observations of flat rotation curves in spiral galaxies. Additionally, the collisions of galaxy

clusters and subsequent observations with gravitational lensing and X-ray imaging have given

us the most visually stunning evidence that there is non-luminous and weakly interacting

DM in the Universe. Big Bang Nucleosynthesis and CMB observations have shown us that

the DM component need not only be weakly interacting, but the majority of it must be in

non-baryonic form. In summary the current mass budget of our Universe can be expressed

in one simple table, see Table 1.1. This table shows that CDM constitutes ∼23% of the total

mass of the Universe, whereas the matter that we see, feel and touch (baryonic) constitutes

only ∼4.6%.
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Table 1.1: The mass budget of the Universe according to WMAP-9 alone [11].

Age of the Universe (Gyr) t0 13.74± 0.11
Hubble constant (km s−1 Mpc−1) H0 70.0± 2.2

Baryon density Ωb 0.0463± 0.0024
Cold DM density Ωcdm 0.233± 0.023
Matter density (Ωb + Ωcdm) ΩM 0.279± 0.025
Dark Energy density ΩΛ 0.721± 0.025

1.1.3 Dark Matter Candidates

The requirements of a viable DM candidate are listed below:

1. Does it agree with the relic density?

2. Is it cold (non-relativistic)?

3. Is it neutral?

4. Compatible with BBN and CMB?

5. Consistent with direct DM searches?

There are far too many DM candidates to describe in detail here. I will concentrate on the

most popular and well motivated SM and exotic possibilities for which a large number of

experimental efforts are now underway. For a detailed list of candidates see [7, 8, 12, 30] and

references therein.

Mirror Matter

We know that parity is maximally violated in the weak sector [31]. However, if parity is

a universally conserved quantity, then there could exist a parallel hidden (mirror) sector of

the Universe composed of particles that are identical to SM particles. Mirror DM models

[32–36] have proposed that in addition to the SM, a second identical SM exists and is coupled

to the known SM particles through a new type of symmetry. The motivation for a second

mirror SM is that parity is violated in SM weak interactions. The addition of a second mirror

SM would allow for a global conservation of parity. In most mirror matter models, the only
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fundamental SM boson identical to its mirror particle would be the graviton. Mirror matter

and SM particles would therefore interact gravitationally, but otherwise be inert. Though the

idea of a second mirror SM is exotic, mirror matter is a stable self-collisional DM candidate.

According to [36], the mass of mirror DM would be < 52 GeV, and hence a viable candidate

for low-mass DM.

Axions

Axions were first postulated to solve the strong CP problem of QCD [37–39] and are expected

to be extremely weakly interacting, meaning that they were not in thermal equilibrium in

the early Universe [8]. Since they would be produced athermally in the early Universe, they

would be simultaneously light and cold. Although weakly interacting, axions are thought to

be detectable through conversion to photons in a strong magnetic field [40]. Typical searches

for axionic DM utilize resonant cavities to enhance the expected conversion rate and look

for axion masses in the range of ∼1-100 µeV [41, 42]. For more information on axions, see

Ref. [7, 12] and references therein.

Weakly Interacting Massive Particles (WIMPs)

The most studied class of DM candidates are a class of particles called WIMPs. WIMPs are

well motivated by both cosmology and particle physics and have masses between 1−1000 GeV.

WIMP particles, χ, are hypothesized to have been created during the early Universe, < 1

ns after the Big Bang, and have been in equilibrium with other particles (e.g. photons and

neutrinos). As the temperature of the Universe dropped below the mass of the WIMP (T <

MW ), WIMPs fell out of equilibrium and production ceased, while annihilation continued.

During this time period WIMPs cooled to non-relativistic speeds and the expansion of space-

time diluted their numbers. Annihilation continued until its rate fell below the expansion rate

of the Universe thereby ‘freezing-out’ the number density of WIMPs. For MW ∼ 10 GeV, the

present relic density is then approximately given by

Ωχh
2 ' 0.1 pb

〈σAv〉
(1.18)
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where σA is the total annihilation cross section of the WIMPs, v is the relative velocity of the

WIMPs and 〈. . . 〉 denotes thermal averaging [7]. For Ωχ ∼ 0.2 and h ∼ 0.7, we learn from the

above equation that the annihilation cross section is characteristic of weak-scale interactions

(σEW ∼ 10−2 pb). This is because the order of magnitude of the matrix element governing

the annihilation process matches the weak force coupling, GF . This coincidence, which is not

tuned, represents one of the motivating factors for believing that WIMPs could provide the

dominant contribution to the matter in the Universe [43].

There are many theories which extend the SM and naturally contain a WIMP. Perhaps

one of the most favored theories is supersymmetry (SUSY) in which each elementary particle

has a supersymmetric partner (for a more detailed overview of SUSY see e.g. [30, 44–49]).

SUSY helps stabilize the masses of scalar particles, such as the Higgs boson, with the addition

of particles with masses in the same range pointed to with cosmological arguments above.

It is possible to extend the SM with SUSY in any number of ways, however the most

promising models contain the smallest possible number of fields necessary to replicate what

we have experimentally measured for each SM particle. The minimal supersymmetric exten-

sion to the SM, or MSSM [46], is the most economical extension to the SM that satisfies the

above constraints. The MSSM contains three neutral, colorless particles which are plausible

candidates for WIMP DM: the gravitino, the lightest sneutrino and the lightest neutralino.

DM could consist of any combination of these three particles, however present-day experi-

ments are not sensitive to gravitinos, and likely never will be. Additionally, sneutrinos have

been essentially excluded by the null results of direct DM searches [7, 12, 43]. The lightest

neutralino is the most commonly considered SUSY DM candidate and is the focus of this

dissertation. Experiments are needed, such as the work presented in this dissertation, to

test the WIMP hypothesis and to determine which (if any) flavor of WIMP makes up the

Universe’s missing mass.
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1.2 Neutrinos

The Majorana experiment’s primary goal is to search for Neutrinoless Double-Beta Decay

(0νββ) of 76Ge. Since the work presented in this dissertation is a subsidiary project of the

Majorana experiment, a brief discussion of neutrinos is needed. In this section we will

switch gears and discuss neutrinos in the context of the Majorana experiment.

1.2.1 A brief history

The observation of a continuous energy spectrum of electrons emitted in β-decay came as a

surprise to researchers in 1927 [50]. They had expected to see a single, discrete, peak at a

fixed energy. Due to conservation of energy and momentum, this would be exactly what we

expect if β-decay proceeded as a two-body decay

M(A,Z)→ D(A,Z+1) + e−, (1.19)

where M(A,Z) is the mother nucleus with mass number A and atomic number Z, D(A,Z+1)

is the daughter nucleus and e− is the electron. In order to solve this problem, in 1930,

Wolfgang Pauli proposed the existence of a light, neutral spin-1
2 particle (ν)3 that carried

away the missing energy resulting in a continuous spectrum,

M(A,Z)→ D(A,Z+1) + e− + ν, (1.20)

This particle was given the name neutrino, which in Italian means ‘neutral one’. In 1934,

Enrico Fermi developed the theory of β-decay [51] which incorporated neutrinos and agreed

with experimental data extremely well. However, the neutrino proved to be elusive and we

would have to wait until 1956 [52] before the first experimental evidence of the neutrino.

3We would later learn that there are in fact at least three flavors or types of neutrinos, νe, νµ and ντ with
each having a corresponding anti-particle ν̄e, ν̄µ and ν̄τ .
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1.2.2 Neutrinos in the Standard Model

The building blocks of the standard model (SM) of particle physics consist of six quarks and

six leptons, all of them being spin-1
2 fermions. They interact with each other via the four

fundamental forces: gravity, electromagnetic, strong and weak. The neutrino is one of the six

leptons in Table 1.2. Neutrinos are the only SM fermions to only interact via gravity and the

weak force. The weak interaction proceeds with the exchange of two types of bosons,

(1) Z0 and

(2) W±.

An interaction which exchanges a Z0 is called a neutral current (NC) interaction. Similarly,

an interaction which exchanges a W± is called a charged current (CC) interaction. In CC

interactions, charge conservation requires that the a charged lepton exits the interaction.

The neutrino always emits the W+ and the anti-neutrino always emits the W−. Within the

context of the SM, neutrinos are massless and there are three (at least) neutrino types or

flavors νe, νµ and ντ . These three neutrinos are named accordingly because they interact via

weak interactions with electrons, muons and taus. The ‘flavor’ (e, µ, τ) of these neutrinos4

is defined by the flavor of lepton emitted and so these three neutrinos constitute a basis of

flavor eigenstates. There is also a basis of mass eigenstates (1, 2, 3). The flavor and mass

eigenstates are connected by a unitary mixing matrix, Uαi

|να〉 =
∑
i

Uαi|νi〉, (1.21)

4...and anti-neutrinos if in fact they are distinct from their anti-particles.
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where for the case of 3 neutrinos, α (flavor eigenstate) = e, µ, τ ; i (mass eigenstate) = 1, 2, 3;

Uαi is given by

Uαi =


1 0 0

0 c23 s23

0 −s23 c23


︸ ︷︷ ︸

Atmospheric

×


c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13


︸ ︷︷ ︸
Reactor/Long Baseline

×


c12 s12 0

−s12 c12 0

0 0 1


︸ ︷︷ ︸

Solar

(1.22)

where sij = sin(θij) and cij = cos(θij). The current best values for these parameters (∆mij ,

θij) are listed in Table 1.3, where ∆m2
ij ≡ (m2

i−m2
j ), i 6= j . Neutrino oscillation experiments

are only sensitive to the mass squared differences, ∆m2
ij , but not the actual mass. The

magnitudes of both mass square differences (∆m2
21, ∆m2

32)5 have been measured, but the

sign of ∆m2
32 has not been measured. This leads to the neutrino-mass hierarchy problem. To

simplify this, we do not know which mass eigenstate is heaviest, see Figure 1.6. If ∆m2
32 > 0,

then m3 > m2 and that would indicate a ‘normal’ hierarchy. The term ‘normal’ alludes to

the fact that this is the hierarchy observed in the quark sector. However, if ∆m2
32 < 0, then

m3 < m2 and this is the ‘inverted’ hierarchy. In addition to the mass hierarchy problem, we

do not have a direct measurement of the neutrino mass. The most stringent limits on the ν̄e

mass were obtained by Troitsk [53] and Mainz [54] with 3H β-decay6:

mν̄e < 2.3 eV (1.23)

The KATRIN experiment [54] hopes to reach a sensitivity of mν̄e ∼ 0.20 eV. This mass is

sometimes referred to as mβ, which is given by mβ =
√∑

i |Uei|2m2
i .

To fully understand the nature of neutrinos, we need to first understand the basics of

helicity and chirality. For a spin-1
2 fermion, helicity is the projection of a particles spin along

its direction of motion. Helicity has two possible states for spin-1
2 particles: (1) spin aligned

opposite the direction of motion and (2) spin aligned along the direction of motion. If a

particle is massive, then the sign of the helicity becomes frame dependent, meaning that it

5We assume ∆m2
32 ∼ ∆m2

31.
6[7] recommends < 2.0 eV
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Table 1.2: Summary of the properties of the leptons; Li, flavor-related lepton number,
L =

∑
i=e,µ,τ Li. Table from [55].

Lepton Q[e] Le Lµ Lτ L

e− −1 1 0 0 1
νe 0 1 0 0 1
µ− −1 0 1 0 1
νµ 0 0 1 0 1
τ− −1 0 0 1 1
ντ 0 0 0 1 1

Table 1.3: Neutrino mixing matrix parameters, from Ref. [7]. The limit quoted for sin2(2θ23)
corresponds to the projection onto the sin2(2θ23) axis of the 90% C.L. contour in the
sin2(2θ23)-∆m2

32 plane. The sign of ∆m2
32 is not known at this time. sin2(2θ13) was recently

measured by the Daya Bay Collaboration [56]. We assume ∆m2
32 ∼ ∆m2

31.

sin2(2θ12) 0.861+0.026
−0.022

∆m2
21 (7.59± 0.21)× 10−5 eV2

sin2(2θ23) > 0.92
|∆m32|2 (2.43± 0.13)× 10−3 eV2

sin2(2θ13) 0.092± 0.016 (stat) ± 0.005 (syst)

ν3

ν2

ν1

ν2

ν1

ν3

Mass

≈
0

Normal Inverted

? ?

Figure 1.6: Neutrino mass hierarchies for ν1, ν2, ν3. m1 is less than m2 based on solar neutrino
observations, however m2 may be less than m3, which leads to the normal hierarchy, or m2

may be greater than m3 leading to the inverted hierarchy. Normal hierarchy is pictured on
the left and inverted on the right. The absolute scaling is not known.
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is not Lorentz invariant. For example, we could potentially boost to a frame where we are

moving faster than the particle of interest and the sign of the momentum would change (spin

stays the same) and the helicity would flip. For massless particles (neutrinos in the SM)

boosting into such a frame is impossible and we could never change the helicity.

The terms helicity and chirality are often used interchangeably, however there is a dif-

ference. Unlike helicity, chirality is frame independent (Lorentz invariant). Chirality is the

analogue to helicity for both massive and massless neutrinos. There are two states of chiral-

ity: left handed (LH) and right handed (RH). For the case of massless particles, helicity and

handedness (chirality) are identical. A massless fermion is either purely LH or RH, and, in

principle can appear in either state. Massive particles have both LH and RH components.

A helicity eigenstate for a massive particle is then a superposition of states. We know from

experiment that neutrinos are LH and anti-neutrinos are RH [57]. This indicates that the

weak interaction maximally violates parity.

Following the formalism in [58], in order to enforce parity violation, we consider a fermion

wavefunction, ψ, split up into its LH and RH components:

ψ = ψL + ψR. (1.24)

We still need an operator to select out each component, this operator is given by:

γ5ψL,R = ∓ψL,R. (1.25)

Requiring a factor of (1−γ5)/2 at every weak vertex involving a neutrino, we can enforce the

correct handedness. This LH projection operator is the reason the charged weak interaction

(W± exchange) is called left-handed.

In principle, RH neutrinos and LH anti-neutrinos could exist, but are never detected

because they never interact through any of the fundamental forces. These neutrinos are aptly

named sterile neutrinos. The SM does not contain any RH neutrinos (sterile neutrinos).
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Since there is no RH partner in the SM, the neutrino can have no Dirac mass term in the

Lagrangian. To see this, note that the free-particle Lagrangian for a massive, spin-1
2 particle

is,

L = iψ̄γµ∂
µψ −mψ̄ψ, (1.26)

where, ψ̄ψ can be written as

ψL,R =
1

2(1∓ γ5)ψ
(1.27)

ψ̄L,R =
1

2ψ̄(1∓ γ5)
(1.28)

thus giving

ψ̄ψ = ψ̄

[
1 + γ5

2
+

1− γ5

2

] [
1 + γ5

2
+

1− γ5

2

]
ψ = ψ̄LψR + ψ̄RψL (1.29)

Substituting Equation 1.29 into Equation 1.26 tells us that the mψ̄ψ term (the mass term)

mixes RH and LH states of the fermion. However, if the fermions have only one handedness

(like neutrinos) then the Dirac mass term will automatically vanish. In the SM, there is no

Dirac mass term for neutrinos.

1.2.3 Neutrinos beyond the Standard Model

By now it is well-established that neutrinos have mass and oscillate between flavor eigenstates

[59–61]. These results have given us the first indication that the SM of nuclear physics is in

need of revision. No matter how we revise the SM, we need to incorporate the fact that

neutrinos have mass and that they oscillate between flavors. The most obvious way in which

to do so is to require neutrinos to appear in the Lagrangian the same way as for the charged

fermions – via a Dirac mass term. The ways in which a Dirac term is motivated are troubling

and theorists have turned to other explanations for neutrino masses. One solution would be

that neutrinos are their own anti-particles, i.e. Majorana particles. If neutrinos are Dirac

particles then ν 6= ν̄. The particle, ν, has lepton number +1 and the anti-particle, ν̄, has

lepton number −1. Lepton number is then conserved in an interaction with Dirac neutrinos.
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However, for Majorana particles, the ν and ν̄ are simply two different helicity states of the

same Majorana particle, which we call νmaj . This model can explain all of the data without

invoking lepton number, however this sets neutrinos apart from all other SM fermions in being

Majorana particles.

Saying that the neutrino is its own anti-particle is equivalent to saying that the neutrino

is its own charge conjugate, ψc = ψ. The operators which appear in the Lagrangian for

the neutrino in this case are the set (ψL, ψR, ψ
c
L, ψ

c
R) and (ψ̄L, ψ̄R, ψ̄cL, ψ̄

c
R). These terms can

combine to give terms of the form mψ̄LψR + . . . , which are Dirac mass terms. However, we

also get terms of the form,

ML

2
(ψ̄cLψL) +

MR

2
(ψ̄cRψR) + . . . (1.30)

which are the Majorana mass terms, and mix the pair of charge-conjugate states of the

fermion. If the particle is not its own charge conjugate, then these terms vanish and we are

left with only Dirac mass terms. Dirac particles have no Majorana terms, but Majorana

particles will have Dirac mass terms.

These mass terms of the Lagrangian can be written in matrix form,

1

2
(ψ̄cLψ̄R)

ML m

m MR


ψL
ψcR

+ h.c. (1.31)

with the Dirac mass terms on the off-diagonal elements, while Majorana mass constants ML

and MR are on the diagonal. To obtain physical masses, one diagonalizes the matrix. One

can now invoke a model that can motivate the smallness of the observed neutrino masses.

The most popular of these models are the see-saw models, see [62] for a detailed discussion

on see-saw models for neutrino mass.

1.2.4 The Nature of the Neutrino: Dirac or Majorana?

Imagine we have a source of only LH neutrinos from π+ decays. These neutrinos may either

be either Dirac or LH Majorana neutrinos. Let’s assume that we can flip the helicity of the
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neutrinos produced. If the helicity-flipped neutrinos are Majorana particles and they would

behave like anti-neutrinos when they interact. On the other hand, if the helicity-flipped

neutrinos were Dirac, then only sterile RH neutrinos would be emitted. They do not interact

at all. In an ideal world, we would be able to build the experiment described above, however it

is currently impossible. Instead, we are pursuing another route: neutrinoless double-β decay

(0νββ), which is a beyond the standard model analogue to single β-decay.

Neutrinoless double-beta decay

Single-β decay is energetically forbidden for many even-even nuclei. However, a second order

process that changes a nucleus atomic number, Z, by two units is possible. In this process,

two electrons are emitted along with two anti-neutrinos. This process is called two-neutrino

double-β decay (2νββ). A more interesting process is neutrinoless double-beta decay (0νββ)7,

which as the name states emits zero anti-neutrinos,

M(A,Z)→ D(A,Z+2) + 2e−. (1.32)

This equation shows us that this process violates lepton number, but there is nothing in

the SM that says lepton number must be conserved. This process can be visualized as an

exchange of a virtual neutrino between two neutrons within a nucleus, see Figure 1.7. In

the SM of weak interactions, the first neutron will emit a right-handed anti-neutrino. But,

the second neutron requires the absorption of a left-handed neutrino. Several things need

to happen for this to occur, (1) the neutrino must have mass (and we know it does) so

that it is not in a pure helicity state and (2) the neutrino and anti-neutrino would have to

be indistinguishable, hence a Majorana particle. Neutrinoless double-beta decay is the only

viable way to show that neutrinos are either Majorana or Dirac. The discovery of this decay

would signal that the neutrino is a Majorana fermion (its own anti-particle) and that lepton

number is violated, having significant implications for our understanding of the nature of

the neutrino and fundamental interactions. Also, since the decay rate (Equation 1.33) is

7For a recent review of 0νββ theory see [63] and references therein.
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proportional to the effective Majorana mass (Equation 1.34) of the electron neutrino, the

scale and hierarchy of the masses could potentially be set.

(T 0ν
1/2)−1 = G0ν |〈mββ〉|2

∣∣∣∣∣M0ν
F −

(
gA
gV

)2

M0ν
GT

∣∣∣∣∣
2

(1.33)

〈mββ〉 =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ =
∣∣∣c2

13c
2
12m1 + c2

13s
2
12m2e

i2φ2 + s2
13m2e

i2φ3
∣∣∣ (1.34)

In Equation 1.33 G0ν is the two-body phase-space factor including coupling constant, M0ν
F

Figure 1.7: The Feynman diagrams for 0νββ decay (left) and 2νββ decay (right). 0νββ occurs
with the exchange of a virtual Majorana neutrino, which is only possible if the neutrino is its
own anti-particle. Figure from Ref. [64].

and M0ν
GT are the Fermi and Gamow-Teller matrix elements, respectively. The constants gA

and gV are the axial-vector and vector relative weak coupling constants, respectively. The

quantity 〈mββ〉 is the effective Majorana mass, which is given in Equation 1.34 where eiφi

are the unknown Majorana phases. The term 〈mββ〉 contains all of the interesting physics of

0νββ and is equivalent to zero if the neutrino is a Dirac particle. However, the presence of

these unknown phases adds a bit of uncertainty to the determination of 〈mββ〉 since terms

may cancel. Furthermore, the nuclear matrix elements, M0ν
F and M0ν

GT , must be calculated

and the current literature values have a spread of a roughly a factor of two [7]. Finally,

there may be other processes that may contribute to 0νββ. However, if 0νββ is observed,
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independent measurements with several isotopes would allow for the extraction of 〈mββ〉 [65].

Experimental Aspects of 0νββ

The signal for 0νββ would be a peak in the kinetic energy spectrum corresponding to the two

electrons. This peak is located at the endpoint energy as determined by the mass differences

of the parent and daughter nuclei (the Q-value), see Figure 1.8. This is sharp contrast to

the 2νββ energy spectrum, which would be a continuous spectrum since the energy of the

decay is shared between four particles, the two neutrinos and two electrons. Experimental

searches for 0νββ have been carried out using several nuclei, including but not limited to,

48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 136Xe and 150Nd. In addition, a subset of

the Heidelberg-Moscow collaboration claim to have measured T 0ν
1/2 = (1.19+2.99

−0.50)× 1025 years

and 〈mββ〉 = 0.22−0.35 eV in 76Ge [66]. Since there is such a large uncertainty in the nuclear

matrix elements, convincing evidence of the Majorana nature of the neutrino will require

several experiments to have observed 0νββ. A number of experiments are coming online in

the near future which can either confirm or refute the claim of an observation made by [66].

One of which is the Majorana Experiment [67–69], which will be discussed briefly in the

next section and in more detail in Chapter 3.

1.3 The Majorana Experiment

The Majorana experiment [68–71] aims to detect 0νββ (see Section 1.2.4) in a phased

approach with the ultimate goal of performing this search with a tonne8 of 76Ge using high

purity germanium (HPGe) detectors9.

Recent direct search CDM experiments have hinted towards a low-mass WIMP [73–77].

The technology chosen for detection of 0νββ also makes Majorana an excellent tool for

direct CDM measurements (low-mass WIMPs). The discussions outlined in Section 1.1 and

Section 1.2 provide the physics background and basis for Majorana. The Majorana ex-

8The tonne-scale experiment will be a joint effort with the European counterpart to Majorana, the GERDA
collaboration [72].

9These detectors will be discussed in Chapter 2.
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Figure 1.8: The kinetic energy of electrons from 2νββ and 0νββ decays is shown here for
the 76Ge isotope (Q = 2039 keV). The hypothetical detector was assumed to have an energy
resolution of 6 keV FWHM at 2039 keV. Note the two decays are not to scale in this plot.

periment will be discussed in technical detail in Chapter 3.

1.4 Outline of this Dissertation

After alluding to the fact that Majorana will use HPGe detectors, Chapter 2 will discuss

these detectors in detail, focusing on the fundamental mechanisms which allow them to func-

tion as gamma-ray detectors. Chapter 3 will then go into more detail on the Majorana

experiment and discuss the types of HPGe detectors Majorana will use and why they were

chosen. As a part of the research and development efforts for the Majorana experiment, we

have deployed a custom low-background HPGe detector in an underground environment with

the hopes to understand the low-energy backgrounds and also perform a direct DM search.

Chapters 4 and 5 will focus on the characteristics of this detector and the analysis tools

developed. Chapter 6 will then discuss the backgrounds associated with events originating

near the surface of this detector. The DM results obtained with this detector are the primary
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focus of this dissertation and will be presented in Chapter 7. 10

10I would like to give two recommendations: (1) A great neutrino physics book can be found in [55], and (2)
A comprehensive particle DM book can be found in Ref [12].
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Chapter 2

Germanium Detectors

In the previous chapter, we briefly discussed how the Majorana experiment will use High

Purity Germanium (HPGe) detectors to search for neutrinoless double-beta decay (0νββ)

and weakly interacting massive particles (WIMPs). These detectors are widely used to detect

gamma- and X-ray radiation. They are well known for their superior energy resolution and

commercial availability. This chapter will serve as an introduction to HPGe detectors.

2.1 Basics of Semiconductor Gamma-Ray Detectors

Since the results from the direct dark matter search discussed in Chapter 7 were obtained with

a semiconductor gamma-ray detector, we must first discuss how these detectors work. The

three main gamma-matter interactions: photoelectric absorption, pair production and Comp-

ton scattering all create energetic electrons. In this section I will discuss how semiconductors

can be used to detect these electrons.

2.1.1 Introduction

In solids there are essentially two energy bands for electrons to populate: a conduction band

and a valence band, see Figure 2.1. Between these bands are energy regions that are forbidden

to electrons. In insulators, the entire valence band is full and the energy required to jump to

the conduction band (∼10 eV) is much higher than the typical thermal excitation energy. This

results in insulators having no conductivity since electrons can not jump to the conduction



band. In conductive metals, the conduction band is partially filled allowing electrons to move

freely throughout the bulk of the solid. Semiconductor materials are fundamentally different

than conductive metals and insulators. In semiconductors, the valence band is completely

full, however the energy required to jump to the conduction band (∼1 eV) is comparable

to the thermal excitation energy. Figure 2.1 illustrates these band gaps for insulators and

semiconductors. The probability that an electron will be promoted to the conduction band

is strongly dependent on the temperature of the solid,

p(T ) ∝ T 3/2 exp(−Eg/2kT ), (2.1)

where T is the temperature, k is the Boltzmann constant and Eg is the band gap energy or

the energy required to jump from the valence band to the conduction band [78–82].

We have seen that gamma-ray interactions within an absorbing material (a detector)

liberates energetic electrons. The amount of electrons liberated is directly proportional to

the gamma-ray energy. Since these electrons are able to jump to the conduction band in

semiconductors, the application of an electric field provides a relatively simple way to collect

and measure these liberated electrons. According to Equation 2.1, cooling the material will

reduce the number of electrons in the conduction band, thereby reducing the background

current (the leakage current) making it much easier to detect the extra excitation due to

gamma-ray interactions [78–82]. This is the basis of semiconductor gamma-ray detectors. A

more detailed description of semiconductor gamma-ray spectrometers is given in the following

sections.

2.1.2 Electron and Hole Mobility

Whenever an electron jumps to the conduction band from the valence band, it leaves behind a

vacancy in the otherwise full valence band. This vacancy is positively charged and is referred

to as a hole. Holes and electrons are mobile in semiconductors. The vacancy left behind from

the initial electron jump can be filled by another electron from deeper within the valence

band. This will then leave another vacancy. Under the influence of an electric field, the hole
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Eg ≈ 1 eV
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Conduction Band

Figure 2.1: The band structure for insulators, semiconductors and conductors are shown. In
insulators and semiconductors, the two bands are separated by the band gap energy, Eg. The
size of Eg determines whether a material is an insulator or semiconductor. In the absence of
thermal excitation, electrons in the valence band cannot jump to the conduction band and
the material will have no conductivity. Also, in conductors, the conduction and valence bands
overlap, allowing for the conduction of electrons.
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can appear to migrate towards the cathode. Since both electrons and holes carry charge, both

contribute to the conductivity of the material [78, 83].

2.1.3 Charge Carrier Creation

The electrons produced from gamma-ray or neutron interactions within a semiconductor will

have energies greater than thermal energies. This means that electrons from deep occupied

bands can be raised to the conduction band. These deeply embedded holes and excited

electrons will redistribute themselves within the available energy bands until the holes are at

the top of the valence band and the electrons are at the base of the conduction band. During

this redistribution process, further excitations can occur giving a cascade of electron-hole

pairs for each primary electron interaction. In the presence of an electric field, both charge

carriers will be migrated towards the anode (electrons) and cathode (holes). The number

of electron-hole pairs created, n, is directly proportional to the gamma-ray energy that is

absorbed (Eabs),

n = Eabs/〈ε〉, (2.2)

where 〈ε〉 is the average energy required to create an electron-hole pair. The energy required

to generate an electron-hole pair depends upon which particular energy level the electron is

promoted to within the conduction band. Therefore, there is an uncertainty in n, that will

lead to a distribution of signal amplitudes for a given gamma-ray energy. Materials with

small 〈ε〉 will have superior energy resolution since more charge carriers will be created [78–

82]. Additionally, the number of electron-hole pairs (Equation 2.2) is an average and this

must be taken into account (see Section 2.2.6).

Furthermore, the charge carriers must be collected in a reasonable amount of time in order

for a semiconductor to be practical. This translates into the requirement that the electrons

and holes must have good mobility within the bulk in order for them to be able to reach

the collecting electrodes. The liberated charge carriers can become trapped en route to the

electrode by any of the following mechanisms: (1) impurities within the semiconductor lattice,

(2) structural defects, and (3) radiation damage [84].
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Quenching

Gamma-ray and neutron/WIMP interactions within an ionization detector are fundamentally

different — neutrons/WIMPs recoil off of nuclei, while photons interact with the electrons in

the detector. Since semiconductor gamma-ray detectors are typically calibrated with standard

gamma-ray check sources, this calibration will not be valid for nuclear recoils. There exists

a relationship, both measured experimentally [85] and theoretically motivated [86], between

the observed ionization from a nuclear recoil and the observed ionization from an electron

recoil (at the same energy); this is called quenching. Quenching will be discussed further in

Chapter 7.

2.1.4 The Nature of Semiconductors

In an ideal semiconductor detector, the material would have no impurities and thermal exci-

tation would promote a certain number of electrons to the conduction band, leaving behind

an equal number of holes in the valence band. A material of this type is called an intrin-

sic semiconductor. It is difficult to fabricate intrinsic semiconductors, and the presence of

impurities has a significant impact on the conductivity [80–82, 84, 87].

Take for example a germanium atom; it has four valence electrons and in a lattice will be

connected to four other atoms, ideally four germanium atoms. If there are impurities present,

and one of the four germanium atoms is replaced by an impurity atom with a different number

of valence electrons, this will disturb the electronic balance of the crystal lattice. For example,

gallium and boron have three valence electrons; if one of these atoms replaced a germanium

atom then there would be one electron too few to maintain the overall electronic configuration

of the lattice. We essentially have a hole in the crystal lattice. These impurities are referred

to as acceptor impurities and when distributed throughout the lattice will give rise to extra

energy states just above the valence band, called acceptor states. If we had germanium in this

state, the material would be called p-type germanium (where ‘p’ stands for positive acceptor

impurities) [80–82, 84, 87].

We could also have an impurity with extra valence electrons. The impurity atom is then
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referred to as a donor atom and will introduce donor states just below the conduction band.

Germanium in this state is called n-type germanium (where ‘n’ stands for negative donor

impurities).

It is also possible to have an equal number of donor and acceptor atoms within the bulk.

Each of these impurities will effectively cancel out and in this event we end up with what is

called compensated germanium. However, it is very unlikely that the impurities will exactly

cancel out.

The introduction of impurity atoms introduces extra states either just below the con-

duction band or just above the valence band. This, in effect, reduces the band gap energy.

The doping of semiconductor materials by introducing impurities then directly affects the

conductivity of the material [80–82, 84, 87].

Semiconductor gamma-ray spectrometers depend on the redistribution of charge when p-

type and n-type germanium are produced in contact with one another. The p-type material

has an excess of holes while the n-type material has an excess of electrons. The thermal

diffusion of holes toward the n-type side and electrons toward the p-type side creates a region

in the middle where excess charge carriers have effectively cancelled out as shown in Figure 2.2.

This is called a depletion region, see e.g. Figure 2.2. The migration of the charge carriers

gives rise to a space charge distribution, or a region in which the excess nuclear charge from

the doping atoms is not neutralized by the movable carriers, in this region and the generation

of a voltage across the junction called the contact or diffusion voltage, typically 0.4 V in

germanium.

Figure 2.2: A p-n diode junction in thermal equilibrium, with its parts separated (a) and
brought together (b). Electrons are denoted by black circles and holes by open circles. Figure
from Ref. [82].

The depletion region is the active region, or region sensitive to electron or nuclear recoils, of
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the detector. This region is extremely thin, but if a positive voltage is applied to the n-type

side, the width of the depletion region grows as the electrons are removed from the material.

Similarly, a negative voltage applied to the p-type side of the junction will withdraw holes.

Since the positive voltage is applied to the n-type semiconductor, this is called a reverse

bias junction. The width of the depletion region can be estimated as,

d ' (2εµρ(V0 + Vb))
1/2 , (2.3)

where V0 and Vb are the contact and bias voltages, respectively, ε is the dielectric constant

(ε = 16ε0 in Ge), ρ is the resistivity of the material and µ is the mobility, or how easily charge

carriers are able to move throughout the crystal lattice, of the majority charge carriers in

the material [80–82, 84, 87]. In a p-type, holes are the charge carriers while in n-type, the

electrons are the majority charge carriers. The resistivity of the material is given by,

ρ =
1

eNµ
, (2.4)

where N is the concentration of dopant atoms in the material [80–82, 84, 87]. In gamma-ray

spectrometry, we want the depletion depth to encompass as much of the bulk material as

possible and at the lowest bias voltage. According to Equations 2.3 and 2.4, this is achieved

by minimizing N . In order to make a large detector, we then need very pure material in order

to be able to keep the bias voltage in a reasonable range (< 5000 V). Germanium used to

fabricate HPGe detectors is the purest material produced in bulk throughout the world (with

only ∼ 1010 impurity atoms per cm3) [80–82].

In the real world, the fabrication of semiconductor detectors is not achieved by placing two

types of semiconductor materials in contact with each other. One end of a block of germanium

is converted to the opposite type by evaporation and diffusion (or by ion implantation). In

order to make a p-type HPGe detector, we would take a suitably high-purity chunk of p-type

germanium and create on one face an n+ layer (usually lithium), then apply a reverse bias to

the detector to create the depletion layer throughout the p-type material. This is the basis
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Table 2.1: Properties of materials suitable for semiconductor detectors. RT stands for room
temperature (300 K). 〈ε〉 is given at the operating temperature. Table from [84].

Mobility (cm2 V−1 s−1)
Material Z Operating T Eg (eV) 〈ε〉 (eV) ρ (g cm−3) Electrons Holes

Si 14 RT 1.106 3.62 2.33 1350 480
Ge 32 Liquid N2 (77 K) 0.67 2.96 5.32 3.6×104 4.2×104

CdZnTe 48,30,52 RT 1.57 4.64 5.78 1000 50-80

for all HPGe detector manufacturing [84, 87].

2.1.5 Practical Semiconductor Materials

A list of desirable characteristics for a practical gamma-ray spectrometer include:

• As large atomic number, Z, as is possible in order to be able to stop incoming gamma-

rays with the hopes of full absorption;

• As small an 〈ε〉 as possible in order to maximize charge carriers, n, created (See Equa-

tion 2.2);

• Good electron and hole mobility;

• Be available in large mass crystals;

• Easy to fabricate and reproducible at a reasonable cost;

• If possible, operation at room temperature.

The parameters for three types of semiconductor materials are listed in Table 2.1. From

Table 2.1, it is clear that germanium is a good choice for a gamma-ray detector. This is

due to a relatively large Z, making it useful for higher energy gammas. Also, germanium has

excellent charge carrier mobility and low 〈ε〉 allowing for excellent charge collection properties

and energy resolution, respectively. The only drawback in using germanium as a gamma-ray

detector (aside from cost) is that it needs to be cooled with liquid nitrogen (LN2) in order to

minimize leakage current and FET noise (see Equation 2.1).
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2.2 High-Purity Germanium Detectors

This section will continue the discussion of semiconductor gamma-ray detectors started in the

previous section. However, we now focus solely on detectors fabricated out of HPGe. We will

discuss the two main HPGe detector configurations relevant to this dissertation. Chapter 6

will discuss signals from the n+-bulk boundary in detail, therefore in this section we will

discuss signal generation, i.e. electric fields, induced charge, charge collection and dead layers

in HPGe. We will conclude with a discussion of detector electronics, readout and energy

resolution.

2.2.1 Configurations of HPGe Detectors

There are many configurations for HPGe detectors. For example, the coaxial configuration

(cylindrical with a central bore hole) is the most commonly used in the field of nuclear physics

or gamma-ray spectrometry. Additionally, planar (cylindrical - no bore hole) detectors are

used for low-energy (< 100 keV) measurements. Since this dissertation is only concerned

with P-type Point Contact (PPC) detectors, we will discuss these detectors in detail in the

following sections.

PPC Detectors

PPC HPGe detectors [88, 89], a relatively new development in semiconductor detector tech-

nology, have been demonstrated to provide both exceptional energy resolution (∼150 eV

FWHM at 10.36 keV) and low-energy thresholds (∼500 eV) [73, 89], see Figure 2.4. The low-

energy threshold of PPC detectors, attributed to their low-capacitance point-contact design,

makes them ideal for low-mass Weakly Interacting Massive Particle (WIMP) DM searches.

Several successful prototypes have been commercially produced and successfully operated in

an underground environment [73, 89]. PPC detectors range in mass from as low as 100 g to 1

kg. The n+ contact on PPC detectors can either abruptly stop at the base of the detector (see

Figure 2.3) or it can wrap around the base, but never extends all the way to the p+ contact.

The area between the n+ and p+ contacts is passivated by evaporating amorphous germa-
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nium or silicon onto the surface to leave it relatively intrinsic [90] since gases, e.g. water vapor,

can deposit onto the surface over time causing an un-passivated surface to become polarized

making the surface slightly p-type. Passivation leaves the surface reasonably intrinsic. In

summary, passivation makes the region ‘passive’ in terms of its response to the environment.

Bottom View Cross Sectional View

n+ contact
(diffused)

p+ contact 
(implanted or barrier) 

passivated 
surface

p-type HPGe
p-type HPGe

Figure 2.3: A PPC detector is shown here (not to scale). The n+ contact usually does not
wrap around the base of the detector, but in some PPC detectors it can wrap around the
base but never all the way to the p+ contact. The area between the n+ and p+ contacts is
passivated.

Broad Energy Germanium (BEGe) Detectors

PPC-like detectors are commercially available from Canberra as BEGe detectors [91]. The

BEGe detectors from Canberra typically have a thin front window, usually amorphous ger-

manium, which allows lower energy gamma-rays to penetrate into the active region. The

BEGe detector used for this dissertation (more details in Chapters 4 and 5) does not have

this feature. Instead, a thick (∼1.0 mm) n+ contact wraps all the way around the detector.

2.2.2 Electric Field, Electric Potential and Induced Charge

Signals arise in HPGe detectors due to the motion of charge carriers after they have been

formed by incident radiation, see Section 2.1.3. The output signal forms immediately after

the incident particle deposits its energy and liberates electrons in the active region of the
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Figure 2.4: This energy spectrum from Ref. [73] illustrates the advantages using a PPC over
a coaxial configuration in terms of energy threshold and resolution at low-energy [76].

detector. Once the last of the charge carriers arrives at the electrode the process of charge

induction ends and the pulse is fully developed.

Electric Field and Potential

The geometry of a HPGe detector determines the electric field and capacitance. The electric

field directly determines the drift velocity of charge carriers, therefore the configuration is very

important in considerations of pulse shape, timing behavior and the overall completeness

of charge collection. In each configuration, to determine the electric potential within the

detector, we need to solve Poisson’s equation,

∇2ϕ = −ρ
ε
, (2.5)

where ϕ is the electric potential in the presence of the charge density ρ in a dielectric with a

dielectric constant ε. For p-type germanium, ρ = −eNA, where e is the electronic charge and
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NA is the density of acceptor atoms. Once the electric potential is calculated, the electric

field is simply,

E = −∇ϕ. (2.6)

If we neglect diffusion, the charge carriers generated within the detector will follow the electric

field lines (or direction of maximal gradient in the potential) from their point of origin to the

electrode. Holes get collected at the p+ contact while electrons get collected at the n+ contact.

Induced Charge

The Shockley-Ramo Theorem [92, 93] provides a method for calculating the induced charge

on the collecting electrodes due to the motion of charge carriers. The concept of a weighting

field and weighting potential are crucial to the theorem. The instantaneous current induced

on a given electrode is given by,

i = qv ·E0, (2.7)

where q is the charge of the carrier, v is the velocity and E0 is the weighting field. Similarly,

the induced charge on the electrode is the product of the charge on the carrier multiplied by

the difference in the weighting potential (unit-less), ϕ0 from the start to the end of the charge

carrier path length [87]:

Q = q∆ϕ0. (2.8)

The weighting potential is calculated by solving the Laplace equation (∇2ϕ0 = 0) for the

geometry of the detector with artificial boundary conditions [87]:

• The voltage on the electrode for which the induced charge is to be calculated is set to

unity.

• The voltages on all other electrodes are set to zero.

• Ignore trapped charges (i.e. use Laplace not Poisson equation).

The solution under these conditions yields the weighting potential and the gradient of which

is the weighting field. The weighting potential serves as a convenience that allows simple
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determination of the induced charge and is not the actual potential within the detector. The

induced charge is calculated by taking the differences in the weighting potential at the start

and end of the carrier motion. The path of the carrier is determined by the electric field lines.

After mapping out the position of a carrier as a function of time, the induced charge as a

function of time can be traced out to determine the shape of the output pulse. Figure 2.5

shows the weighting potential for a modified BEGe detector and charge carrier (holes) drift

paths.

Figure 2.5: The weighting potential and charge carrier (holes) drift paths of a p-type modified
BEGe detector is shown here (the one used in this dissertation). Notice that the weighting
potential is maximum near the point contact and essentially zero everywhere else. Induced
charge will not contribute to the output signal until the carriers are near the point contact.
Figure generated with the m3dcr [94] and siggen [95] software packages.

In order to solve for the potential in complex geometries numerical techniques must be

used. The Poisson equation is solved by applying a relaxation algorithm. Once the potential

is known throughout the bulk, the electric field can be calculated. For example, the m3dcr

software package [94] was developed to calculate weighting potential, capacitance and electric

fields for complex geometries. The siggen software package [95] was developed to calculate

the induced charge and signals from complex geometries based on the m3dcr output.
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Capacitance

In general, to minimize noise, the capacitance must be as small as possible. In the case of

PPC or BEGe detectors, this translates into minimizing the size of the p+ contact. According

to Ref. [88], if the p+ contact on a PPC is taken to be hemispherical in shape with radius r,

the capacitance is given by,

C ≈ 2πε ε0 r (2.9)

where ε0 = 8.85×10−12 farad/m is the free space permittivity and ε is the dielectric constant

of the material. For reference, the capacitance of planar and coaxial detectors is > 10 pF,

whereas PPC and BEGe detectors have capacitances < 2 pF.

2.2.3 ‘Dead’ Layers

The n+ and p+ contacts do have an appreciable thickness and cannot be neglected, especially

the n+ contact. The most common technique used to create the n+ contact is to diffuse

lithium onto the crystal. In the case of both PPC and BEGe detectors, this is on the outside

of the detector and will have an effect on the detector response to low-energy gamma-rays

(< 200 keV). Chapter 6 will discuss the effects of the n+ layer in detail.

2.2.4 Charge Collection

Following the formalism outlined in Section 2.2.2, it is possible to calculate the expected

signals from HPGe detectors. The contribution of a charge carrier to the output signal depends

on the charge it carries and the length of the drift path. If an electron-hole pair is created

near the positive collector, the electron, though arriving first, will make little contribution to

the signal since it only travels a small length on the electric field lines. The hole created will

be the main contribution to the signal. The weighting potential for a modified BEGe detector

is shown in Figure 2.5 is essentially zero throughout the crystal except near the p+ contact.

This results in rapid charge collection around the p+ contact.

Charge trapping in regions of weak field or sites of impurities can have a significant

impact on the charge collection process. Charge trapping results in one of two scenarios: (1)
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the charge will subsequently be released or (2) the charge will become trapped longer than the

integration time of the electronics. Scenario (1) results in signals with a slow time component

and (2) results in energy-degradation or pulse height deficit. The effects of trapping will be

discussed further in Chapter 6.

2.2.5 Electronics and Readout

The signal from the detector needs to be processed so that energy (or time) information from

gamma-ray interactions can be extracted.

Preamplifiers

A preamplifier is the first component in a signal processing chain. Despite the name, pream-

plifiers do not amplify the signal. The main purpose of a preamplifier is to extract the signal

from the detector without significantly degrading the signal-to-noise ratio. For this reason,

preamplifiers are placed as close to the detector as possible.

The most common preamplifier used in gamma-ray spectrometry is a resistive feedback

preamplifier, see Figure 2.6. The charge is collected over a capacitor (Cf ) which integrates

the pulse giving a step-like voltage signal. The presence of a feedback resistor essentially

creates an RC circuit with time constant, τRC = RfCf , which then causes the output voltage

signal to decay away. The value of τRC must be significantly longer than the rise time of the

pulse (typical rise times from HPGe detectors range from ∼100-500 ns) in order for the pulse

height to be proportional to the energy deposited. There are two major limitations of this

type of preamplifier: (1) pile up due to the requirement of long τRC ’s and (2) noise associated

with the feedback resistor Rf .

To compensate for the major drawbacks of a resistive feedback preamplifier, the feedback

resistor can be removed entirely. Without a resistor, charge is simply accumulated on the

feedback capacitor Cf , see Figures 2.7 and 2.8. There are several techniques to drain this

charge, but the most common connects an active circuit with a transistor to the input stage

(transistor reset preamplifier). Of course, there will be dead time associated with resetting

the voltage to zero. Reset preamplifiers provide an inhibit signal which is active when the
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Figure 2.6: A diagram of a resistive feedback charge coupled preamplifier. The time constant,
τRC = RfCf , determines the decay time of the output pulse. The height of the output pulse
is proportional to the energy absorbed in the detector. Figure adapted from Ref. [84].

reset circuitry is active. In low-count-rate systems where noise is a major concern, reset

preamplifiers are preferred. However, in extremely high-count-rate systems, the dead time

associated with resetting can be a major limitation.

Shaping

In order to achieve better resolution, the output from the preamplifier is sent through a shap-

ing amplifier to magnify the amplitude of the preamplifier output pulse from the mV range to

the 0.1∼10 V range. The amplifier also shapes the signal to optimize energy resolution and

to minimize pile-up. The simplest concept for pulse shaping is the use of CR and RC circuits

(with the same time constant). A CR circuit is essentially a low pass filter (differentiator) and

an RC circuit can be thought of as a high pass filter (integrator). The most common filter

used is a CR circuit followed by several RC circuits, i.e. CR-(RC)n where n is the number

of RC circuits the signal is sent through. The output signal somewhat resembles a Gaussian

therefore this type of shaping is sometimes referred to as semi-Gaussian. The time constant

used in the CR-(RC)n circuit, τsh, is called the shaping time. The output pulse rises to reach

its maximum at τsh. The time taken for the signal to rise from zero to maximum is also

called the peaking time. We will see later that electronic noise from the preamplifier can be

minimized by choosing an optimal shaping time. Figure 2.9 illustrates how shaping with CR
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Figure 2.7: (Top) Output from a transistor reset preamplifier is shown in black. The inhibit
signal is shown in red (active low). (Bottom) The preamplifier output has been AC coupled
with a CR circuit and is shown in black. This is effectively a high bandpass filter. The inhibit
signal is shown in red (active low).
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Figure 2.8: A zoomed in plot of Figure 2.7. (Top) Output from a transistor reset preamplifier
is shown in black. The inhibit signal is shown in red (active low). (Bottom) The preamplifier
output has been AC coupled with a CR circuit and is shown in black. This is effectively a
high bandpass filter. The inhibit signal is shown in red (active low).
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and RC circuits works.

Example Readout Chain

Figure 2.10 shows a rudimentary signal processing chain for gamma-ray spectrometry. The

high voltage is fed to the detector through the preamplifier. A waveform generator (pulser)

is also being used to examine the electronic noise. The preamplifier signal is then shaped by

a spectroscopy amplifier and the pulse height is binned by a multi-channel analyzer (MCA)

to obtain an energy spectrum. Figures 2.11 and 2.12 show example energy spectra obtained

using a modified BEGe detector with an MCA.

2.2.6 Energy Resolution

A gamma-ray peak is typically idealized as a Gaussian, however as we will see several factors

can alter the peak to give it a low-energy tail (see Figure 2.12). The ratio between the full

width at tenth maximum (FWTM) and full width at half maximum (FWHM), FWTM
FWHM ≈ 1.82

for a Gaussian peak. The resolution in the above spectra (Figures 2.11 and 2.12) can be

attributed to several sources of uncertainty that factor in between the actual energy deposition

within the crystal and the eventual readout of the voltage signal. These sources of uncertainty

add in quadrature to give to the FWHM (ωT ) [81, 84, 87, 96],

ω2
T = ω2

E + ω2
C + ω2

P , (2.10)

where,

• ωP is the inherent statistical fluctuation in the number of electron-hole pairs created,

• ωE is due to broadening effects attributed to electronic noise, and

• ωC is due to the uncertainty in charge collection.
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Figure 2.9: (a) An idealized input signal from the preamplifier; (b) Output from CR shaping
with τsh = 3.0 µs; (c) Output from RC shaping with τsh = 3.0 µs; (d) Output from CR-RC
shaping with τsh = 3.0 µs; (e) Output from CR-(RC)n shaping with τsh = 3.0 µs. As n
increases the pulse becomes more Gaussian.

50



Detector Preamplifier

Pulser

HV Bias Supply

Spectroscopy 
Amplifier

MCA

Figure 2.10: A simple readout chain for gamma-ray spectrometry is shown here.
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Figure 2.11: A modified BEGe detector response to a 133Ba source placed 25 cm above the
cryostat is shown here. The spectrum is normalized by the live time and the width of the
bins on the x-axis.
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Figure 2.12: A modified BEGe detector response to a 241Am source placed 25 cm above the
cryostat is shown here. The spectrum is normalized by the live time and the width of the
bins on the x-axis.

Charge Production (ωP )

In Section 2.1.3 we saw that it takes on average 2.96 eV to create an electron-hole pair in

germanium (see also Table 2.1). The number of electron-hole pairs (Equation 2.2) is then an

average and this must be taken into account. If we assume Poisson statistics, the uncertainty

in n is,

σn =
√
n =

√
E/ε, (2.11)

where ε = 2.96 eV. If we put this in terms of energy,

σE = ε
√
n =
√
E ε. (2.12)

Putting this in terms of FWHM and keV (E → EkeV means that E is in units of keV), we

introduce a factor of 2.355 and 1000,

ωP =
2.355

√
EkeV · 1000 · ε
1000

= 0.128
√
EkeV . (2.13)
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If all other sources of uncertainty in Equation 2.10 are zero, then this is theoretically the

best possible FWHM achievable. For the 1332 keV line in 60Co this corresponds to a FWHM

of 4.68 keV. However, FWHM values for the 1332 keV line have been quoted as low as 1.6

keV, therefore one of our initial assumptions must be incorrect. The basic assumption that

charge carrier creation is Poisson in nature is flawed. Poisson statistics are only valid if each

individual event is independent of all the others. The charge creation process is inherently

not Poisson in nature since creating an electron-hole pair alters the local electron distribution;

this needs to be taken into account. The Fano factor, F , was introduced to account for this

discrepancy [97]. Introducing F then gives,

σE =
√
F E ε, (2.14)

and it follows that,

ωP = 0.128
√
FEkeV . (2.15)

The Fano factor has been measured to be between 0.057 and 0.129 [84].

Charge Collection (ωC)

As mentioned in Section 2.2.4, charge can become trapped and not collected. The ωC term

in Equation 2.10 takes this into account. Incomplete charge collection leads to a low-energy

tail on the Gaussian peak (a skewed Gaussian) and should be taken into account when fitting

for the FWHM [98]1. There is no functional form for ωC , however it can be parameterized

and subtracted out with fitting techniques. The most common (not motivated by theory)

functional form used to extract the ωC component is,

ωC = cEkeV , (2.16)

where c is a proportionality constant and EkeV is the gamma-ray energy in keV [84].

1Incorrect pole-zero correction can also give a low-energy tail, but here we assume the detector electronics
are set up correctly.
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Electronic Noise (ωE)

The noise associated with the amplification and readout electronics is referred to as electronic

noise. Electronic noise is dependent on the shaping time (τsh) of the spectroscopy amplifier

used (see Figure 2.10). The three sources of electronic noise are outlined below and sum to

give ωE ,

ω2
E = (ωseries)

2 + (ωparallel)
2 + (ωflicker)

2. (2.17)

• Parallel Noise

Parallel noise is the noise associated with current flowing in parallel with the detector.

These noise sources are integrated over the feedback capacitor, Cf . The Johnson noise

of the feedback resistor is a source of parallel noise. The noise in resistors arises from the

thermal motion of charge carriers that lead to a fluctuating potential difference across

the resistor. As alluded to in Section 2.2.5, Johnson noise can be eliminated by using

a transistor reset preamplifier. The leakage current of the detector is also a source of

parallel noise. According to Ref. [84],

(ωparallel)
2 ∝

(
IL +

2kT

Rf

)
× τsh, (2.18)

where IL is the detector leakage current, Rf is the feedback resistor, T is the temperature

of the feedback resistor, and τsh is the shaping time.

• Series Noise

Series noise is the noise associated with current flowing in series with the detector. Shot

noise in the preamplifiers FET is the most significant source of series noise. Shot noise

in the FET is proportional to the temperature of the FET, therefore the FET is usually

kept suitably cold. The capacitance of the detector is also a source of series noise and

therefore detectors with low capacitance have low noise characteristics (BEGe or PPC).

According to Ref. [84],

(ωseries)
2 = C2

(
2kT

gm × 2.1× τsh

)
, (2.19)

54



where T is the temperature of the FET, C is the sum of the detector and stray capac-

itances, gm is the transconductance of the FET, or the ratio of the current change at

the output port to the voltage change at the input port, and τsh is the shaping time.

• Flicker (1/f) Noise

Flicker noise is associated with variations in the direct current in all active devices.

Charge trapping the the FET channel is a source of Flicker noise (series 1/f noise).

Also, dielectric noise or parallel 1/f noise is a source of Flicker noise. Flicker noise is

independent of shaping time.

We have seen that the electronic noise component is dependent upon the shaping time

of the electronics. Measuring the FWHM of a pulser at several shaping times gives what is

referred to as the noise curve. An example of a noise curve is shown in Figure 2.13. The three

components outlined above are listed on the graph. The functional form used to fit the data

is,

(FWHM)2 =

(
A

τsh

)
+ (B × τsh) + C, (2.20)

where τsh is the shaping time, A is the series component, B the parallel component and C is the

flicker or non-white noise. The detector used to perform the measurement in Figure 2.13 was a

modified BEGe detector. More information on this detector can be found in Chapters 4 and 5.

2.3 Summary

The Majorana experiment has chosen PPC and modified BEGe detectors as their detector

technology to search for 0νββ and WIMP dark matter (DM). Several factors played a role in

this decision:

• 76Ge (7.44% natural abundance) can Two Neutrino Double-Beta Decay (2νββ) decay

to 76Se and possibly decay via 0νββ;

• Commercially available at a reasonable cost;

• Technology is a tested and proven one, in that it has been around for many years;
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Figure 2.13: The electronic noise curve for a modified BEGe detector is shown here. The
measurement was made with an analog spectroscopy amplifier and an MCA. The electronic
noise is dominated by flicker or non-white noise. The FWHM at τsh = 6 µs is 164.508 eV.
The minimum value for the total fit (red dashed) is located at τsh = 5.82 µs and gives a
FWHM of 166.3 eV (or 2.765×10−2 keV2). More information on this detector can be found
in Chapters 4 and 5.
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• Excellent energy resolution near the Q value for 0νββ;

• Low-thresholds, allowing a search for WIMP DM;

• Excellent multi-site event rejection with pulse shape analysis.

Chapter 3 will discuss the Majorana experiment and the role of PPC and BEGe detectors

in more detail.
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Chapter 3

The Majorana Experiment

This chapter will serve as a continuation of Section 1.3 focusing on the detector technology

employed by the Majorana Experiment. In addition, the sensitivity of the Majorana

Demonstrator to 0νββ and Weakly Interacting Massive Particles (WIMPs) will be briefly

discussed. The motivation for this dissertation, relating to known backgrounds in germanium

detectors and their implications for a direct dark matter search, will be covered as well.

3.1 Overview of the Majorana Experiment

The Majorana Collaboration [67–69] will search for the neutrinoless double-beta decay

(0νββ) of 76Ge. The observation of this rare decay would indicate the neutrino is a Majorana

fermion, demonstrate that lepton number is not conserved, and provide information on the

absolute mass-scale of the neutrino (see Section 1.2.4). Reaching the neutrino mass-scale

associated with the inverted mass hierarchy, 20 − 50 meV, will require a half-life sensitivity

on the order of 1027 y. This corresponds to a signal of a few counts per tonne-year in the

0νββ region of interest (ROI) – a 4 keV wide window centered at 2039 keV endpoint energy

for 76Ge. The Majorana Collaboration is constructing the Demonstrator, an array of

high-purity germanium (HPGe) detectors at the 4850 foot level of the Sanford Underground

Research Facility (SURF) in Lead, South Dakota. Figure 3.1 shows the present (December

2012) status of the Majorana Demonstrator laboratory at SURF. The Demonstrator

will consist of a mixture of natural (10-15 kg) and >86% enriched 76Ge (25-30 kg) HPGe



detectors in two low-background cryostats. Each cryostat will contain seven closely packed

stacks, called strings, and each string will have up to five crystals (see Figs. 3.2 and 3.3). The

Demonstrator aims to:

1. demonstrate a background rate less than 3 counts t−1 y−1 in the ROI,

2. establish the technology required to build a tonne-scale germanium-based 0νββ exper-

iment,

3. test the recent claim [66] of the observation of 0νββ, see Figure 3.4,

4. and perform a direct search for light WIMPs (<15 GeV).

The Majorana and GERmanium Detector Array (GERDA) [72] Collaborations are

working together to prepare for a single tonne-scale 76Ge experiment that will combine the

best technical features of both experiments. There are two main differences between the

experimental techniques employed by Majorana and GERDA. First, the Demonstra-

tor array will be deployed in a custom vacuum cryostat, whereas GERDA is submerging

theirs in liquid argon. The Demonstrator will use a compact shield with lead, oxygen-free

high-thermal conductivity (OFHC) copper, electroformed copper, and an active muon veto,

whereas GERDA is using liquid argon and high-purity water as a shield.

3.2 Detector Technology

The Majorana Collaboration will use p-type point contact (PPC) HPGe detectors (see

Chapter 2 for an introduction to germanium detectors). PPC detectors [88, 89] have been

demonstrated to provide both exceptional energy resolution (<2.0 keV FWHM at 1332 keV)

and low energy thresholds (∼500 eV) [73, 89] (see Figure 2.4). Several successful prototypes

have been commercially produced and successfully operated in an underground environment

[73–76, 85]. The PPC detectors used in the Demonstrator will each have a mass between

0.6 − 1.0 kg. There are two types of detectors that will be used in the Demonstrator:

(1) natural PPC detectors, which are made with natural germanium and (2) enriched PPC
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Figure 3.2: A cross sectional view of a Majorana Demonstrator cryostat. The strings
within the cryostat hold a mixture of natural (smaller/light blue) and enriched (larger/dark
blue) germanium detectors.

Figure 3.3: The Majorana Demonstrator is shown here with both active and passive
shielding in place. One cryostat is in place inside the shield while the other is being positioned
for insertion. For scale, the inner copper shield is 20” high and 30” in length.
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Figure 3.4: The sensitivity of the Majorana Demonstrator at 90% C.L. as a function of
exposure for 0νββ in 76Ge with varying background rate assumptions. The matrix elements
used to convert half-life to neutrino mass were taken from [99] (see e.g. Equation 1.33). The
controversial claim of 0νββ [66] is shown as a blue horizontal band. Figure from [100].

detectors, which are made with germanium enriched to greater than 86% in the 76Ge isotope.

Figure 3.5 shows an R&D PPC detector fabricated by the Semiconductor Laboratory at

Lawrence Berkeley National Lab (LBNL) for the Majorana Collaboration.

3.3 Background Mitigation Techniques

One of the technical goals of the Demonstrator is to show that a 1 count t−1 y−1 ROI−1

background rate is achievable for a tonne-scale experiment, which is ∼100 times lower than

previous germanium experiments. One of the primary methods for achieving this rate is to

deploy the detectors inside two independent cryostats that minimize the amount of intersti-

tial material. In addition, the materials used to fabricate the Demonstrator have been

screened and selected based on strict radiopurity requirements. The main structural mate-

rial closest to the detectors within the Demonstrator is electroformed copper due to its

intrinsically low-background and excellent physical properties [101]. Electroformed copper
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Figure 3.5: A PPC detector is shown here. The p+ point contact is clearly visible and has
a diameter of ∼3 mm. The passivated surface (top) and n+ contact (sides) are also visible.
For scale, the detector is 5 cm high and 6 cm in diameter.

is made by electroplating from high-purity commercial OFHC copper nuggets onto stainless

steel mandrels. The electroforming process greatly reduces the radioactivity due to U, Th

and cosmogenically-produced 60Co. Electroformed copper is being used to fabricate both of

the cryostats for the Demonstrator.

Further background reduction in the Demonstrator is achieved using the technological

features of the PPC detectors. A 0νββ event will deposit all of its energy within a ∼1

mm3 region inside the PPC detector. These are called single-site events (SSE). In contrast,

gamma-rays from radioactive contaminants of sufficient energy to affect the 2039 keV ROI will

typically Compton scatter several times with a scattering length of ∼1 cm. These are called

multi-site events (MSE). The Demonstrator will reduce Compton scattered gamma-ray

backgrounds by implementing pulse shape analysis (PSA) techniques to separate SSE from

MSE within a single germanium crystal. In addition to signal PSA, background events that

deposit energy in more than one detector can be removed.

Cosmogenically-produced isotopes represent another source of background. Cosmic rays

can create 60Co in copper components as well as 68,71Ge, 60Co and tritium within the detectors
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themselves. In an effort to reduce these backgrounds, the detectors and copper components

will spend minimal amount of time above ground. Also, all copper components within the

cryostats are being electroformed underground to reduce the amount of 60Co activation.

Reducing surface exposure is the only option for most cosmogenically-produced isotopes.

However, the background due to 68Ge is a special case. 68Ge decays to 68Ga which has a half-

life of 67.71 minutes. The low-thresholds and excellent energy resolution of PPC detectors

allow for a single-site time-correlation (SSTC) cut, which looks backward in time from the

current event in the ROI to search for signatures of parent or daughter isotopes [102, 103].

The Demonstrator will implement a SSTC cut for the 68Ge-68Ga coincident decay for ∼five

68Ga half-lives following the 10.3 keV K-shell de-excitations. The SSTC method can also be

used to reduce backgrounds due to 208Tl (T1/2 = 3.05 min) and 214Bi (T1/2 = 19.9 min) in

the germanium crystals and the inner mount. The SSTC and SSE/MSE cuts will both be

used in order to maximize background reduction.

3.4 Demonstrator Implementation

The Majorana Demonstrator prototype cryostat is expected to be completed by late

Spring 2013 (around the time of defending this dissertation) and will contain two strings of

natural germanium PPC crystals. Two electroformed cryostats, Cryostat 1 and Cryostat 2,

are being fabricated in a phased approach. Cryostat 1 will contain seven strings of germanium

crystals, four holding natural germanium crystals and three containing germanium crystals

enriched to greater than 86% 76Ge. Cryostat 1 is expected to be completed towards the end of

2013. Cryostat 2 will contain seven strings of germanium crystals, all of which will be enriched

to greater than 86% 76Ge. Cryostat 2 is expected to be completed by the end of 2014. The

Majorana Demonstrator will search for 0νββ and low-mass WIMPs once fabrication is

completed at SURF. In addition, the Majorana Demonstrator should be able to verify or

refute the recent observational claim of 0νββ [66] within 2-3 years of commissioning Cryostat

1.
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3.5 Dark Matter and Motivation for this Dissertation

The low energy performance of PPC detectors, due to their low-capacitance point-contact

design, makes them suitable for dark matter searches. The direct detection of dark matter re-

mains an active area of research. WIMPs, a generic class of potential dark matter candidates,

are widely regarded as the most promising candidate [7, 43]. Direct search experiments typi-

cally report their results as a contour plot as in Figure 3.6 since the WIMP-nucleus interaction

rate depends on two unknowns: the WIMP mass and the cross section of the WIMP-nucleus

interaction. Recent direct searches for WIMPs have hinted towards a low-mass WIMP at

∼10 GeV [74–77, 104], see e.g. Figure 3.6. It is worth noting that one of the direct searches

claiming a signal consistent with WIMPs, the CoGeNT Collaboration [74, 75], uses the same

detector technology as the Majorana Collaboration – PPC detectors. In fact, the success

of CoGeNT was one of the motivationing factors in deciding to use PPC detectors for Majo-

rana [85, 89]. The favored ∼10 GeV WIMP is also consistent with the theoretical model

proposed by Refs. [105, 106] to explain the excess flux of gamma-rays from the Galactic cen-

ter. On the other hand, several other experiments have reported null-results or show no signs

of a low-mass WIMP [104, 107–110]. With several experiments claiming a signal and several

others claiming no signal, the current situation is tense. Kelso et al. [111] and Kopp et al.

[112] have reported that these disagreements can be brought into alignment after correcting

for experimental and astrophysical uncertainties, however this may be a bit optimistic. What

would be more enlightening is a direct comparison to one of the above experiments using the

same detector technology – this would provide a model independent test of their results. The

Majorana Demonstrator will be able to shed light upon this situation. The projected

sensitivity of the Demonstrator can be calculated assuming that the major background at

low energies arises from the decay of cosmogenically produced tritium and a 500 eV threshold.

This has been calculated in Refs. [76, 85, 113] and the sensitivity of the Demonstrator to

a 10 GeV WIMP is expected to reach 10−43 cm2 (normalized to nucleon), well below current

claims – see Figure 3.7.

Additionally, as a part of the research and developmental efforts for the Demonstra-
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Figure 3.6: The current status of low-mass WIMP searches is shown here. All results shown
are at 90% CL unless otherwise noted. Filled in regions denote experiments that have reported
results compatible with a WIMP in that region of parameter space. Upper limits (null results)
are depicted by lines. The DAMA/LIBRA annual modulation results shown here are the
first results as interpreted by Ref. [104]. The other experiments that have shown a positive
result are CRESST II [77] (95% CL), CoGeNT 2010 [74] and CoGeNT again in 2011 (annual
modulation) [75]. Additionally, the CoGeNT 2011 result as interpreted by Ref. [111] is also
shown. Several experiments have reported null results, or show no signs of a low-mass WIMP.
Two of these experiments include XENON10-LE [108] and CDMS II [109]. (Data obtained
using DMTools [114].)
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Figure 3.7: The 90% CL projected sensitivities of future experiments are plotted with the
data from Figure 3.6. The projected WIMP sensitivity of the Demonstrator for a 100
kg-y exposure assuming a 500 eV threshold [76]. In addition, the projected sensitivities of
SuperCDMS Phase A [115], LUX 300 [116] and DarkSide-50 [117] are also shown. (Data
obtained using DMTools [114].)
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tor, the Majorana Collaboration has deployed a custom PPC detector (MALBEK) in the

Kimballton Underground Research Facility (KURF) in Ripplemead, Virginia, at a depth of

1450 meters water equivalent [118–120]. The next two chapters will highlight the MALBEK

detector providing an introduction and analysis overview. The MALBEK detector and the

detector used by the CoGeNT Collaboration are nearly identical – see Table 3.1. Recall that

the CoGeNT Collaboration has performed a direct search for dark matter and has reported

results consistent with a ∼10 GeV WIMP (Figure 3.6); the MALBEK detector then provides

a model independent test of the results reported by CoGeNT [74, 75]. In addition, the Co-

GeNT Collaboration has recently published a comprehensive technical description of their

experiment and analysis methods [121]. In this paper, they highlight the fact that surface

events represent a formidable background near threshold that plague the energy spectrum

after all cuts. The MALBEK detector has been used both to investigate these surface events

(reported on in Chapter 6) and to perform a direct search for dark matter in much the same

manner as CoGeNT (reported on in Chapter 7). The remainder of this dissertation will focus

on the MALBEK detector in the context of surface events and dark matter in an effort to

either confirm or refute the CoGeNT observations.
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Table 3.1: MALBEK and CoGeNT comparisons.

MALBEK CoGeNTa

Material natural Ge natural Ge
Manufacturer Canberra Industries USA Canberra Industries USA
Detector Type BEGe PPC BEGe PPC
Operational Depth [m.w.e] 1450 2090
Total Mass [g] 465b 443
Fiducial Mass [g] 404.2b ∼330
Point contact diameter [mm] 4.0 6.3
Energy Threshold [eV] 600 450, 500c

Pulser FWHM [eV] 158 150
Capacitance [pF] 1.55 1.8
Crystal Diameter [mm] 60.6 60.5
Crystal Length [mm] 30.0 31.0
‘Dead’ Layer Thickness [mm] 0.933b,d 2.0
Preamplifier integrated transistor reset integrated transistor reset

a CoGeNT values from Ref. [121].
b Values from Ref. [122].
c Refs. [73–75] use a 450 eV threshold, while Ref. [76] uses a 500 eV threshold.
d See Chapter 6 for a detailed discussion of the MALBEK n+ contact region.
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Chapter 4

MALBEK Hardware and Infrastructure

The previous chapter introduced the MALBEK detector, the subject of this dissertation. This

chapter will focus on the MALBEK detector characteristics, shield design, data acquisition

(DAQ) system and deployment in an underground laboratory.

4.1 Introduction

As a part of the research and developmental efforts of the Majorana Demonstrator, a

customized 465 g p-type BEGe (modified BEGe) detector manufactured by Canberra Indus-

tries was deployed underground on 12 January 2010 at the Kimballton Underground Research

Facility (KURF) in Ripplemead, Virginia. This detector is referred to as the Majorana Low-

Background BEGe at Kimballton (MALBEK) hereafter. The MALBEK germanium crystal

is housed in a low-background cryostat fabricated out of oxygen free high-thermal conductiv-

ity (OFHC) copper1. The MALBEK cryostat is shown in Figure 4.1. The experimental goals

for MALBEK are to:

1. test a Majorana Demonstrator-like DAQ, especially at low-energies;

2. explore optimum PPC detector geometry;

3. systematically characterize the entire energy spectrum;

1Juan Collar of the University of Chicago consulted with Canberra Industries on clean assembly techniques
and materials while the cryostat was being fabricated.



4. perform a light WIMP search;

5. and validate the Majorana Demonstrator background model [122].

Figure 4.1: The MALBEK detector is shown here. The HPGe crystal was mounted in the
low-background OFHC copper housing shown on the left. The cryostat is a in a ‘dipstick-style’
configuration. Other components are explained in the text.

4.2 MALBEK Characteristics

4.2.1 Dimensions and Distinguishing Features

The MALBEK detector is different from standard BEGe detectors produced by Canberra in

several respects:

• the typical thin front entrance window is absent (the lithium diffused n+ contact is the

same thickness over the entire n+ contact region),

• the crystal aspect ratio (height-to-width ratio) was optimized,

• the point contact size is nearly a factor of two smaller (4.0 mm),

• the cryostat (see Figure 4.1) was fabricated out of low-background components, and

• the MALBEK preamplifier different than those used in production BEGe detectors. It is

an integrated transistor reset preamplifier for a positive bias detector (they are typically

used on negative bias detectors). It is also separated and offset from the cryostat can

in order to minimize radioactive backgrounds (see Figure 4.1).

The reduction in point contact size decreases the capacitance, and hence the electronic noise.

Simulations (Figure 2.5) performed by David Radford at Oak Ridge National Laboratory
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Table 4.1: The properties of the MALBEK detector.

Property Value Reference

Height 30.0 mm [124]
Diameter 60.6 mm [124]
p+ Point Contact Diameter 4.0 mm [125]
p+ Contact Depth 0.03 µm [126]
n+ Contact Deptha 1.0 mm [126]

Massb 465 g [126]
Impurity Gradient [atoms/cm3] 2.4 (window side)− 3.2 (p+ contact side)× 1010 [125]
Crystal Pull Date 2007-10-26 [125]
Depletion Voltage 2850 V this dissertation
Capacitance 1.55 pF this dissertation
Bias Voltage 3500 V [126]
Cryostat Style Dipstick with remote preamplifier [126]
Preamplifier Integrated transistor reset preamplifier [127]

a This was later measured and will be discussed in detail in Chapter 6.
b This mass includes the lithium diffused n+ dead layer.

calculated the aspect ratio which optimized charge collection within the crystal [123]. Various

MALBEK properties, e.g. crystal dimensions and impurity profile, are listed in Table 4.1.

4.2.2 Operational Characteristics

The electronic noise and capacitance of MALBEK were measured upon delivery to UNC from

Canberra in November 2009. The DAQ setup for these measurements was similar to that

shown in Figure 2.10, utilizing a pulser, MCA and spectroscopy amplifier. The capacitance

of a germanium detector can be thought of as the ratio of charge induced across the diode

to the voltage applied across it, i.e. C = Q/V . It takes 2.96 eV to create an electron-hole

pair in germanium, therefore using a calibration source, we can then calculate the number of

charge carriers created,

Q = e
Eγ
Eehp

Ppulser
Pγ

(4.1)

where Eγ is the energy of the known gamma line, Eehp is again the 2.96 eV, Ppulser is the loca-

tion of the pulser peak in the MCA spectrum and Pγ is the gamma line location in the MCA

spectrum. The voltage in the capacitance calculation is simply the input voltage of the pulser.

The detector was found to deplete at 2850 V corresponding to a capacitance of 1.55 pF (see

Figure 4.2). The electronic noise (width of a pulser) was measured at several shaping times,

with a minimum value of σ = 70.3 eV, and is shown in Figure 4.3. Additionally, the resolution
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of MALBEK in response to various calibration sources is shown in Table 4.2. The values listed

in Table 4.2 remained stable throughout various operational modes, e.g. above ground and

below ground with two different DAQ systems (MCA- and digitizer-based), therefore these

values are a good representation of the resolution of the MALBEK detector.
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Figure 4.2: The capacitance of the MALBEK detector as a function of bias voltage. The
detector depletes at 2850 V which corresponds to a capacitance of 1.55 pF.

4.3 The Kimballton Underground Research Facility (KURF)

After the initial acceptance measurements outlined in the previous section were performed,

MALBEK was deployed underground at KURF on 12 January 2010. The KURF experi-

mental hall is located on the mine’s 14th level at a depth of 1450 m.w.e (meters of water

equivalent shielding) [118]. The overburden consists of 520 m of dolomite, limestone and

other sedimentary rock. Experiments are housed in a 30 m × 11 m laboratory building that

was completed in October 2007 (see Figure 4.4). The laboratory’s general infrastructure is

maintained primarily by collaborators at Virginia Polytechnic Institute and State University

with additional support from Triangle Universities Nuclear Laboratory (TUNL). KURF also
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Figure 4.3: The electronic noise curve for MALBEK is shown here. The measurement was
made with an analog spectroscopy amplifier and an MCA. The electronic noise is dominated
by flicker or non-white noise. The FWHM at τsh = 6 µs is 164.5 eV. The minimum value
for the total fit (red dashed) is located at τsh = 5.82 µs and gives a FWHM of 166.3 eV (or
2.765×10−2 keV2).

Table 4.2: Full width at half-maximum (FWHM) and full width at tenth-maximum (FWTM)
values for various sources.

Shaping Time (µs) Source FWHM FWTM

4.0 Pulser 158.0 eV 286.0 eV
4.0 57Co (122 keV) 484.0 eV 881.0 eV
4.0 60Co (1332.5 keV) 1.63 keV 3.15 keV

8.0 Pulser 167.0 eV 302.0 eV
8.0 57Co (122 keV) 489.0 918.0 eV

24.0 Pulser 222.0 eV Not Measured
24.0 57Co (122 keV) 522.0 eV 942.0 eV
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has the advantage of drive in access, making it relatively simple to transport personnel and

equipment to the experimental hall. Liquid Nitrogen (LN2) used in the laboratory is stored

in a 2.4 m3 portable dewar that can be transported to the surface and refilled as necessary.

The radon levels have been measured at KURF and were found to vary from 37 Bq/m3 in

the winter to 122 Bq/m3 in the summer [118].

Figure 4.4: (a) KURF pad before construction of a laboratory enclosure, (b) during construc-
tion, (c) after construction (d) current status of KURF. The author assisted in construction
and commissioning of the laboratory. Images from [128].

The MALBEK detector and DAQ are housed in separate sealed modified shipping contain-

ers (MSCs) within the laboratory building in order to minimize traffic in the detector MSC.

The MSCs were purchased from Mobile Mini, Inc. and are 8’ × 10’ × 7’ 9.5” (L × W × H)

in size. TUNL technical staff and the author outfitted each trailer with all of the required

infrastructure: ethernet junction boxes, lighting, flooring, and electrical conduits and outlets.

Figure 4.5 shows the detector trailer before and after the modifications were made (similar
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modifications were made to the DAQ trailer). After remodeling of the MSCs, they were

moved to KURF (see Figure 4.6) and 120 V AC power was run to each trailer. Additionally,

the LN2 manifold in the detector MSC, air handling system (HVAC), phone, internet and

oxygen monitors were also installed.

(a) Before. (b) After.

Figure 4.5: The MALBEK detector MSC before and after modifications.

4.4 Shielding

The MALBEK detector is shielded from external gamma-rays by a lead shield. The lead

shield is comprised of an inner lining of ancient lead (2.54 cm) and a 20 cm outer layer of

certified lead. Both of these materials were chosen to reduce backgrounds from 210Pb (T1/2

= 22 years) and its progeny – 210Pb and its daughters produce a 46.5 keV gamma-ray, X-

rays between 70−90 keV and a bremsstrahlung continuum that extends out to 0.5−1.0 MeV

[129]. Lead bricks made from modern lead can have 210Pb activities as high as 50,000 Bq kg−1,

resulting in a significant low-energy background [129]. The ancient lead2 was donated by Juan

Collar and has a 210Pb activity of < 0.01 Bq kg−1 [130]. This ancient lead was produced >5

half-lives of 210Pb ago, allowing a significant amount of the 210Pb within it to decay away.

2Believed to be from the ballast of a sunken British ship in a Dutch Harbor ∼500 years ago.
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Figure 4.6: The MALBEK MSCs are shown here at KURF. The DAQ is housed in the MSC
on the right and the detector is in the MSC on the left.

Certified low-background lead was purchased from Sullivan Metals and has a 210Pb activity

of < 2.5 Bq kg−1 [131]. Surrounding the lead shield is a radon purge box which creates a

hermetically sealed enclosure and is continuously purged with LN2 boil-off to reduce radon

backgrounds. Neutrons produced by (α,n) and fission reactions within rock walls are shielded

by 25.4 cm of polyethylene (purchased from Dillon Supply Co.) which surrounds the radon

purge box. For every 13 cm of polyethylene, this low-energy neutron background is reduced

by an order of magnitude [132]. The chosen thickness of the polyethylene shield was limited

by the internal dimensions of the detector MSC. Higher energy neutrons produced by cosmic-

ray muons are shielded by the 1450 m.w.e. overburden. Figure 4.7 shows the lead shield

surrounded by the radon purge box.

4.4.1 Shield Stand Design

The driving factor in the shield stand design was the desire to not have to unstack the lead

shield in order to access the detector. Unstacking the shield is labor-intensive, increases
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the risk of contamination, and damages the lead bricks, making the shield more difficult to

re-stack. With that in mind, the shield stand seen in Figure 4.7 was designed by TUNL

engineers and fabricated at the UNC machine shop. The detector and dewar sit inside an

aluminum/steel frame that bolts into the larger shield stand which supports the lead shield.

A work positioner (pallet jack) is used to raise and lower the detector/dewar stand into and

out of the shield stand from below the modern lead shield. The MALBEK cryostat and a base

of Sullivan and ancient lead bricks in the detector/dewar stand is shown in Figure 4.8a. The

detector/dewar stand after the inner ancient lead has been stacked is shown in Figure 4.8b.

This assembly consisting of the detector and ancient lead bricks can be inserted or removed

from the bottom of the main lead shield without unstacking any of the lead bricks. After

the ancient lead has been stacked, the detector/dewar stand is ready to be inserted into the

shield stand. Figure 4.8c shows the detector/dewar stand after insertion along with the lead

shield and radon purge. Lastly, Figure 4.8d shows the polyethylene shield stacked around the

entire shield stand.

4.4.2 Lead Brick Cleaning

Prior to deployment at KURF, each of the 180 Sullivan and ancient lead bricks were etched

and cleaned to remove surface contamination at Duke University with BDH Aristar A.C.S.

grade nitric acid3. Figure 4.9 shows the differences between cleaned and as-shipped Sullivan

lead bricks and ancient lead bricks. Each of the 180 lead bricks were double bagged in nylon

bags (see Figure 4.10) prior to shipment to KURF.

4.4.3 Shield Calibration Track

To calibrate the detector within the shield, the shield stand and lead shield were designed

to incorporate a source calibration track that ends directly atop the cryostat can (although,

there is 1” of ancient lead between the source and detector). Several Sullivan lead bricks were

machined at UNC to accommodate the calibration track which is shown in Figure 4.11. A

3This designates a high quality chemical for laboratory use. The abbreviation “A.C.S.,” means the chemical
meets the specifications of the American Chemical Society, 68.0-70.0% HNO3 having a molarity of 15.6 mol/L.
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Figure 4.7: A cross section of the MALBEK shield and support stand is shown here. The
modified BEGe crystal is in dark blue, ancient lead in red, Sullivan lead in green, dipstick
cryostat in light blue, LN2 dewar in orange and support frame in gray. The radon purge
enclosure surrounds the entire lead shield. See text for details.
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(a) (b)

(c) (d)

Figure 4.8: The various components of the MALBEK shield are shown here. (a) shows the
detector/dewar stand with a base of Sullivan and ancient lead bricks, (b) shows the same stand
with the ancient lead house stacked. This house can be removed from the aluminum/steel
frame without unstacking the lead shield, (c) shows the end result of inserting the lead house
and detector/dewar stand into the shield stand and bolting it in place. Also shown is the
teflon source calibration tube (white tubing) and LN2 supply hose. (d) shows the entire setup
surrounded by polyethylene.
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(a) A clean Sullivan brick (top) com-
pared to an as-shipped brick (bottom).

(b) A clean ancient lead brick (right)
compared to an as-shipped brick (left)
from the University of Chicago.

Figure 4.9: Shown here are etched and as-shipped Sullivan and ancient lead bricks.

Figure 4.10: The majority of the 180 cleaned and bagged lead bricks are shown here before
transport to KURF.
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1 µCi 133Ba capsule source at the end of a piano wire was purchased from Eckert & Ziegler

Isotope Products for detector calibrations. The piano wire is housed inside of a teflon tube

which is then inserted into a larger diameter teflon tube that runs the length of the calibration

track. The larger diameter teflon tube can be seen in Figures 4.8c and 4.8d. This tube is

always in place, while the tube with the radioactive source is kept sufficiently far away during

normal background runs.

Figure 4.11: A cross-sectional view of the MALBEK shield calibration track is shown here.
Sullivan bricks are green and ancient lead bricks are dark blue. Also shown is the radon purge
box and detector cryostat.

4.5 The MALBEK DAQ and Slow-Control System

4.5.1 Overview

The design of the MALBEK DAQ and slow-control system was driven by several experimental

goals and requirements:
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1. the KURF underground environment calls for a DAQ that is automated and remotely

accessible;

2. the wide energy range of interest requires a DAQ capable of triggering on pulses (and

digitizing) ranging from several hundred eV to greater than 2 MeV;

3. and the MALBEK experiment provides a test bed for electronics that may be used

with the Majorana Demonstrator, requiring the DAQ to be modular and easily

reconfigurable.

The MALBEK DAQ and slow-control system is controlled by a software package developed at

UNC called Object-oriented Real-time Control and Acquisition (ORCA), an object oriented

data acquisition application [133, 134]. ORCA is self-monitoring, sending email notifications

and alarms to operators based on user configurable preferences. Some of these include detector

and purge dewar LN2 levels, oxygen levels within the detector and DAQ MSC, daily status

reports with energy spectra, channel rates and the status of the high voltage supply (see

Appendix A.1).

4.5.2 Signal Chain

A block diagram of the MALBEK DAQ is shown in Figure 4.13, the details of which will be

discussed in this section. Charge signals from MALBEK are filtered by a custom Canberra

Industries low-noise integrated transistor reset preamplifier (see Section 2.2.5 for an overview

of this design). The MALBEK FET is an ultra-low noise JFET manufactured by MOXTEK,

Inc., Model MX-120, with transconductance ggs = 16 mS and a capacitance of Cgs = 1.7

pF, providing excellent low-noise performance [85, 89]. The preamplifier has two identical

signal outputs and one inhibit output which fires when the reset circuitry of the preamplifier

is active (see Figure 2.7). In order to reduce file sizes, a real-time ORCA data filter was

developed and incorporated into the DAQ that vetoes the majority of inhibit-related charge

signals based upon waveform characteristics, e.g. the ADC values of the first several digitized

samples differ significantly from ionization signals (See Appendix A.2). This also allows

us to choose the inhibit veto window width offline rather than using the hardware inhibit
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signal, which has a duration of 700 µs. The two signal outputs are AC-coupled (using a

500 nF capacitor and the impedance of the signal cable) to remove their DC components,

specifically the slow-rise in the output voltage as the preamplifier is charged. One of the

signal outputs is immediately digitized by a Struck Innovative Systeme 3302 (SIS3302)4 ADC

(high-energy/low-gain channel). The second signal output is sent through a Phillips Scientific

777 fast amplifier before being digitized by the SIS3302 (low-energy/high-gain channel). The

SIS3302 is a VME64x based, 8 channel, 16-bit digitizer capable of digitization rates up to 100

MHz. The SIS3302 uses an internal trapezoidal triggering filter capable of triggering on low

amplitude signals and allows for data read-out in parallel with acquisition. The low-energy

channel has a dynamic range of ∼0.6−150 keV, and the high-energy has a range of ∼0.8−2600

keV (where the highest energy is limited by the range of the preamplifier). Both channels have

8192 16-bit samples (81.92 µs trace length), enabling off-line analysis of the signals. During

normal production runs, which are one hour in length, the test input of the preamplifier is

used to inject 100 mV (∼35 keV) signals at a frequency of 0.1 Hz. The location and width

of the pulser peak in the energy spectrum is measured on a run-by-run basis, enabling a

measurement of the electronic noise as a function of time. Additionally, attenuators are also

used in conjunction with the pulser to investigate the triggering performance of the digitizer

down to threshold when desired. Figure 4.12 shows the triggering efficiency for both channels.

Digitizer Readout Methods

Data read out from the VME64x bus is performed by a Concurrent Technologies VX 40x/04x

single board computer (SBC) that interfaces directly with the DAQ computer via gigabit

ethernet. High traffic on the VME64x bus, and subsequently the gigabit ethernet cable, can

lead to noise in the DAQ system. Noise of this nature was observed at a frequency of 66 kHz

after initial tests with the SIS3302 – Figure 4.14 illustrates how this noise manifests itself on

digitized waveforms.

Mark Howe, the lead software developer for ORCA, developed a new read out method

(aptly named special mode) to mitigate this noise. In short, this new read out method

4http://www.struck.de/sis3302.htm
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Figure 4.12: The trigger efficiency for the high-energy (solid) and low-energy channel (dashed).

reduces traffic on the VME backplane by polling the card less frequently and discarding data

taken during polling. The implementation of special mode into the MALBEK DAQ greatly

reduced the 66 kHz noise (referred to as polling noise), as is shown in Figure 4.15. The data

presented in Chapter 7 were all taken in special mode. The next chapter will highlight some

of the drawbacks to using special mode, focusing on the stability of the digitizer during data

acquisition.

4.5.3 Liquid Nitrogen Auto-Fill System

Two 240 L LN2 dewars sit between the detector and DAQ MSC which feed into the LN2

manifold. An IP power switch and solenoid valves are used to control which dewar is feeding

the LN2 manifold. The IP power switch can be controlled remotely with any internet browser.

LN2 is delivered to the purge and detector 30 L dewars via the LN2 manifold within the

detector MSC. The manifold is controlled by an American Magnetics, Inc. Model 286 Liquid

Level Controller (AMI286) which has two level sensors in both the purge and detector dewar.

The AMI286 is controlled with ORCA and fills the dewars whenever the LN2 level in either
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Figure 4.13: MALBEK DAQ diagram - see text for details.
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Figure 4.14: The 66 kHz polling noise (shaded regions) is shown here on a 6.5 keV digitized
waveform.
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Figure 4.15: Waveforms acquired in both normal mode (black) and special mode (red) are
shown here. It is clear that the 66 kHz polling noise has been eliminated.
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dewar reaches a user defined level. The levels in each dewar are polled every five minutes and

shipped into the ORCA data stream. In order to reduce the temperature of the FET, and

therefore leakage current, the detector dewar LN2 level was only allowed to reach 80% before

refilling. With the LN2 levels in the ORCA data stream, it is possible to veto time periods

during which either dewar filled.

4.6 Discussion

This chapter has introduced the MALBEK detector focusing on the operational performance,

infrastructure at KURF, shield and DAQ. The DAQ was shown to be capable of efficiently

triggering on events as low in energy as 550 eV, meeting the experimental requirements for a

light-WIMP search. Additionally, a new method of read-out (special mode) for the SIS3302

has been developed and implemented in the MALBEK DAQ. The next chapter will focus on

the data taken with MALBEK at KURF as well as the data cleaning and analysis methods

developed.
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Chapter 5

MALBEK Data and Analysis

The previous chapter presented the MALBEK detector, DAQ and shield. This chapter focuses

on the data taken with MALBEK at KURF and the techniques used for analysis in the low-

energy channel. In addition, this chapter will discuss the stability and possible systematic

uncertainties associated with the long term operation of MALBEK.

5.1 Description of Data Acquired

After deployment to KURF on January 12, 2010, several data sets were acquired with MAL-

BEK in various data acquisition (DAQ) and shield configurations, as summarized in Table 5.1.

Within several days of running, an unexpected background due to 210Pb (46.5 keV gamma-ray

line, X-rays from 70 → 90 keV and a bremsstrahlung continuum) was observed, see e.g. the

black histogram in Figure 5.1. It was decided to continue operating the detector underground

while we attempted to identify the origin of the background from the data and simulation.

During this time the noise in the DAQ system was being addressed, and the special mode

SIS3302 read-out was developed. Additionally, data for the MALBEK background model

comparison were taken (see Section 4.1 and Ref. [122]). Based on the observation of the

210Pb 46.5 keV peak, X-rays and bremsstrahlung, we concluded that the origin of the 210Pb

must be in bulk lead very near the crystal. The MALBEK background model confirmed this

hypothesis estimating the most likely origin to be lead shims within the cryostat adjacent to

the crystal [122]. On October 24, 2011, the MALBEK detector was removed from its shield,



taken from the mine, and transported to Canberra Industries in Meriden, CT. The cryostat

was opened and the lead foils were removed (see Figure 5.2)1. The lead foils were replaced

with two low-background PTFE shims purchased from Goodfellow Corporation (Part No.

FP301350) 30× 40× 0.25 mm in size. After reassembly, MALBEK was transported back to

KURF. This change reduced the number of counts in the 46.5 keV full energy peak by a factor

of 10.4, see Figure 5.1 for a comparison. Table 5.2 lists the dominant features observed in the

MALBEK low-energy spectrum (Figure 5.1) as well as their sources. We should note that

the lead foils were supposed to have been fabricated from ancient lead (see Section 4.4) with

210Pb activity less than 0.01 Bq kg−1, however different lead was unknowingly used (> 100

Bq kg−1) [122]. This was likely because of mislabeling at the University of Chicago, which

provided the lead shims.

The total time above ground for the lead foil removal operation was 2 days 19 hours

and 30 minutes. During this time period, the germanium crystal and copper cryostat were

exposed to cosmic ray neutrons increasing the number of 71Ge (T1/2 = 11.43 days) and

68Ge (T1/2 = 270.95 days) atoms within the crystal (cosmogenic activation). It should be

noted that several other isotopes were also created during surface exposure, however the

contributions from 71Ge and 68Ge dominate the low-energy spectrum (see e.g. Table 2.2 in

Ref. [135]).

The data taken with MALBEK have been split into distinct data sets – with and without

lead shims, shown in Table 5.1. Each data set consists of a series of individual runs one

hour in length. The runs in data set 1 (DS1) were acquired while the electronic noise in the

MALBEK DAQ was being investigated. These data sets will not be covered in detail in this

dissertation, aside from a comparison of the two eras (before/after lead shims). Data sets 2

(DS2) and 3 (DS3) represent the only data sets with backgrounds low enough to perform a

light WIMP search, however this dissertation will focus solely on DS3 since the polyethylene

shield was not in place during DS2.

1Thank you to Mike Yocum and Jim Colaresi for assisting in the removal of the lead foils at Canberra.
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(a) 0.6− 150 keV

(b) 0.6− 12 keV

Figure 5.1: MALBEK energy spectra before (black) and after (blue) the lead shims were
removed. The dominant features are labeled (energies in keV) and are also itemized in
Table 5.2. These spectra contain slow- and fast-pulses (distinction given in Section 5.1.3).
The data cleaning methods used to generate these figures are discussed in Section 5.3. (a) full
dynamic range of the low-energy channel (0.6− 150 keV). (b) expanded scale showing lower
energies (0.6− 12 keV).
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Figure 5.2: Two aluminized lead shims were extracted from the cryostat. These shims were
between the HV copper foil and the Ge crystal. A date “8-7-08” has been scribed on the
larger piece. The numbers “0” and “8” were scribed on the other shim. These shims have a
combined mass of 3.01 g.

Table 5.1: The MALBEK data sets are listed here. See text for detailed descriptions.

Data
Set

Date
Begin

Date
End

Live
Time
(days)

VME64x
Crate

SIS3302
Readout

Pb
Shims

Comments

1a
2011-03-08
14:40

2011-04-14
13:40

33.8542 Dawn Normal Yes
All shielding
present

1b
2011-04-14
15:36

2011-05-27
10:28

34.8845 Dawn Special Yes
All shielding
present

1c
2011-06-20
13:01

2011-08-16
07:12

40.0881 Linear Special Yes
All shielding
present

2
2011-11-02
08:19

2011-11-14
16:31

12.0027 Dawn Special No
Polyethylene
shield not
stacked

3a
2011-11-15
17:06

2012-03-12
17:06

104.3214 Dawn Special No
All shielding
present (before
power outages)

3b
2012-04-09
11:25

2012-08-29
14:56

117.1725 Dawn Special No
All shielding
present (after
power outages)

Total:
342.3234
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Table 5.2: Dominant features in the MALBEK low-energy spectrum. The last three lines
listed were not observed prior to the lead shim removal due to high backgrounds.

Energy (keV) Source

1.096 65Zn L-capture
1.299† 68,71Ge L-capture
4.966∗ 49V K-capture
6.539† 55Fe K-capture
8.979† 65Zn K-capture
9.659† 68Ga K-capture
10.367† 68,71Ge K-capture
46.539 210Pb
72.0→90.0 Pb and Bi X-rays
92.38, 92.80 234Th
122.06 57Co
136.47 + 7.06 (143.53) 57Co γ + X-ray summing

† These peaks were used for an energy calibration.
∗ There is some uncertainty with this peak

identification due to its low-intensity (< 2.4 µHz).

5.1.1 With Lead Shims

Data set 1 contains three sub-data sets (DS1a, DS1b, DS1c), all of which had lead shims in

the cryostat. DS1a was unique in that that SIS3302 was operating in normal read-out mode

since special mode had not yet been developed. The SIS3302 was run in special mode in all

subsequent data sets. Approximately 34 days after special mode had been implemented, a

VME64x crate with linear power supplies was installed in place of the Dawn 9U switching

power supply VME64x crate in an effort to reduce noise. The hope was that by using a linear

power supply instead of a switching power supply we would reduce noise in our DAQ. This

is due to the fact that switching power supplies generate noise at harmonics of the switching

frequency – see e.g. Figure 5.17. Graham Giovanetti re-worked a spare VME64x crate at UNC

by replacing the switching power supplies with linear supplies purchased from International

Power (ICP197 - 5V, 2x IHE12-10.2 - ±12 V). Approximately 40 days of data were acquired

(DS1c) with the linear crate before transporting the detector to Canberra to remove the lead

shims. The linear crate proved to be unstable, e.g. the high voltage supply would randomly

ramp down, and did not improve noise as expected, therefore the linear crate was removed
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from the DAQ when the detector was moved back underground, post-lead shim removal.

5.1.2 Without Lead Shims

DS2 and DS3 were taken without the lead shims in place. DS2 was taken immediately

after the detector was brought back underground, however the polyethylene shield was not

yet installed. Approximately 12 days later the polyethylene shield was stacked and the data

acquisition for the light WIMP search in Chapter 7 began (DS3). Figure 5.3 clearly illustrates

the enhancement due to cosmogenic activation in the number of 68Ge and 71Ge decays within

the MALBEK detector after it was transported to-and-from Canberra. The decay observed

in Figure 5.3 is dominated by the 11.43 half-life of 71Ge. A fit to the observed exponential

decay in the count rates of the 68,71Ge K-capture line has been performed and agrees with

the data (0.931 P-value, χ2/NDF = 0.834), this fit is shown in Figure 5.4. DS3 has been split

into two separate run periods due to unscheduled power losses at KURF. During the month

between DS3a and DS3b, power interruptions occurred every 1–3 days. This caused the gain

of the detector to shift significantly over short timescales, making a reliable energy calibration

in this region impossible, therefore these data have been omitted from this analysis.

5.1.3 Slow Signal Backgrounds and Lead Shims

Slow, energy-degraded, signals in PPC detectors have been reported in the literature, specif-

ically Refs. [67, 73–75, 121, 136–146], and represent a significant low-energy background in

the MALBEK detector. These signals arise from interactions near the lithium diffused n+

contact. Diffusion and recombination processes are hypothesized to dominate the charge

transport in this region of the detector, as opposed to the electrostatic transport that dom-

inates in the bulk of the crystal. As will be discussed later, this causes the ionization signal

to take longer to reach its maximum and leads to incomplete charge collection (energy degra-

dation) by the acquisition system. Signals from this region of the detector are often called

slow-signals, while events in the bulk are referred to as fast-signals. For reference, Figure 5.5

shows both a ∼20 keV slow- and fast-signal. Chapter 6 will discuss the underlying physical

mechanism behind these slow-signals in detail. For now, it will be sufficient to understand
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Figure 5.3: The number of counts per day in the 68,71Ge K-capture line versus time has
been plotted for DS1c, DS3a and DS3b (see legend). Day 0 corresponds to 2011-06-20. The
increase in counts observed in DS3a can be attributed to cosmogenic activation during the
trip to Canberra.
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Figure 5.4: A fit to the exponential decay due to 71Ge: T1/2 = 11.43 days and 68Ge: T1/2 =
270.95 days as a function of DS3 run time. The decay rates were fixed to their known values
for this fit and the amplitudes were allowed to float. The fit to the observed count rate in
the 10.367 keV peak agrees with the data, with a χ2 of 126.04 and 151 degrees of freedom,
corresponding to a P-value of 0.931.
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that slow-signals represent a background in MALBEK and Section 5.2.3 will cover how to

mitigate these events.

DS1 (with lead shims) and DS3 (without lead shims) provide an excellent illustration of

the magnitude of the slow-signal background when the lead shims were present. The mean

free path of a 46.5 keV gamma from 210Pb in germanium is 0.47 mm, so many of these

gammas interact in the n+ contact region resulting in a significant source of slow-signals.

The most common technique to quantify the slow-ness of an ionization signal is to calculate

the time a signal takes to rise from 10% to 90% of its maximum, or t10−90. The value of t10−90

depends on the type of HPGe detector, e.g. in most BEGe detectors, t10−90 ∼200-400 ns for

fast-signals and t10−90 >600 ns for slow-signals. Figure 5.6 shows the t10−90 versus energy

distributions before and after the lead shims were removed, where only the first ∼40 days

of DS3a have been plotted in order to compare similar live times. A significant reduction in

the number of slow-signals was observed between these two eras. The slow-signal background

was reduced by more than an order of magnitude after the lead shims were removed, see

Figure 5.7, which shows the binned energies of slow signals in both eras normalized by live

time. The following section will discuss how these plots were generated, highlighting the

energy and t10−90 calculations as well as a new method developed to measure the slowness of

a signal.

5.2 Digital Signal Processing

5.2.1 Overview

Digital signal processing (DSP) of waveforms allows for the extraction of useful character-

istics, such as rise-time, energy, baseline, extrema values, derivative maxima, integral, etc.

These parameters are essential for removing non-physics backgrounds. Off-line event-by-event

processing also enables further digital processing of the waveform, e.g. waveform smoothing

by wavelet de-noising or averaging.

The DSP of MALBEK waveform data was implemented in a tiered approach. Figure 5.8

illustrates the three tiers of analysis. The analysis chain starts when Tier 0 data (raw ORCA
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Figure 5.5: An example of a slow-signal is shown in red and a fast-signal is shown in black.
Notice that the slow-signal takes much longer than a microsecond to reach 90% of its maximum
value, while the fast-signal takes less than half a microsecond. Both events have an energy of
∼20 keV.

binary) is sent from the KURF DAQ machine to the UNC KillDevil cluster [147]. This is

done every night at midnight with a bash script based on rsync that runs with crontab.

During normal production data acquisition, ORCA saves a data file for each one hour long

run. Tier 0 data is then processed with Majorana-ORCARoot (MJOR) that translates

the ORCA binary data into ROOT [148] compatible TTrees. After processing, the newly

created ROOT file is moved to the Tier 1 directory. Tier 1 files are then processed with

the Germanium Analysis Toolkit (GAT) software package which was developed by members

of the Majorana collaboration to process Geant4 and waveform data. GAT is a collection

of C++ objects (or processors) that process entries in ROOT TTrees. GAT processors can be

used to process waveform data or results from waveform data analysis. Two passes of GAT

processing are performed on MALBEK data, with the first pass geared towards the DSP of

each waveform in the file, where the t10−90, un-calibrated energy, baseline, etc. are computed

for each waveform. The second pass deals with timing analysis and energy calibrations. The

output from the first wave of GAT processing is stored in the Tier 2 directory and the output
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(a) 40 days of DS1c t10−90 (with lead shims)

(b) The first 40 days of DS3a t10−90 (without lead shims)

Figure 5.6: The 10%-90% rise-time distributions before and after the lead shims were removed.
It is clear that the source of 210Pb was the cause of a significant low-energy background due
to slow-signals (this is also shown in Figure 5.7). The t10−90 calculation is discussed in
Section 5.2.3.
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Figure 5.7: The energy spectrum corresponding to slow-signals. Solid (black): with lead
shims in place; solid (blue): after lead shims were removed. See Section 5.2.3 for details on
slow-signal discrimination techniques.
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from the GAT timing analysis is stored in Tier 3. Tier 3 files also contain the results from

GAT DSP. In summary, ORCA saves a data file for each one hour long run and each run is

sent through three tiers of analysis as illustrated in Figure 5.8. A list of parameters saved

for each waveform has been given in Table B.1 in Appendix B. The next two sections will

outline how the energy and rise-time are calculated for each event as well as describe the

energy calibration.

5.2.2 Energy Calculation

A symmetric trapezoidal filter was implemented in software to calculate the un-calibrated

energy of each waveform [149, 150]. A trapezoidal filter can be summarized as a filter that

transforms the typical signal generated by a preamplifier into a trapezoid that presents a

flat top whose height is proportional to the amplitude of the input pulse, i.e. the energy of

the event. The time duration in which the trapezoid is increasing/decreasing is the peaking

time and the time duration that the trapezoid is flat is the gap time. Before the trapezoidal

filtering is performed, the baseline of each waveform was removed. This is accomplished by

averaging the first several samples of each waveform for a set period of time, i.e. the baseline

averaging time (see Table 5.3). This average value is then subtracted from each data point in

the waveform. Additionally, a pole-zero correction is performed on each waveform to remove

the exponential decay. The baseline removal, pole-zero correction and trapezoidal filtering

process are illustrated in Figure 5.9. The un-calibrated energy of each waveform was set to

the maximum of the trapezoidal filtered waveform. The parameters used for the trapezoidal

filter are listed in Table 5.3. These parameters were optimized based on a scan of the available

parameter space (gap and peaking times) with an ORCA script. In this script, the on-board

SIS3302 energy filter peaking time and gap times were set to user defined values. After the

values have been initialized, the width of a pulser signal was measured to evaluate the energy

resolution of the chosen gap and peaking times. Figure 5.10 illustrates the results of this

scan. It is clear that to optimize the energy resolution, a small gap time, on the order of one

microsecond, and a peaking time around 10 microseconds should be chosen. This scan could

have been done offline in software, however it was faster to have ORCA perform the analysis
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Tier 0 - ORCA File on KURF DAQ

Rsync 
Crontab

Tier 0 - ORCA File on UNC Cluster

Tier 1

GAT DSP

MJOR

Tier 2

GAT Timing

Tier 3

Figure 5.8: MALBEK analysis tiered approach diagram. Data is sent from the DAQ to the
UNC KillDevil cluster with a bash script based on rsync. This script runs automatically
every night at midnight. Tier 0 files are processed with MJOR (Majorana ORCA-ROOT)
and send to the Tier 1 directory. Tier 1 files are processed with GAT (Germanium Analysis
Toolkit). Event-by-event waveform DSP is performed during this step. The output from
GAT DSP is sent to the Tier 2 directory. Tier 2 files are processed again with GAT, focusing
on timing analysis and energy calibrations. The output from GAT Timing is sent to the Tier
3 directory.
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Table 5.3: Parameters used for the trapezoidal filter of MALBEK data.

Parameter Value

Baseline Averaging Time 1–20 µs
Waveform Decay Constant 72.31 µs
Trapezoidal Filter Gap Time 1.0 µs
Trapezoidal Filter Peaking Time 11.0 µs

in real-time.

Energy Calibration

A reliable energy calibration in the high-gain (low-energy) channel is challenging, because

any low-energy calibration source will be greatly attenuated by the cryostat and internal

components. However, the low-energy internal X-rays listed in Table 5.2 provide a means

to calibrate the detector at the lowest energies (< 12 keV). These X-rays have been used to

calibrate MALBEK in both DS3a and DS3b. There were significantly more counts in the X-

ray peaks in DS3a, because the detector had been cosmogenically activated shortly before data

taking had started (see Figure 5.3). In each data set, a subset of the peaks listed in Table 5.2

were fit with a Gaussian and background function (linear or linear + exponential) to extract

the un-calibrated peak centroid. The un-calibrated peak centroids were then compared to

their known energy values and fit with a linear equation to extract the peak ADC to energy

relationship:

E(x) = A+Bx, (5.1)

where x is the un-calibrated peak centroid in ADC units, E(x) is the energy in keV, and A and

B are the fit parameters. The un-calibrated energy peak fits for both data sets are shown in

Appendix C. The linear calibration curves are shown in Figures 5.11 (DS3a) and 5.12 (DS3b).

It should be noted that in these figures, there are no y-errors since the y-variable (known

energy) was assumed to have zero error. However, the x-errors are included - they are taken

from the uncertainty in the fit to the un-calibrated energy. These errors are too small to be

observed in these figures. The values of A and B were determined for each data set separately,
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(b) Baseline removed waveform
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(c) Pole-zero corrected waveform
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(d) Trapezoidal filtered waveform

Figure 5.9: The trapezoidal filtering process is shown here: (a) raw waveform with a decay
constant of 70.0 µs and a baseline average of 0.2 - the averaging region is shown in hatched
blue, (b) baseline removed waveform, (c) pole-zero corrected waveform, i.e. removal of ex-
ponential decay, (d) the resulting trapezoidal filter on the pole-zero corrected and baseline
removed waveform. The blue hatched regions are the peaking times (20 µs) and the green
hatched region is the gap time (10 µs). The values for the peaking time and gap time here
were chosen for image clarity and are not the values used in the MALBEK analysis, these are
listed in Table 5.3. Alternatively, items (c) and (d) could be done simultaneously.
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allowing one to combine both data sets after calibration (DS3).
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Figure 5.11: DS3a linear calibration curve along with the residuals is shown here. There are
no y-errors since the ‘Energy (keV)’ values were taken from literature, however the x-errors
are included and are too small to be seen. The fitted parameters are: A = 5.52 × 10−2 ±
2.68× 10−2 keV, B = 3.60× 10−6 ± 1.20× 10−8 keV/ADC.

Energy Resolution

After calibration, the shape of all peaks listed in Table 5.2 were fit for all three data sets. The

fitting results are listed in Tables 5.4 (DS3a), 5.5 (DS3b) and 5.6 (DS3). Most peaks were

fit with a linear background and a Gaussian signal. The only exception being the L-capture

lines at 1.096 keV (65Zn) and 1.299 keV (68,71Ge). For these lines, an exponentially decaying
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Figure 5.12: DS3b linear calibration curve along with the residuals is shown here. There are
no y-errors since the ‘Energy (keV)’ values were taken from literature, however the x-errors
are included and are too small to be seen. The fitted parameters are: A = 1.15 × 10−1 ±
8.67× 10−3 keV, B = 3.68× 10−6 ± 4.00× 10−9 keV/ADC.
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function was added near threshold. All of the fits in these tables are shown in Appendix C;

see Section C.3 for DS3a, Section C.4 for DS3b and Section C.5 for DS3. The widths of the

peaks were used to calculate the energy dependence of the energy resolution (σ), which was

expected to follow this equation,

σ(E) =
√
σ2
e + ηFE + cE2, (5.2)

where σe is the electronic noise of the detector, which was measured to be 69.8 ± 0.2 eV

for MALBEK. Figure 5.22 in Section 5.2.3 illustrates this for a data set taken with a pulser

signal of varying amplitude. Also, as previously mentioned, the width of a pulser signal was

measured during every run in DS3 – this is shown in Figures 5.37 and 5.38 of Section 5.4.1.

η is the energy required to generate an electron-hole pair (2.96 eV), F is the Fano factor (see

Section 2.2.6), c is a constant that takes into account gain drift over long periods of time

as well as charge trapping effects and E is the energy of the gamma-ray [84, 87]. It was

found that the best fit results were achieved by setting c = 0. The widths and energies of

all data sets were fit with this equation, however here we only show the results from DS3a in

Figure 5.13, because DS3a provided the best statistics in each of the low-energy peaks (due

to cosmogenic activation). It should be reiterated (see Chapter 2) that the Fano factor has

been measured to be between 0.057 and 0.129 in germanium [84]. The discrepancy between

the accepted values for F and what was measured is most likely due to low statistics in the

peaks used for the fit.

Energy Linearity

It is also important to investigate the linearity of the MALBEK DAQ system. This has

been done by comparing the calibrated energies with their published energies. The results

are shown in Figures 5.14 (DS3a), 5.15 (DS3b), and 5.16 (DS3). For all three data sets, the

calibrated energies and published energies are in agreement, indicating a satisfactory energy

calibration.
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Figure 5.13: Fit to the MALBEK energy resolution in DS3a.

Table 5.4: DS3a peak fitting results in the low-energy channel.

Peak Energy Centroid σ Count Rate χ2 / DOF P-Value

(keV) (keV) (eV) (µHz)

65Zn L 1.096 1.07 ± 0.04 123.63 ± 11.48 4.29 ± 0.47 117.1/92 (1.27) 3.982e-02

68,71Ge L 1.299∗ 1.31 ± 0.01 85.35 ± 9.60 13.14 ± 1.97 117.1/92 (1.27) 3.982e-02

49V K 4.966 4.96 ± 0.02 68.31 ± 18.36 2.45 ± 0.83 38.6/46 (0.84) 7.726e-01

55Fe K 6.539∗ 6.57 ± 0.02 75.51 ± 14.54 5.62 ± 1.17 38.5/46 (0.84) 7.746e-01

65Zn K 8.979∗ 8.97 ± 0.01 106.43 ± 7.41 26.24 ± 1.92 59.8/90 (0.66) 9.941e-01

68Ga K 9.659∗ 9.65 ± 0.02 83.84 ± 17.84 3.58 ± 0.91 59.8/90 (0.66) 9.941e-01

68,71Ge K 10.367∗ 10.37 ± 0.00 103.88 ± 3.42 80.38 ± 3.12 59.8/90 (0.66) 9.941e-01
∗ These peaks were used to calibrate.

108



 Published Energy (keV)
0 2 4 6 8 10 12

C
al

ib
ra

te
d

 E
n

er
g

y 
(k

eV
)

0

2

4

6

8

10

12

 Published Energy (keV)
0 2 4 6 8 10 12

 R
es

id
u

al

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Figure 5.14: The linearity of DS3a is shown here.

Table 5.5: DS3b peak fitting results in the low-energy channel. Again, non-linearities in the
SIS3302 give rise to poor agreement with published energies above 12 keV. The gain more
than likely drifted during data taking giving rise to the larger σ values as compared to DS3a.

Peak Energy Centroid σ Count Rate χ2 / DOF P-Value

(keV) (keV) (eV) (µHz)

65Zn L 1.096 1.07 ± 0.04 123.63 ± 7.08 3.51 ± 0.65 166.2/92 (1.81) 3.457e-06

68,71Ge L 1.299∗ 1.33 ± 0.00 106.99 ± 16.06 4.73 ± 1.65 166.2/92 (1.81) 3.457e-06

55Fe K 6.539∗ 6.55 ± 0.02 87.48 ± 25.81 4.19 ± 1.20 25.3/46 (0.55) 9.945e-01

65Zn K 8.979∗ 8.98 ± 0.01 127.79 ± 11.05 17.62 ± 1.56 54.5/90 (0.61) 9.989e-01

68Ga K 9.659∗ 9.66 ± 0.02 53.78 ± 18.96 1.98 ± 0.65 54.5/90 (0.61) 9.989e-01

68,71Ge K 10.367∗ 10.37 ± 0.01 111.98 ± 7.25 23.74 ± 1.71 54.5/90 (0.61) 9.989e-01
∗ These peaks were used to calibrate.
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Figure 5.15: The linearity of DS3b is shown here.
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Figure 5.16: The linearity of DS3 is shown here.

111



Table 5.6: DS3a and DS3b combined peak fitting results. After calibration in both data sets,
the peaks listed in Table 5.2 were fit to extract the resolution and centroids. The combined
resolution is slightly worse than fitting the individual data sets.

Peak Energy Centroid σ Count Rate χ2 / DOF P-Value

(keV) (keV) (eV) (µHz)

65Zn L 1.096 1.13 ± 0.04 123.63 ± 76.11 3.55 ± 0.36 154.8/92 (1.68) 4.582e-05

68,71Ge L 1.299 1.33 ± 0.05 92.29 ± 10.62 8.27 ± 1.24 154.8/92 (1.68) 4.582e-05

49V K 4.966 4.99 ± 0.02 71.54 ± 38.82 1.92 ± 0.78 92.4/46 (2.01) 5.948e-05

55Fe K 6.539 6.56 ± 0.01 81.04 ± 13.17 4.85 ± 0.81 69.9/46 (1.52) 1.304e-02

65Zn K 8.979 8.97 ± 0.01 115.17 ± 6.28 21.65 ± 1.22 73.2/90 (0.81) 9.014e-01

68Ga K 9.659 9.65 ± 0.02 75.53 ± 14.35 2.78 ± 0.56 73.2/90 (0.81) 9.014e-01

68,71Ge K 10.367 10.37 ± 0.00 105.89 ± 3.13 50.41 ± 1.72 73.2/90 (0.81) 9.014e-01

5.2.3 Rise-Time Discrimination Techniques

Mitigating the slow-signal backgrounds discussed in Section 5.1.3 requires the ability to dis-

criminate between slow and fast rise-time events. As stated earlier, a standard metric used

to perform such discrimination is the 10%-90% rise-time (t10−90) of the waveform, which is

the amount of time it takes for the signal to rise from 10% to 90% of its maximum. In our

application of the t10−90 method, the waveform is smoothed via wavelet de-noising and then

scanned to find the locations where the waveform rises from 10% to 90% of its maximum

amplitude, see e.g. Figure 5.17. The algorithm chosen for wavelet de-noising is similar to

those used by Refs. [74–76] which were based on Refs. [151–155].

Before we proceed, a brief introduction to wavelets and de-noising is required2. The

Fourier Transform (FT) gives information about which frequencies are present within a signal,

however the FT assumes that these frequencies are present at all times within the signal. The

Continuous Wavelet Transform (CWT) of a signal f(t), however, gives information about the

frequencies (s, the scale) and their location on the waveform (τ , the translation). The CWT

is defined as

CWT (s, τ) =

∫
f(t)ψ∗s,τ (t)dt, (5.3)

2For a more detailed overview of wavelet signal analysis, see Ref. [156].
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Figure 5.17: A de-noised 6.67 keV signal is shown in red. The two vertical dashed lines (blue)
indicate the 10% and 90% of the signal maximum and correspond to t10−90 = 403.17 ns.

where the wavelet function ψs,τ (t) is given by

ψs,τ (t) =
1√
s
ψ0

(
t− τ
s

)
, (5.4)

and ψ0

(
t−τ
s

)
is referred to as the mother wavelet. A change in scale changes the frequencies

that a wavelet samples, or is sensitive to, e.g. larger scale, larger frequency. The mother

wavelet chosen for this analysis is the Haar wavelet, a single cycle of the square wave [157].

The Haar wavelet was chosen as the basis because ionization signals resemble square waves

or step functions.

The CWT can be written in terms of wavelet functions, which then allows one to think

of the CWT as an ensemble of convolutions of wavelets with differing scales (frequencies).

The CWT power (= CWT (s, τ)2) is then large for values of scale (frequencies) that are

important in the signal. The wavelet transform is done numerically by applying high pass

(H0) and low pass (G0) filters to the input signal. This is done to split the signal into

a high frequency component that captures fine details of the signal and a low frequency
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component that encapsulates its overall shape. These filters only allow half of the frequency

band through, therefore the signal is reduced by half, i.e. i = 8192 samples before filtering

and i = 4096 samples after filtering. This is referred to as down-sampling. In order to retain

the same signal length, the signal is padded with zeros – that is, zeros are placed in between

each sample to bring the length of the filtered signal back up to 8192. H0 yields a filtered

signal referred to as detail coefficients (c
(i)
D ). Similarly, G0 yields a filtered signal referred to

as approximation coefficients (c
(i)
A ). Detail coefficients hold the data’s detailed information

and approximation coefficients hold the data’s smooth information. This filtering process can

be repeated on the approximation coefficients n times yielding n sets of approximation and

detail coefficients. For the analysis that follows, this was repeated eight times (n = 8).

Another type of wavelet transform, which is very similar to the CWT, is the Stationary

Wavelet Transform (SWT). Unlike the CWT, the SWT performs transformations at all pos-

sible translations, and an inverse SWT effectively averages these together. It should be quite

obvious now that since wavelet transformations pick out the most important components of

a signal, they can be used to remove the unimportant components as well - this is referred to

as de-noising. De-noising is accomplished by setting unimportant detail coefficients to zero

and performing an inverse transformation to produce a de-noised signal. The algorithm can

be outlined in three steps:

(1) perform a SWT using a Haar mother wavelet to n = 8 levels, thus creating n sets

of detail and approximation coefficients (c
(i)
D (n) and c

(i)
A (n) respectively, where i =

[0, 1, . . . , 8192] is the number of samples),

(2) set unimportant detail coefficients c
(i)
D (n) to zero, and

(3) perform an inverse transformation resulting in a de-noised signal.

This process is illustrated and explained in Figure 5.18.

At very low energies (< 4 keV) the low signal-to-noise ratio (S/N) can lead to large fluctu-

ations in t10−90, limiting its utility in the very region where it is needed most to discriminate

slow-signals from potential dark matter signals. This is illustrated in Figure 5.19 which shows
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Figure 5.18: The first four sets of detail coefficients for an n = 8 decomposition are shown
along with their corresponding thresholds for a 6.67 keV signal. Noise reduction (de-noising)

is obtained by setting all c
(i)
D (n) that fall between the dashed lines to 0. For reference, time

is on the x-axis (0-81.92 µs).
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two waveforms along with their calculated 10% and 90% values. It is clear that the t10−90

algorithm failed. A more sophisticated method has been developed based upon a wavelet

parameter pulse shape discrimination technique. In addition to wavelet de-noising to level

n = 8, this technique performs a pulse shape analysis (PSA) on the wavelet power spectrum,

which is defined as,

Power =
∣∣∣c(i)
D (n = 0)

∣∣∣2 , (5.5)

where n is the level and i is the number of samples. An example of the wavelet power spectrum

of an ionization signal is shown in Figure 5.20. The wavelet power spectrum picks out the

most important components of the signal. In the case of ionization signals, this is related to

the information contained in the rising edge of the pulse. A new parameter was found that

is also sensitive to the rise-time of the pulse, wpar, and is defined as:

wpar =

max

(∣∣∣c(i)
D (n = 0)

∣∣∣2)
E2

, (5.6)

where E is the energy of the event as calculated by a standard trapezoidal filter (see Sec-

tion 5.2.2). This parameter can be thought of as a ‘smoothed out’ derivative normalized by

the square of the energy of the event. Since wpar does not rely on scanning the waveform to

locate x% of the pulse height, it is robust to a poor signal-to-noise ratio. Figure 5.21 illus-

trates the correlation between t10−90 and wpar for energies >4 keV (only plotted for E > 4

keV since the t10−90 metric fails below 4 keV, making a comparison meaningless).

To test the efficacy of the t10−90 and wpar metrics, the attenuators and arbitrary waveform

generator mentioned in Chapter 4 were used, see e.g. Figure 4.13. A set of waveforms with

known rise-time (t10−90 = 403 ns, chosen to match as closely as possible to the MALBEK

signal rise-times) and amplitude (0.3 → 6.67 keV) were injected into the test input of the

MALBEK preamplifier. The amplitude of the pulse was initially set to 6.67 keV and ramped

down in 35 steps, with the step-size continually decreasing so as to obtain more statistics

near threshold. The energy resolution, σ, of each step was measured as well and is shown in

Figure 5.22. This not only allows one to see the noise performance at the lowest energies, but
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Figure 5.19: Illustration of how poor S/N leads to large fluctuations in t10−90
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Figure 5.20: The n = 0 wavelet power spectrum is dashed (red) and the raw signal is solid
(black). The apparent offset between the two signals is due to the numerical filtering process.
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Figure 5.21: An intensity plot of t10−90 versus wpar for data collected with an external 241Am
source and energies between 4 and 58 keV. Note the clear correlation between the two pa-
rameters. The color scale on the right is in units of counts.
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also allows one to see the varying step size. The signals collected were processed off-line in
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Figure 5.22: The width of the pulser peak in MALBEK for the efficiency test runs with the
attenuators. The data were fit with a flat function f(x) = A, where A was allowed to float and
is the electronic noise of MALBEK. The resulting fit yielded a 0.35 P-value, χ2/NDF = 1.10
and A = 69.8 ± 0.2 eV. A fit was attempted with a linear function, however the slope term
was consistent with zero.

order to calculate both the t10−90 and wpar values. The resulting distributions were then used

to generate acceptance curves that include 99% of the fast-signals, see Figures 5.23 and 5.24.

The spread at low energies of both curves is shown in Figures 5.23 and 5.24, where it is

clear that the wpar parameter is more stable. The wpar 99% exclusion curve will be used to

discriminate between slow- and fast-signals for the remainder of this dissertation and referred

to as the slow-signal cut (SSC).

5.3 Data Cleaning

Data set 3 has been used to perform a light WIMP search, the results of which are reported

in Chapter 7. The remainder of this chapter will focus on the methods used to remove non-

physics events from the data (data cleaning) as well as the stability of MALBEK during data
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Figure 5.23: 99% exclusion curves for t10−90 = 403 ns pulser signals. A pulser/attenuator
system has been used to train the slow-signal cuts. (a) t10−90 distribution and the 99%
exclusion curve for pulser data. All events above the curve will be considered slow-signals.
This will be referred to as the t10−90 cut hereafter. It is clear that the t10−90 cut fails at low
energies and grossly overestimates the rise-time. The color scale on the right is in units of
counts. (b) wpar distribution and the 99% exclusion curve for pulser data. All events below
the curve will be considered slow-signals. The stability of the wpar parameter relative to the
t10−90 at low energies is clearly illustrated. The color scale on the right is in units of counts.
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(a)

(b)

Figure 5.24: 99% exclusion curves with DS1c (with lead shims in place). Blue hatched regions
indicate slow-pulse regions. (a) t10−90 distribution and the 99% exclusion curve. (b) wpar
distribution and the 99% exclusion curve.
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acquisition. The chapter will close with a summary of the potential systematics that will each

be covered below.

5.3.1 Pulser, Inhibit, and LN2 Cuts

There are several known sources of non-physics events that are directly correlated with various

DAQ components. First, the energy resolution (electronic noise) of MALBEK is measured

regularly during normal background runs. To do this, a pulser is injected into the test input of

the preamplifier at a rate of 0.1 Hz. In order to obtain a physics-only energy spectrum, events

coincident with this pulser signal are removed. Secondly, since the MALBEK preamplifier is a

transistor reset preamplifier (see Section 2.2.5), events coincident with the inhibit signal from

the preamplifier are removed. Lastly, vibrations from filling the detector and purge dewars

with LN2 result in microphonics or noise on the output of the MALBEK preamplifier. To

avoid this, a 15 minute window is vetoed surrounding each LN2 fill. This window is sufficiently

long to allow the LN2 transfer lines within the detector trailer to thaw. These three cuts will

be referred to as the timing cuts hereafter.

5.3.2 Microphonics and Noise Cuts

As alluded to above, microphonic noise is caused by mechanical vibration of electronic circuit

components with respect to surfaces at different potentials. Aside from the microphonics due

to LN2 fills, we observe two major classes of microphonics in MALBEK:

• HV micro-discharges: Reverse polarity pulses related to HV micro-discharges [121,

158]. The following sections outline the DSP methods used to remove these events.

• Ringing: We also observe waveforms that are triggered by electronic ringing. Again,

the following sections outline the DSP methods used to remove these events.

To eliminate ringing and HV micro-discharge induced signals, a suite of three cuts has been

developed. These cuts are applied in a tiered approach, where the first tier removes waveforms

that are relatively easy to identify as microphonics and the second and third remove the

remaining events. The first cut eliminates microphonic waveforms based on the derivative
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amplitude to energy ratio (A/E). This cut is used by the GERDA collaboration [72] to

discriminate between single- and multi-site events. This metric can also be used to identify

non-physics signals. Figure 5.25a shows the A/E value versus energy with only the timing

cuts applied. An example of a waveform removed by this cut is also shown in Figure 5.25b.

To avoid confusion with a multi-site event cut, this cut will be referred to as the max-min

cut hereafter. The second cut implemented is based on the technique developed in Ref. [159],

which analyzes the energy calculated with two separate shaping times. This is done off-line

by performing two separate trapezoidal filters with differing peaking times (11 µs and 5 µs).

This cut will be referred to as the microphonics cut hereafter3. Figure 5.26a shows the

microphonics cut, where the max-min cut has already been applied illustrating that non-

physics related backgrounds remain following the max-min cut. The curves shown have been

calculated in the same manner as the wpar and t10−90 acceptance curves, injecting known

waveforms into the test input of the preamplifier and calculating acceptance curves such that

99% of pulser signals fall between them. The third cut applied to remove microphonics/noise

is based upon the integral, or sum of the ADC values, of the waveform and will be referred to

as the integral cut hereafter. Figure 5.27a shows the integral cut, where again the max-min

cut as already been applied to the data in Figure 5.27a. The curves have been generated in the

same manner as the microphonics cut. It should be noted that the integral and microphonics

cuts both remove a small fraction of slow-signals (<3% of the total slow-signal population)

from the energy spectrum.

In addition to the max-min, integral and microphonics cuts, a cut based on waveform

health has been implemented. The slope of each waveform baseline is calculated and the

resulting distribution is fit with a Gaussian function of width σ for both DS3a and DS3b.

Events with a baseline slope outside a ±3σ window are removed. This will be referred to as

the baseline slope cut hereafter. This cut removes pile-up events, or events which occur

close in time to a previous trigger. The baseline slope distributions for DS3a and DS3b are

shown in Figure 5.28 – both fits have P-values of 0.998. Additionally, an example of a pile-up

waveform is shown in Figure 5.29. This cut removes < 0.05% of all events.

3For historical reasons only - Ref. [76] used the same cut and referred to it as his Microphonics Cut.
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(a)

(b)

Figure 5.25: (a) The derivative maximum divided by the energy of the waveform versus energy
for DS3a is shown here. All events which fall above the blue line are microphonics. The
location of the blue line was chosen such that the two classes of events here are completely
separated for energies greater than 600 eV. (b) An example of a ringing waveform that is
removed with this cut.
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(a)

(b)

Figure 5.26: (a) The microphonics cut for DS3a is shown here. 99% of events fall between the
curves as trained with a pulser. The max-min cut has already been applied to these data in
advance. (b) An example of a HV micro-discharge waveform that is removed with this cut.
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(a)

(b)

Figure 5.27: (a) The integral cut for DS3a is shown here. 99% of events fall between the
curves as trained with a pulser. The max-min cut has already been applied to these data in
advance. (b) An example HV micro-discharge waveform that is removed with this cut.
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Figure 5.28: The baseline slope distributions are shown here for DS3a and DS3b. For both
data sets, a Gaussian function (red) was used to fit the distribution. The vertical red dashed
lines indicate the ±3σ boundaries.
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Figure 5.29: A typical pile-up event removed with the baseline slope cut.
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5.3.3 Slow Signal Cuts

The SSC presented in Section 5.2.3 is used to discriminate between slow- and fast-signals.

Figure 5.30 shows the SSC cuts for both DS3a and DS3b, the blue hatched region is the region

of slow-signals. Any events falling in the blue hatched region are removed. The next section

will summarize the cuts developed and the order in which they are applied to the data.

5.3.4 Order of Cuts Applied

The cuts presented in the previous sections have been applied to the data in the following

order:

1. Apply pulser and inhibit cuts,

2. Apply LN2 cut,

3. Apply max-min cut and baseline slope cuts (preliminary cut),

4. Apply integral and microphonics cut,

5. Apply SSC.

Item (3) will be referred to as the preliminary cut hereafter since these are done before

applying the more sophisticated integral, microphonics and SSC cuts. The integral and

microphonics cuts have been grouped together below since they are semi-degenerate, in that

they both remove microphonic events, primarily those related to HV micro-discharge.

Cuts Applied to Data Set 3a

The effect of the cuts in the previous section on the DS3a energy spectrum is shown in

Figure 5.31. Table 5.7 also shows the number of events that pass each cut and Figure 5.32

contains the energy spectra of cut events for each cut applied to the data.

Cuts Applied to Data Set 3b

The effect of the cuts in the previous section on the DS3b energy spectrum is shown in

Figure 5.33. Table 5.8 also shows the number of events that pass each cut and Figure 5.34

128



Energy (keV)
2 4 6 8 10 12

 (
ar

b
.)

p
ar

w

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(a) DS3a SSC Cut

Energy (keV)
2 4 6 8 10 12

 (
ar

b
.)

p
ar

w

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

(b) DS3b SSC Cut

Figure 5.30: The SSC cuts for DS3a and DS3b from 0.6→12 keV are illustrated here. Slow
signals are located in the blue hatched region.
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Table 5.7: Cut Percentages in DS3a.

0.6 - 2.0 keV

Cut N Processed N Passed N Rejected % Passed

LN2 71386 23255 48131 32.58
Preliminary 23255 644 22611 2.77
Integral 644 628 16 97.52
Microphonics 644 608 36 94.41
SSC 644 394 250 61.18

0.6 - 12.0 keV

Cut N Processed N Passed N Rejected % Passed

LN2 76513 28352 48161 37.06
Preliminary 28352 3072 25280 10.84
Integral 3072 3044 28 99.09
Microphonics 3072 2903 169 94.50
SSC 3072 2302 770 74.93

0.6 - 150.0 keV

Cut N Processed N Passed N Rejected % Passed

LN2 81684 28454 53230 34.83
Preliminary 28454 7638 20816 26.84
Integral 7638 7579 59 99.23
Microphonics 7638 7341 297 96.11
SSC 7638 6246 1392 81.78
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Figure 5.31: The DS3a energy spectrum is shown here after various cuts.

contains the energy spectra of cut events for each cut applied to the data.

Stability of the L- and K- Capture Lines in Data Set 3

The ratios of the Ge and Zn L-to-K capture line amplitudes have been well understood since

the early 1960s [160, 161] and provide a useful systematic check of the stability of an energy-

dependent cut applied near these lines. The amplitudes of the Ge and Zn K and L lines

were measured using an unbinned fit to the DS3 (DS3a + DS3b) energy spectrum with the

following cuts applied:

• Preliminary,

• Preliminary + Integral + Microphonics,

• Preliminary + Integral + Microphonics + SSC.

Table 5.9 lists the ratios that one would expect if each cut retained all physics-related events.

Low statistics in DS3 for the 65Zn L-capture line (< 60 counts over 221.49 days) led to little
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Figure 5.32: Various energy spectra from cut events in DS3a. (a) shows the energy spectrum
from cut events with the LN2 cut; (b) shows the same for the preliminary cut; the feature
shown at ∼5 keV is due to HV micro-discharges whose minimum ADC values exceed that
available on the SIS3302 (see Figure 5.35), (c) shows the integral cut, (d) microphonics cut,
(e) SSC cut.
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Table 5.8: Cut percentages in DS3b.

0.6 - 2.0 keV

Cut N Processed N Passed N Rejected % Passed

LN2 119688 32445 87243 27.11
Preliminary 32445 829 31616 2.56
Integral 829 710 119 85.65
Microphonics 829 714 115 86.13
SSC 829 397 432 47.89

0.6 - 12.0 keV

Cut N Processed N Passed N Rejected % Passed

LN2 125785 38515 87270 30.62
Preliminary 38515 2799 35716 7.27
Integral 2799 2673 126 95.50
Microphonics 2799 2539 260 90.71
SSC 2799 1762 1037 62.95

0.6 - 150.0 keV

Cut N Processed N Passed N Rejected % Passed

LN2 133024 41104 91920 30.90
Preliminary 41104 8852 32252 21.54
Integral 8852 8712 140 98.42
Microphonics 8852 8437 415 95.31
SSC 8852 6938 1914 78.38
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Figure 5.33: The DS3b energy spectrum is shown here after various cuts.

information gained from this analysis. However, the 68Ge K- and L-capture lines provided

enough counts to perform this systematic check. Since the 68Ge L-line and 65Zn L-line are

very close in energy (1.299 keV, 1.096 keV respectively), a cross-check with the expected

68Ge L/K capture ratio was assumed to be sufficient. The measured Ge L/K capture ratio

was found to be consistent with published values after each cut and the results are listed

in Table 5.10. The fact that the measured 68Ge L/K capture ratio was consistent with the

expected value provides additional confidence that the SSC does not remove fast-signals (at

least down to 1.29 keV).

Table 5.9: Expected L/K capture ratios for 68Ge and 65Zn.

Atom Value Ref.
68Ge 0.126 [160, 162, 163]
65Zn 0.108 [161–163]
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Figure 5.34: Various energy spectra from cut events in DS3b. (a) shows the energy spectrum
from cut events with the LN2 cut; (b) shows the same for the preliminary cut; the feature
shown at ∼5 keV is due to HV micro-discharges whose ADC values exceed that available on
the SIS3302 (see Figure 5.35), (c) shows the integral cut, (d) microphonics cut, (e) SSC cut.
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Figure 5.35: A typical ∼5 keV HV micro-discharge waveform is shown here.

Table 5.10: Measured L/K capture ratios for 68Ge. This is not an error, all of the measured
ratios were found to be equal to their most significant digit. The theoretical value was taken
to be 0.126, see Table 5.9.

Cut Value Theory/Experiment

Preliminary 0.14± 0.02 0.9± 0.1
Preliminary + Integral + Microphonics 0.14± 0.02 0.9± 0.1
Preliminary + Integral + Microphonics + SSC 0.14± 0.02 0.9± 0.1
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5.3.5 Cut Efficiencies

The pulser/attenuator data discussed in Section 5.2.3 has also been used to calculate cut

acceptance efficiencies for physics events as a function of energy. The true number of pulser

events has been tracked by digitizing the sync output of the pulser while sending the other

output through attenuators and eventually into the test input of the MALBEK preamplifier.

Each cut outlined above has been applied to the pulser data. The efficiency is the ratio of

the number of observed events after cuts to the true (expected) number of pulser events. The

results from these calculations are shown in Figure 5.36. The conservative 600 eV threshold

implemented for the light WIMP search in Chapter 7 is well above where the efficiencies begin

to fall to zero near 550 eV. Additionally, setting the threshold to 600 eV allows us to completely

ignore threshold drift effects, which were estimated to be ∼6.8 eV (see Section 5.4.1).
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Figure 5.36: The cut efficiencies versus energy is shown here (results from a fit to data with
an error function). Inhibits have been removed from the pulser efficiency runs. Also, the
integral and microphonics cuts have been grouped together since they are semi-degenerate.
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5.4 Stability

The ability to operate in steady-state for an extended period of time is crucial for low-

mass WIMP searches, the primary reason being that the region of interest (near threshold)

is also the most susceptible to environmental and noise fluctuations. As alluded to in the

previous chapter, operating the SIS3302 in special read-out mode caused disruptions in data

acquisition. The following sections outline the detector health versus time, SIS3302 special

read-out mode and the Poisson nature of both data sets.

5.4.1 Detector Health Versus Time

Various parameter values have been monitored as a function of time throughout DS3a and

DS3b in an attempt to quantify the stability of the MALBEK detector. Figures 5.37 and 5.38

show the pulser mean, pulser width, baseline RMS, baseline value, preamplifier reset rate,

and LN2 dewar levels for every one hour long run for DS3a and DS3b, respectively. It is clear

that the pulser mean fluctuates, with maximal displacement of ∼400 eV. It is impossible to

determine whether the shift in pulser location is due to changes in the gain of the MALBEK

signal chain, or changes in the gain of the pulser itself. Assuming that the shifts in pulser

mean are entirely due to gain shifts of the signal chain results in a shift of ∼6.8 eV at the

600 eV energy threshold of the detector. Therefore, it is safe to conclude that threshold drift

is negligible. The pulser width remained very stable throughout operation, which indicates

that the electronic noise in the system was constant. The preamplifier reset rate shows spikes

as well as high-reset rate runs that appear to be outliers. The spikes are due to the detector

being un-biased and re-biased (indicated by blue vertical lines in Figures 5.37 and 5.38). The

reason for re-biasing will be discussed in Section 5.4.2. Since the electronic noise is stable

(pulser width vs. time), the increase in preamplifier reset rate (leakage current) doesn’t affect

the quality of the data. If the increased leakage current had been a problem, we would have

seen a noticeable change in the pulser width as a function of time. The high-reset rate runs,

which appear to be outliers, correspond to LN2 fills. The LN2 levels were kept as constant as

possible in an effort to minimize temperature of the FET, and therefore the leakage current,

138



however due to unforeseen circumstances with LN2 availability underground, a longer time

period between fills was required on more than one occasion. The baseline value was also

monitored even though the value is subtracted on an event-by-event basis. The baseline value

remained stable throughout operation in DS3a and DS3b.

Figure 5.37: Various parameters as a function of run number for DS3a. Blue vertical lines
indicate that the SIS3302 card needed to be reset at the beginning of that run. For reference,
each run is one hour long. From the top down: (1) pulser mean, (2) pulser width, (3) baseline
RMS, (4) baseline value, (5) preamplifier reset rate, (6) detector [black] and purge [red] dewar
levels.
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Figure 5.38: Various parameters as a function of run number for DS3b. Blue vertical lines
indicate that the SIS3302 card needed to be reset at the beginning of that run. For reference,
each run is one hour long. From the top down: (1) pulser mean, (2) pulser width, (3) baseline
RMS, (4) baseline value, (5) preamplifier reset rate, (6) detector [black] and purge [red] dewar
levels.
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5.4.2 SIS3302 Special Mode Stability

The disadvantage to using special mode (see Section 4.5) is that occasionally the SIS3302

memory buffers need to be cleared. At the time of writing, the cause of this is unknown.

Currently, the only way to clear the buffers is to perform a SYSRESET of the VME64x crate

which resets all cards within the crate. Unfortunately, the MALBEK high voltage supply is

also housed in the VME64x crate and is reset whenever the buffers are cleared. The MALBEK

DAQ has been configured to send an email notification whenever the SIS3302 needs to be reset,

allowing for the controlled ramp-down of the high voltage on MALBEK before performing a

SYSRESET. It is thought that the MALBEK leakage current, which is directly proportional

to the preamplifier reset rate, increases following a re-bias of the detector due to electrons

being trapped within the crystal. It takes several hours before these electrons are swept out

of the bulk allowing for the reset rate to return to its nominal level. The electronic noise, and

hence the leakage current, has been monitored with a pulser during every run. The width

of the pulser peak has been observed to be very stable during both DS3a and DS3b despite

the frequent need to re-bias the detector, see the blue vertical lines in Figures 5.37 and 5.38.

Therefore, it has been concluded that the effect of increased leakage current after a re-bias

has little or no effect. In the future, in order to investigate the effect of leakage current on

resolution, one could make noise measurements as a function of temperature.

5.4.3 Poisson Distribution of Event Timing in Data Sets 3a and 3b

The detector performance, specifically the electronic noise, has been shown to be stable

throughout DS3a and DS3b. It is also important to study the event rates and time differences

between events in various energy regions. The energy regions below were used to perform a

comprehensive timing analysis:

Energy Regions =


0.6→ 1.0 keV (covers the threshold region),

2.0→ 8.0 keV (covers the ∼flat region),

141



The time since last event (backwards timing), time until next event (forward timing), nearest

time difference between events (lesser of the previous two) and the number of counts in an

8 hour time window (count rates) have been calculated in each of the energy regions listed

above. Furthermore, each calculation was performed after each cut was applied. These

analyses provide a way to search time correlated backgrounds. Provided that the cosmogenic

backgrounds within the data have halflives much longer than the live time of the data set

(which is not always the case), the backwards timing, forward timing and lesser of the two

are all expected to exhibit an exponential distribution,

f(t) = Ceλt, (5.7)

where C and λ are floating parameters. Additionally, the last test (count rates) is expected

to resemble a Poisson distribution whose mean is the only floating parameter. The full results

from fitting the backwards timing, forward timing and lesser of the two with Equation 5.7

are listed in Tables 5.12 (DS3a) and 5.13 (DS3b). It is clear that due to the presence of

71Ge (T1/2 = 11.43 days) in DS3a during the first ∼40 days of data taking, the fits were

poor. However, satisfactory agreement was found in DS3b. The results from the count rate

study are shown in Table 5.11. For illustration purposes, the results from the time since

last event study for DS3a in the 2.0 → 8.0 keV energy region, which are representative of

all energy regions studied in both DS3a and DS3b, are shown in Figure 5.39. Similarly,

representative results from the count rate study for DS3b in both energy regions are shown

in Figures 5.40 and 5.41. These results indicate that both data sets do not contain bursts of

events arriving in a non-Poisson fashion.

142



Time Since Last Event (hrs)
0 2 4 6 8 10 12 14

C
o

u
n

ts

1

10

210

(a)

Time Since Last Event (hrs)
0 2 4 6 8 10 12 14

R
es

id
u

al

-15

-10

-5

0

5

10

15

(b)

Figure 5.39: Time since last event in the 2.0→ 8.0 keV energy region for DS3b after all cuts.
The data were fit to Equation 5.7 and are plotted in (a) and the residuals are shown in (b).
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Figure 5.40: The number of counts in a predefined time window in the 0.6→ 1.0 keV energy
region for DS3b after various cuts are shown here. The data were fit to a Poisson distribution.
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Figure 5.41: The number of counts in a predefined time window in the 2.0→ 8.0 keV energy
region for DS3b after various cuts are shown here. The data were fit to a Poisson distribution.
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Table 5.11: Results from the count rate study of DS3. The data were fit with a Poisson
distribution. The Cuts column has been abbreviated as follows: SSC = Slow Signal Cut,
Pre = Preliminary Cuts, LN2 = LN2 Cut, I&M = Integral and Microphonics. The cuts have
been applied in the order outlined in Section 5.3.4, e.g. if only Preliminary is listed below, the
LN2 cut has also been applied. Also, the integral and microphonics cuts have been grouped
together.

Data Set 3a

Energy (keV) Cuts Mean (Counts / 12 Hours) χ2 DOF P-Value

0.6 → 1.0 SSC 5.47e-01 ± 5.29e-02 6.18 5 2.89e-01
2.0 → 8.0 SSC 3.16e+00 ± 1.28e-01 4.09 10 9.43e-01
0.6 → 1.0 I&M 9.20e-01 ± 6.77e-02 1.98 7 9.61e-01
2.0 → 8.0 I&M 4.61e+00 ± 1.53e-01 4.72 12 9.67e-01
0.6 → 1.0 Pre 1.01e+00 ± 7.04e-02 1.60 7 9.79e-01
2.0 → 8.0 Pre 5.12e+00 ± 1.63e-01 5.42 12 9.43e-01
0.6 → 1.0 LN2 5.65e+01 ± 5.19e-01 35.13 100 1.00e+00
2.0 → 8.0 LN2 1.56e+01 ± 2.73e-01 6.97 40 1.00e+00

Data Set 3b

Energy (keV) Cuts Mean (Counts / 12 Hours) χ2 DOF P-Value

0.6 → 1.0 SSC 5.20e-01 ± 5.02e-02 7.64 5 1.77e-01
2.0 → 8.0 SSC 2.74e+00 ± 1.08e-01 3.28 10 9.74e-01
0.6 → 1.0 I&M 1.12e+00 ± 6.89e-02 0.95 7 9.96e-01
2.0 → 8.0 I&M 4.25e+00 ± 1.35e-01 2.68 12 9.97e-01
0.6 → 1.0 Pre 1.59e+00 ± 8.28e-02 0.85 7 9.97e-01
2.0 → 8.0 Pre 4.76e+00 ± 1.44e-01 7.42 12 8.29e-01
0.6 → 1.0 LN2 6.91e+01 ± 5.42e-01 42.43 100 1.00e+00
2.0 → 8.0 LN2 1.87e+01 ± 2.82e-01 18.88 40 9.98e-01
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Table 5.12: Results from the exponential fitting to the time since last, time to next and
nearest event time distributions for DS3a over various energy ranges. The Cuts column has
been abbreviated as follows: SSC = Slow Signal Cut, Pre = Preliminary Cuts, LN2 = LN2

Cut, I&M = Integral and Microphonics. The cuts have been applied in the order outlined in
Section 5.3.4, e.g. if only Pre is listed below, the LN2 cut has also been applied. Also, the
integral and microphonics cuts have been grouped together.

Energy

(keV)
Test Cuts C (counts) λ (hr−1) χ2 DOF P-Value

0.6 → 1.0 TTN SSC 1.43e+00 ± 3.54e-01 -1.27e-02 ± 2.03e-02 9.67 44 1.00e+00

0.6 → 1.0 TSL SSC 2.39e+00 ± 4.76e-01 -6.99e-02 ± 3.79e-02 28.23 38 8.76e-01

0.6 → 1.0 NT SSC 2.42e+00 ± 4.91e-01 -6.92e-02 ± 4.07e-02 30.16 36 7.42e-01

0.6 → 1.0 TTN I&M 2.34e+00 ± 3.84e-01 -3.68e-02 ± 1.53e-02 39.51 69 9.98e-01

0.6 → 1.0 TSL I&M 6.51e+00 ± 9.14e-01 -1.65e-01 ± 2.98e-02 31.87 52 9.87e-01

0.6 → 1.0 NT I&M 6.74e+00 ± 9.55e-01 -1.79e-01 ± 3.27e-02 39.73 47 7.65e-01

0.6 → 1.0 TTN Pre 2.64e+00 ± 3.83e-01 -4.00e-02 ± 1.34e-02 48.41 73 9.88e-01

0.6 → 1.0 TSL Pre 7.56e+00 ± 1.05e+00 -1.62e-01 ± 2.71e-02 46.71 52 6.81e-01

0.6 → 1.0 NT Pre 5.26e+00 ± 7.56e-01 -1.26e-01 ± 2.76e-02 74.61 47 6.33e-03

0.6 → 1.0 TTN LN2 1.39e+04 ± 1.98e+02 -4.79e+00 ± 4.71e-02 54.10 33 1.17e-02

0.6 → 1.0 TSL LN2 1.30e+03 ± 1.65e+01 -4.57e+00 ± 3.88e-02 639.49 68 8.01e-94

0.6 → 1.0 NT LN2 1.22e+03 ± 1.68e+01 -9.81e+00 ± 9.01e-02 289.58 73 1.43e-27

2.0 → 8.0 TTN SSC 3.34e+01 ± 2.28e+00 -2.52e-01 ± 1.45e-02 56.59 75 9.44e-01

2.0 → 8.0 TSL SSC 4.43e+01 ± 2.95e+00 -5.05e-01 ± 2.84e-02 39.47 49 8.33e-01

2.0 → 8.0 NT SSC 3.34e+01 ± 2.24e+00 -7.07e-01 ± 4.15e-02 47.47 57 8.12e-01

2.0 → 8.0 TTN I&M 8.08e+01 ± 4.15e+00 -3.75e-01 ± 1.53e-02 50.04 59 7.91e-01

2.0 → 8.0 TSL I&M 5.08e+01 ± 2.67e+00 -5.67e-01 ± 2.41e-02 78.02 71 2.66e-01

2.0 → 8.0 NT I&M 6.62e+01 ± 3.41e+00 -9.27e-01 ± 3.73e-02 75.14 58 6.45e-02

2.0 → 8.0 TTN Pre 1.00e+02 ± 4.69e+00 -4.33e-01 ± 1.52e-02 70.42 58 1.27e-01

2.0 → 8.0 TSL Pre 6.45e+01 ± 3.09e+00 -5.62e-01 ± 2.11e-02 71.57 69 3.93e-01

2.0 → 8.0 NT Pre 8.22e+01 ± 3.85e+00 -9.68e-01 ± 3.41e-02 67.02 60 2.49e-01

2.0 → 8.0 TTN LN2 1.08e+03 ± 2.65e+01 -1.31e+00 ± 2.25e-02 38.41 39 4.96e-01

2.0 → 8.0 TSL LN2 2.72e+02 ± 6.74e+00 -1.34e+00 ± 2.40e-02 71.96 70 4.13e-01

2.0 → 8.0 NT LN2 2.92e+02 ± 7.25e+00 -2.55e+00 ± 4.44e-02 169.95 69 1.73e-10
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Table 5.13: Results from the exponential fitting to the time since last (TSL), time to next
(TTN) and nearest event time (NT) distributions for DS3b over various energy ranges. The
Cuts column has been abbreviated as follows: SSC = Slow Signal Cut, Pre = Preliminary
Cuts, LN2 = LN2 Cut, I&M = Integral and Microphonics. The cuts have been applied in
the order outlined in Section 5.3.4, e.g. if only Pre is listed below, the LN2 cut has also been
applied. Also, the integral and microphonics cuts have been grouped together.

Energy

(keV)
Test Cuts C (counts) λ (hr−1) χ2 DOF P-Value

0.6 → 1.0 TTN SSC 1.96e+00 ± 3.70e-01 -3.16e-02 ± 1.80e-02 24.07 58 1.00e+00

0.6 → 1.0 TSL SSC 6.75e+00 ± 1.15e+00 -2.81e-01 ± 5.88e-02 34.24 43 8.27e-01

0.6 → 1.0 NT SSC 6.74e+00 ± 1.19e+00 -3.17e-01 ± 6.70e-02 45.64 39 2.15e-01

0.6 → 1.0 TTN I&M 3.59e+00 ± 5.69e-01 -6.80e-02 ± 1.72e-02 47.08 76 9.96e-01

0.6 → 1.0 TSL I&M 1.42e+01 ± 1.58e+00 -2.83e-01 ± 3.03e-02 29.46 44 9.55e-01

0.6 → 1.0 NT I&M 1.68e+01 ± 2.04e+00 -4.09e-01 ± 4.57e-02 40.10 39 4.21e-01

0.6 → 1.0 TTN Pre 4.88e+00 ± 6.28e-01 -7.84e-02 ± 1.41e-02 42.31 76 9.99e-01

0.6 → 1.0 TSL Pre 1.52e+01 ± 1.64e+00 -2.87e-01 ± 2.80e-02 40.86 51 8.44e-01

0.6 → 1.0 NT Pre 1.66e+01 ± 1.86e+00 -3.52e-01 ± 3.83e-02 36.37 43 7.52e-01

0.6 → 1.0 TTN LN2 1.67e+04 ± 1.69e+02 -4.78e+00 ± 1.92e-02 55.80 38 3.12e-02

0.6 → 1.0 TSL LN2 1.55e+03 ± 1.87e+01 -4.59e+00 ± 3.77e-02 525.68 67 2.34e-72

0.6 → 1.0 NT LN2 2.13e+03 ± 2.94e+01 -9.82e+00 ± 8.84e-02 105.94 53 2.16e-05

2.0 → 8.0 TTN SSC 3.59e+01 ± 2.27e+00 -2.30e-01 ± 1.23e-02 62.67 70 7.21e-01

2.0 → 8.0 TSL SSC 3.47e+01 ± 2.15e+00 -5.10e-01 ± 2.58e-02 49.38 60 8.34e-01

2.0 → 8.0 NT SSC 4.35e+01 ± 2.66e+00 -7.44e-01 ± 3.51e-02 49.79 55 6.73e-01

2.0 → 8.0 TTN I&M 8.67e+01 ± 4.27e+00 -3.43e-01 ± 1.34e-02 48.33 61 8.80e-01

2.0 → 8.0 TSL I&M 7.18e+01 ± 3.41e+00 -6.20e-01 ± 2.20e-02 77.57 56 2.98e-02

2.0 → 8.0 NT I&M 6.59e+01 ± 3.14e+00 -1.01e+00 ± 3.50e-02 87.51 69 6.56e-02

2.0 → 8.0 TTN Pre 1.07e+02 ± 5.02e+00 -3.83e-01 ± 1.40e-02 55.75 60 6.32e-01

2.0 → 8.0 TSL Pre 8.26e+01 ± 3.69e+00 -6.35e-01 ± 2.12e-02 81.96 55 1.07e-02

2.0 → 8.0 NT Pre 7.82e+01 ± 3.52e+00 -1.06e+00 ± 3.52e-02 88.66 64 2.24e-02

2.0 → 8.0 TTN LN2 1.31e+03 ± 2.92e+01 -1.47e+00 ± 2.34e-02 56.49 45 1.17e-01

2.0 → 8.0 TSL LN2 3.51e+02 ± 7.68e+00 -1.50e+00 ± 2.33e-02 84.76 74 1.84e-01

2.0 → 8.0 NT LN2 4.00e+02 ± 8.71e+00 -2.84e+00 ± 4.28e-02 175.60 63 1.45e-12

5.5 Summary of Possible Systematic Uncertainties

The possible sources of systematic uncertainty have been outlined above and are summarized

in Table 5.14 below. However, we have not discussed the uncertainty in the detector mass.

The removal of slow-signals effectively reduces the active mass of the detector. This fiducial

mass has an uncertainty associated with it that relates to one’s ability to determine the

thickness of the diffusion and recombination regions, see Section 5.1.3. This measurement

is discussed in detail in the following chapter, see Section 6.1.2 [122], however this error has
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Table 5.14: Systematic studies summary.

Source Estimate Comments

Fiducial mass error 3.83% See Section 6.1.2 [122], negligi-
ble/ignored.

Non-Poisson process contribution ≤ 0.57% of counts Less than or equal to the error in
the count rate in 0.6−1.0 keV af-
ter LN2 cut, negligible/ignored.

Threshold drift ∼6.8 eV Estimated from shifts in pulser
mean (Section 5.4.1), negligi-
ble/ignored.

SSC acceptance efficiency error . 0.3% Based on statistics from pulser
efficiency runs, negligible/ig-
nored.

SSC rejection efficiency error Unknown Attempts were made to quantify
this, see Section 6.5.

been ignored.

A conservative upper limit to a non-Poisson process contribution can be calculated as-

suming the error is less than or equal to the rate measured in the 0.6− 1.0 keV region after

the LN2 cut [76]. In DS3 this rate was measured to be 5.26 ± 0.03 hr−1, corresponding to

0.57% of the counts in the threshold region. This contribution was concluded to be negligible

and ignored.

The threshold drift estimate was conservatively calculated assuming the drifts in the pulser

mean are solely due to gain drifts in the detector. This uncertainty is negligible, however we

have set our threshold to 600 eV, rather than 550 eV, as one might assume after examining

Figure 5.36, in order to be able to completely ignore threshold drift effects.

The uncertainty associated with the SSC acceptance efficiency, as calculated by a pulser,

is dominated by statistics and can be ignored. However, the next chapter will highlight the

fact that slow-signals are known to leak after the SSC is applied. Several attempts were

made to quantify this leakage of slow-signals and develop a SSC rejection efficiency curve,

however these attempts were not successful. In an effort to account for this when calculating

WIMP limits (see Section 7.4.2), we have performed WIMP fits both with and without an

exponential PDF.
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5.6 Discussion

The various conditions in which MALBEK has been used to acquire data has been discussed.

Following the removal of the lead shims, the slow-signal backgrounds were reduced by more

than an order of magnitude, see e.g. Figures 5.7 and 5.6. Additionally, a new method to

discriminate slow- from fast-signals has been developed. In this method, the metric used to

discriminate remains stable down to threshold, unlike the standard t10−90 method. Section 5.4

has shown that MALBEK remained stable throughout DS3, agreeing with Poisson statistics.

Lastly, Section 5.5 has listed the various systematics that could affect the result outlined

in Chapter 7. All of these effects were found to be negligible, with the exception of slow-

signal leakage after the SSC and the fiducial mass calculation. Slow-signal contamination

after the SSC will be discussed in the next chapter, focusing on the various attempts made at

quantifying this contamination. Additionally, the next chapter will discuss the the underlying

physical mechanism responsible for slow-signals.
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Chapter 6

Slow Signals

This chapter will cover the experimental and modeling efforts made to fully understand the

nature of slow-signals. A complete discussion on the lithium diffused n+-bulk boundary and

its role in causing slow-signals will be presented. Additionally, efforts to quantify the slow-

signal leakage after the Slow-Signal Cut (SSC) has been applied will also be presented.

6.1 Introduction

The Particle Data Group (PDG) [7] suggests that for an experiment to set a reliable limit

for WIMP dark matter it should be sensitive to at least 1% of the total WIMP signal re-

coil spectrum. For this reason, low-energy thresholds are an experimental requirement for

direct dark matter searches which aim to probe the low-mass (< 10 GeV) WIMP parameter

space. A PPC detector with a 600 eV threshold would meet this requirement for WIMP

masses greater than 5.7 GeV. However, the previous chapter alluded to the fact that slow,

energy-degraded signals present a potential large source of background near threshold. In any

scientific experiment, one should strive to understand and quantify all possible backgrounds.

The focus of this chapter will be to fully understand what causes these signals and how to

quantify their contamination of the WIMP signal region.



6.1.1 The p-n Junction

In PPC detectors, the n+ contact is typically made by diffusing lithium onto the outer surface

of the germanium crystal with the exception of the base (where the point contact is located).

However, in some cases, diffusing lithium onto a small fraction of the base of the detector

(lithium wrap-around) is desirable. The MALBEK detector has this lithium wrap-around.

The diffusion of lithium ions into the germanium crystal is achieved by placing the crystal

in a carefully controlled high-temperature furnace and passing a gas mixture of lithium ions

through it for a specific time and temperature [164]. Manufacturers sometimes do this process

more than once1, which makes calculating the depth of the lithium ions more difficult. In the

case of a single diffusion process, the depth of the lithium ions in the germanium crystal can

be calculated by solving the diffusion equation:

∂C(x, t)

∂t
= D

∂2C(x, t)

∂x2
, (6.1)

where C(x, t) is the lithium concentration, t is time, x is depth within the crystal and D is

the diffusion coefficient or diffusivity. In general, the higher the diffusivity (of lithium with

respect to germanium), the faster the lithium ions will diffuse into the germanium. This of

course depends on the temperature of the furnace described above. The diffusion coefficient

can be expressed as,

D = D0 exp

(
−Eg
kT

)
, (6.2)

where Eg is the activation energy, or the energy required to move a dopant ion (lithium) from

one interstitial site to another, which typically varies between 0.5− 2 eV. D0 is the diffusion

coefficient extrapolated to infinite temperature, therefore the use of this equation is limited

since such an extrapolation is not viable [82]. Equation 6.1 can be solved easily given a set

of initial conditions. If the surface concentration is held constant, the initial conditions for

diffusing lithium into a germanium crystal can be assumed to be:

• C(x, 0) = 0

1And sometimes under the influence of an electric field.
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• C(0, t) = Cs (constant surface concentration)

• C(∞, 0) = 0.

The solution to Equation 6.1 is then given by,

C(x, t) = Cs erfc

(
x

2
√
Dt

)
, (6.3)

with
√
Dt being the diffusion length. The diffusion length is the average length a lithium ion

moves before it reaches its final location within the germanium crystal. This shows that the

lithium concentration drops off gradually, and does not abruptly drop to zero after a certain

depth [78–82].

The depth of the p-n junction can be calculated by finding the location at which the lithium

concentration equals the impurity concentration (NA) within the germanium crystal. The

impurity concentration in MALBEK was measured by Canberra and reported in Table 4.1,

showing that NA ' 1010 cm−3. In order to calculate the depth of the p-n junction, both D

and Cs are required. A good first order estimate of the surface concentration is given by the

solid solubility of lithium in germanium at 300 ◦C, Cs ' 4 × 1016 cm−3 [165]. The diffusion

coefficient depends on temperature, Eg and D0. Ref. [164] measured the diffusion coefficient

in both silicon and germanium at various temperatures and developed empirical functions for

D that only depend on temperature,

D ' 9.10× 10−3 exp

(
−13100

RT

) [
cm2

sec

]
, (6.4)

for germanium, where T is in Kelvin and R = 1.98 cal/K. Assuming a 5 minute (300 s) diffu-

sion at 300 ◦C (573 K), the lithium concentration as a function of depth has been calculated

and is shown in Figure 6.1. The depth at which the two curves meet is known as the p-n

junction depth [78–82].
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Figure 6.1: The (+) lithium ion concentration (red) and (-) impurity concentration (blue)
curves are shown. The point at which the two curves meet is the p-n junction (black).

6.1.2 Charge Collection Near the p-n Junction

There are several processes that dominate charge collection near the p-n junction. This section

will provide a brief introduction to these processes and their hypothesized ranges.

The Depleted Region

The sensitive volume of a germanium detector is the region that has been depleted of charge,

or the depletion region (see Section 2.1.3). The width of this depletion region, d, is given by,

d '

√
2ε(Vbi − V )

qNB
, (6.5)

where V and Vbi are the contact and bias voltages, respectively, ε is the dielectric constant

(for Ge ε = 16ε0), q is the electronic charge (1.60218 × 10−19 C), and NB is the impurity

concentration within the crystal. Germanium is four valent – therefore, at impurity lattice

sites in p-type germanium, a germanium atom is replaced by an impurity atom that is three

valent (e.g. boron or gallium) resulting in a missing electron (or hole). This is referred to
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as an acceptor impurity and the concentration of acceptor impurities throughout the bulk of

the crystal is denoted by NA. Similarly, for n-type germanium, lattice sites will be replaced

with five valent donor impurities, e.g. arsenic or phosphorus. The concentration of donor

impurities in n-type germanium throughout the bulk is denoted by ND. In Equation 6.5,

NB = NA for a p-type germanium detector and NB = ND for an n-type germanium detector

[78–82].

As a detector is biased, depletion starts at the p-n junction and proceeds such that equal

and opposite amounts of charge are left on either side of the p-n junction – this was illustrated

in Figure 2.2. The depth at which depletion starts will be referred to as the Full Charge

Collection Depth (FCCD) since any energy deposition beyond this point will result in full

charge collection at the p+ contact [146], see Figure 6.2. The slow, energy-degraded signals

referred to in the previous chapters result from interactions that take place at depths < FCCD

(will be discussed in next Section).

The FCCD depth of the MALBEK detector has been measured and reported in Refs. [122,

146]. The measurement of the MALBEK FCCD was performed by measuring the detector

response to 133Ba gammas, specifically by measuring the ratio of peak areas of the 356 keV

and 81 keV gammas. The MALBEK Geant4-based Monte Carlo model developed by Alexis

Schubert was used by her to calculate the simulated peak area ratio as a function of FCCD

[122, 166, 167]. The depth at which the simulation agreed with experiment was taken as the

FCCD of MALBEK, see Figure 6.3. The FCCD of MALBEK was found to be 933±18 stat
92 sys µm.

The application of the SSC essentially removes events that occur at depths <FCCD. Therefore

the fiducial mass, or mass of the active region, of the detector will become smaller once the

SSC is applied. In the MALBEK detector, this amounts to a reduction in active volume

(mass) from 85.6± 3.0 cm3 (455.5± 15.8 g) to 75.9± 2.9 cm3 (404.2± 15.5 g) [122].

Recall that the depth of the p-n junction depends upon the conditions under which the n+

contact was made, i.e. temperature and time of diffusion. The depth of the p-n junction has

been shown to change following temperature cycles of germanium detectors [168], therefore,

ideally the FCCD should be measured following every temperature cycle of the detector.

The MALBEK FCCD was measured after the trip to Canberra to remove the lead foils (see
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Figure 6.2: The (+) lithium ion concentration (red) and (-) impurity concentration (blue)
curves are shown. The point at which the two curves meet is the p-n junction (black). The
depletion zone (FCCD) starts just before the p-n junction and extends to the p+ contact.
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Figure 6.3: The data points in the figure are simulated results of the peak area ratio as a
function of FCCD. The horizontal band represents the ratio as measured in the data. The
vertical band indicates where simulation agrees with experiment, FCCD = 933 ±18 stat

92 sys µm.
Figure from Ref. [146], based on work done by Alexis Schubert.
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Section 5.1), and the detector has been kept cold since. Therefore, it is safe to conclude that

the FCCD reported above can be used in the analysis of DS2 and DS3 (see Table 5.1).

The Diffusion and Recombination Dominated Regions

At depths < FCCD, full charge collection will not occur. This has been reported in the

literature extensively [67, 73–75, 121, 136–146], however a complete understanding of the

physics taking place in this region is lacking. The hypothesis presented here, which was

initially developed by David Radford at Oak Ridge National Laboratory, is that at depths

< FCCD, the germanium is undepleted (no electric field) and a charge cloud created in this

region will have to diffuse out of this region and into the bulk (depths ≥ FCCD) in order to be

collected. A combination of two processes dominate the charge transport in this region: (1)

recombination and (2) diffusion. Charge clouds created in this region are hypothesized to be

more susceptible to recombination (mainly due to the fact that it takes longer for the charge

cloud to diffuse out of this region), which removes holes from the signal and results in a lower

apparent energy (energy-degraded). The time a charge cloud takes to diffuse out of the lithium

layer and into the depleted bulk is much longer than the charge collection time in the bulk.

This results in signals with longer drift-times. Additionally, the diffusion process also spreads

out the charge distribution, resulting in events with longer rise times. The combination of

these processes is believed to lead to the slow, energy-degraded signals referred to in the

previous chapter. The waveforms shown in Figure 6.4 illustrate the difference in rise time

between interactions occurring in these two regions. It is also hypothesized that a dead region

of the detector may be present, i.e. a region in which any charge cloud created will completely

recombine with electrons. This region will be referred to as the Recombination Dominated

Region (RDR), whereas the region between the RDR and FCCD will be referred to as the

Diffusion Dominated Region (DDR). Figure 6.5 illustrates the difference between RDR, DDR

and FCCD. Equation 6.3 was used to generate this figure for the MALBEK detector, however

the diffusion length has been adjusted such that the depth of the p-n junction is greater than

the measured MALBEK FCCD (see Figure 6.2). This is justifiable due to the fact that the

exact temperature and time of lithium diffusion in the MALBEK detector are unknown. The
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widths of the DDR and RDR shown in Figure 6.5 are unknown, and are only labeled for

illustrative purposes. The next two sections will highlight experimental results that support

and led to the hypothesis outlined above.
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Figure 6.4: The red signal is hypothesized to result from an interaction at a depth < FCCD
(it failed the slow-signal cut (SSC) described in the previous chapter), while the black signal
results from an interaction in the depleted bulk (it passed the SSC). Both events have an
energy of ∼20 keV.

6.2 Slow Signal Dependence on n+ Contact Material

Lithium diffused n+ hole-barrier contacts are used on the majority of p-type germanium de-

tectors, e.g. MALBEK and all of the Majorana PPC detectors. These contacts are typically

on the order of 1 mm thick (0.993 mm for MALBEK) and represent a barrier to incoming

low-energy radiation and alphas. This is desirable in some circumstances, specifically in the

search for 0νββ, however in terms of the slow-signals discussed so far this greatly complicates

matters at low-energy.

In 2011, PHDs Co. [169] demonstrated the use of thin (0.1µm) yttrium hole-barrier con-

tacts for use in low-energy spectroscopy with germanium detectors [170]. Similarly, they have
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Figure 6.5: The RDR, DDR, and depleted regions are shown here. The border between the
depleted region and the DDR is the FCCD (933 ±18 stat

92 sys µm). The widths of the DDR and
RDR are unknown, and are only labeled here for illustrative purposes. It is very likely that the
width of the DDR is significantly less than the width of the RDR. The lithium concentration
(red) and impurity concentration (blue) curves are shown as well.
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also fabricated detectors with thin n+ contacts created with silver and nickel. Ethan Hull

of PHDs Co. graciously allowed members of the Majorana collaboration to analyze data

acquired with these types of detectors to investigate the effect of n+ contact material on signal

rise times. These detectors were roughly 15 mm in diameter and 10 mm thick. The contact

was segmented into a center- and guard-ring segment with photolithography [170]. The width

of the gap between these segments for these detectors is ∼100µm. A picture of one of these

types of detectors (not one used in analysis) is shown in Figure 6.6. The geometry of the

contacts are not believed to affect the measurements outlined below [170].

Figure 6.6: A PHDs Co. detector with thin a n+ contact. The contact was segmented into a
center and guard-ring segment with photolithography. The width of the gap in this detector
is >100µm. Figure adapted from Ref. [170].

6.2.1 Data and Analysis of the PHDs Co. Detectors

241Am data from two detectors with differing n+ contact material, both lithium and silver, has

been analyzed. The data were acquired by personnel at PHDs Co. with their own customized

digitizer. Events were not timestamped and live time was not reported (aside from the
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fact that the two data sets had equivalent live times), therefore no timing analysis could be

performed. The signals were digitized at 50 MHz for 1024 samples, corresponding to a 20.48µs

trace length, see Figure 6.7 for an example waveform. For each signal, all parameters listed

in Table B.1 were calculated. Due to the coarse sampling period (20 ns) the locations of the

10% and 90% of each waveform were calculated by linear interpolation between neighboring

samples. The energy of each event was calculated with a trapezoidal filter (see Section 5.2.2)

whose parameters are listed in Table 6.1.
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Figure 6.7: An example of a ∼40 keV PHDs Co. detector waveform

Table 6.1: Parameters used for the trapezoidal filter of PHDs Co. Detectors

Parameter Value

Baseline Averaging Time 0.0− 3.0 µs
Waveform Decay Constant 150.0 µs
Trapezoidal Filter Gap Time 0.5 µs
Trapezoidal Filter Peaking Time 2.5 µs
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6.2.2 Results

After analysis of both data sets, it was clear that the lithium layer plays a very important role

in slow-signal generation. This is illustrated in Figure 6.8. The red box in both figures contains

known slow events. At lower energies the rise time calculation performed poorly, mainly due

to poor signal-to-noise (see Section 5.2.3) and coarse sampling. These figures show that the

silver contact reduced the number of slow-signals observed by a factor of ∼600. The results

reported here support the hypothesis that slow-signals arise from interactions near the lithium

diffused n+ contact. Furthermore, the thinner silver contact also allows for very low-energy

X-rays to penetrate the crystal. This is clearly illustrated in Figures 6.8b and 6.9 which show

X-rays between 10 - 30 keV whose origin is believed to be neptunium. In summary, these

results show that the material and thickness used to create the n+ contact is directly related

to the amount of slow-signals. Therefore, these results locate the source of the slow-signal

contamination. The next section will discuss how signals originating from this region are also

delayed (long drift times).

6.3 Correlation Between Rise Time and Drift Time

The hypothesis outlined in Section 6.1.2 states that if a charge cloud is created in the DDR, a

fraction of the cloud will diffuse into the active region of the detector since there is no electric

field in the undepleted region. This would result in longer drift times, or simply put, it will

take longer for the cloud to be collected at the p+ electrode than a charge cloud created in

the depleted region of the detector. In order to investigate this, a measurement of the charge

carrier drift time has been performed with the MALBEK detector.

6.3.1 Experimental Technique

The drift time was measured by determining the time difference between two coincident

gamma-rays, one incident upon MALBEK, and the other incident upon a 3M3/3-X Saint-

Gobain Crystals NaI[Tl] detector. NaI[Tl] was chosen as the second detector due to its

intrinsic fast response time. A 1 µCi 133Ba source was used for the coincident gammas. 133Ba
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(a) Li n+ contact.

(b) Ag n+ contact.

Figure 6.8: 241Am rise time distribution comparison between silver and lithium n+ contacts.
The red box in both figures contains known slow events, i.e. where the rise time calculation
can be trusted. The silver contact reduced the number of slow-signals observed by a factor
of ∼600. Both data sets have equivalent live times. Below 30 keV, poor signal-to-noise led to
overestimates of the rise time (see text for details).
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Figure 6.9: Energy spectra from PHDs Co. detectors with silver and lithium n+ contacts. It
is clear that the thinner silver contact allows lower energy X-rays (from neptunium and Ag
fluorescence) to penetrate the bulk.

has two gammas that are of particular interest, a low-energy (81.9979 keV) and higher energy

(356.0129 keV) gamma-ray, which have an average time interval of 6.28 ns between the two

[171]. The NaI[Tl] detector was used to measure the 356 keV gamma, while MALBEK was

used to measure the 81 keV gamma. In order to reduce file sizes, a hardware gate surrounding

the 356 keV peak was implemented in the NaI[Tl] detector and from threshold to 83 keV in

MALBEK. An event required a gamma in each detector to be in coincidence, with the 356 keV

signal in the NaI[Tl] marking the start of an event. The charge carrier drift time was then

taken to be the time difference between a NaI[Tl] and MALBEK signal. Since the 81 keV

gamma will interact in the outer 1-3 mm of the BEGe crystal the majority of the time, this

probes the DDR and tests the hypothesis that slow-signals have long drift-times.

The experiment was conducted with the 133Ba source in several locations, where one

example is shown in Figure 6.10 and should be used to visualize the other locations outlined

below:

• Top Uncollimated : source centered 5 cm from the top of the cryostat; 3.59 hours of data
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(see Figure 6.10);

• Top Collimated : bottom of collimator centered 4.54 cm from the top of the cryostat;

7.23 hours of data;

• Side Uncollimated : source 5 cm from the side of the cryostat, 3 cm below top of cryostat

(directs gammas in middle of BEGe crystal); 1.96 hours of data;

• Side Collimated : bottom of collimator 4.54 cm from the side of the cryostat, 3 cm below

top of cryostat (directs gammas in middle of BEGe crystal); 17.26 hours of data.

For runs in which the source was collimated, a block of lead 5×5×5 cm in size with a 5 mm

through hole was used to collimate the 81 keV gammas towards the MALBEK cryostat (no

collimation towards the NaI[Tl] detector). For runs in which the source was on the side of

the cryostat, the source/collimator were positioned so that they were centered with respect

to the height of the BEGe crystal (3 cm below the top of the cryostat).

Figure 6.10: The NaI[Tl] and MALBEK detectors along with the 133Ba source are shown
here. This setup was used to acquire the uncollimated data from the top of the cryostat.
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6.3.2 Data Acquisition

The MALBEK DAQ was used for this measurement, see Figure 4.13. The only difference

being the high-energy channel shown in Figure 4.13 was replaced with the NaI[Tl] signal.

The NaI[Tl] signals were sent through an ORTEC Model 113 preamplifier and shaped with

an ORTEC Model 474 timing filter amplifier (TFA) with 500 ns of integration and 500 ns

of differentiation. The shaped NaI[Tl] signals were then digitized by the SIS3302 with a 10

µs trace length and 5 µs of baseline. Of course, shaping the NaI[Tl] signals resulted in a

timing delay. The delay of the electronics chain was measured to be 55 ± 5 ns (with the

NaI[Tl] signal occurring after the MALBEK signal) by simultaneously sending a pulser signal

through both the NaI[Tl] and MALBEK signal chains. This delay was taken into account

and will be discussed in the next section. We chose to digitize all events for the following

reasons: (1) it was easier to use an existing DAQ, (2) it allows us to choose any timing gate

for the MALBEK channel, and (3) the analysis outlined below requires the rise time (t10−90)

and location in time that the signal reached 50% of its maximum (t50). In order to be able

to digitize both the NaI[Tl] and MALBEK signal such that the rising edge occurred in the

middle of the digitized window, we made use of the SIS3302’s pretrigger and buffer wrap

delay features. These features delay the ADC conversion for a set period of time such that

an arbitrary portion of the waveform can be digitized. These delay features also needed to

be accounted for and will be discussed below.

6.3.3 Data Analysis

Several GAT processors were developed in order to analyze the data from both the NaI[Tl]

and MALBEK detectors, one for calibrating digitizer timestamps and the other for the Digital

Signal Processing (DSP) of the NaI[Tl] waveforms. The timestamps were calibrated to take

into account delays associated with the pretrigger and buffer wrap delays as well as the delay

caused by shaping the NaI[Tl] signal. For both the NaI[Tl] and MALBEK signals, since the

timestamp marked the start of the digitization window, the location in time that the signal

reached 50% of its maximum (t50) was added to each timestamp. Once the timestamps were
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calibrated, we calculated the time since last 356 keV peak event in the MALBEK signal chain.

This time difference was taken as the charge carrier drift time. This resulted in a significant

amount of accidental coincidences; this is is clearly shown in Figures 6.13 and 6.14 as the

horizontal band at t10−90 ∼ 400 ns.

6.3.4 Results

The results from this experiment were consistent with the hypothesis outlined in Section 6.1.2,

showing that events with long drift times are directly related to slow-signals, see e.g. Fig-

ures 6.13 and 6.14. It was also found that the maximal drift time (Figure 6.16), rise time

(Figure 6.15) and spectral shape (Figure 6.12) depend significantly on the position of the

source. This was expected since the distance to the collecting electrode and electric field

change as a function of interaction position; see Ref. [172] for a detailed review of position

dependence within germanium detectors. Perhaps this is better illustrated by examining

the rise time energy dependence for various positions, as shown in Figure 6.11. This figure

shows the rise time energy dependence for the collimated data only – again, it is clear that

the source location greatly affects the rise time energy dependence. With this in mind, re-

call the cosmogenic backgrounds discussed in the previous chapter. These backgrounds are

uniformly distributed throughout the germanium crystal, creating a uniform distribution of

potential slow-signal sources. This is a drastically different scenario than placing a calibration

source above or beside a detector. Due to attenuation, these external gamma-rays will have

a preference towards interactions near the outer parts of the detector. Therefore, it can be

argued that if one’s background spectrum is dominated by slow-signals from cosmogenics,

then a source measurement cannot be used to determine an expected spectral shape due to

slow-signals.

The shape of Figure 6.16 merits an in depth explanation. Consider for example the runs

in which the source was uncollimated and located on top of the cryostat. The entire top face

of the crystal was bathed in gamma-rays from 133Ba, even the corners. An interaction taking

place in the corner of the crystal will have a longer distance to drift as well as a weaker field

to drift through (slower drift velocity). Conversely, an interaction taking place directly in the
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(a) Collimated Side

(b) Collimated Top

Figure 6.11: 133Ba rise time energy dependence for (a) a collimated source illuminating the
side of MALBEK, (b) a collimated source illuminating the top of MALBEK.
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middle of the top face of the detector will have the shortest drift path and strongest field

to drift through. Therefore, the drift time peak in the top uncollimated measurement was

not symmetric, and appeared to be a superposition of the collimated top and uncollimated

side measurements. The distributions observed in Figure 6.15 can easily be understood by

comparing them with Figure 6.11. It is clear that when the source is located on the side of

the detector, the maximal rise time appears to be less than the maximal rise time from when

the source is located on top of the detector.

These results highlight the need for a model that takes into account the physical processes

taking place in the RDR and DDR. The following sections will present a simple model, initially

developed by David Radford, that, after taking into account diffusion and recombination,

reproduces to first order several experimental measurements.
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Figure 6.12: The energy spectra from MALBEK during the drift time measurements (see
legend). The SIS3302 was configured so as to not trigger on events with energy greater than
∼ 82 keV. It is clear that the shape of the low-energy rise due to slow-signals is dependent
upon the position of the source. Only the inhibit and preliminary cuts have been applied to
these data (see Section 5.3.4).
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Figure 6.13: t10−90 versus drift time from above the cryostat, collimated (top panel), uncol-
limated (bottom panel). See text for explanation of the distributions observed. However, it
is clear that an event’s rise time is proportional to its drift time.
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Figure 6.14: t10−90 versus drift time from the side of the cryostat, collimated (top panel),
uncollimated (bottom panel). See text for explanation of the distributions observed. However,
it is clear that slow-signals are directly correlated to events with long drift times.
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Figure 6.15: MALBEK t10−90 histogram from various source positions. Only events with
energies between 4 keV and 81 keV have been plotted. See text for explanation.
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Figure 6.16: MALBEK drift time histogram from various source positions with energies
greater than 4 keV but less than 81 keV. See text for explanation.
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6.4 Modeling Diffusion in the DDR

Since the experimental measurements outlined in Sections 6.2 and 6.3 supported the initial

hypothesis that slow-signals arise from interactions near the n+-bulk boundary, this section

will present a model initially developed by David Radford that simulates the diffusion of

charges out of the DDR and into either the RDR or depletion region.

6.4.1 Introduction

The model discretizes the DDR in 1-D using 20 µm bins and allows a charge carrier density

ρ(x, t) to diffuse in 1 ns time steps according the diffusion equation (ignoring recombination)2,

∂ρ(x, t)

∂t
= D

∂2ρ(x, t)

∂x2
. (6.6)

This equation is a simple second order differential equation that is easily solvable numerically.

Additionally, the Einstein relation relates the diffusivity to the charge carrier carrier mobility

[173]:

D =
kT

q
µ, (6.7)

where k is the Boltzmann constant, T is the temperature, q is the electronic charge and µ is

the hole mobility (4.2×104 cm2 V−1 s−1 at 80 K in germanium, see Table 2.1). The quantity

kT/q is equal to 0.00689 V at T = 80 K. Equation 6.6 requires taking derivatives numerically

for realistic initial charge carrier densities. Let us adopt the notation where ρi denotes the

charge carrier density in a depth bin i. In order to solve the above equation, we make use of

the Taylor series expansion in which the charge density in neighboring bins is given by:

ρi±1 = ρi ± δx
∂ρ

∂x
+

1

2
δx2 ∂

2ρ

∂x2
+ . . . , (6.8)

2The choice of step size is somewhat arbitrary, however the time step was chosen so as to have a finer
sampling period than the SIS3302, which is 10 ns.
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where δx is the depth bin size, 20 µm. Ignoring higher terms, the first derivative of the charge

density is approximated by:

∂ρ

∂x
≈ ρi+1 − ρi

δx
=
ρi − ρi−1

δx
=
ρi+1 − ρi−1

2δx
. (6.9)

Similarly, it is easy to show that the second order derivative is approximated by:

∂2ρ

∂x2
≈ (ρi+1 − ρi)− (ρi − ρi−1)

δx2
(6.10)

From Equation 6.6 this shows

∂ρ

∂t
≈ D

δx2
((ρi+1 − ρi)− (ρi − ρi−1)) (6.11)

Taking another Taylor series expansion, the partial derivative with respect to t can be calcu-

lated by taking the difference between ρ evaluated at two different times, and dividing by δt

– this gives

∂ρ

∂t
≈ D

δx2
((ρi+1 − ρi)− (ρi − ρi−1)) ≈ ρ(i, n+ 1)− ρ(i, n)

δt
(6.12)

where n is now the time step bin, 1 ns. This reduces down to

ρ(i, n+ 1) ≈ ρ(i, n) +
Dδt

δx2
(ρ(i+ 1, n) + ρ(i− 1, n)− 2ρ(i, n)) , (6.13)

and defining λ ≡ Dδt
δx2

then gives,

ρ(i, n+ 1) ≈ (1− 2λ)ρ(i, n) + λρ(i+ 1, n) + λρ(i− 1, n). (6.14)

This recursive relationship is the solution to the diffusion equation and is the fundamental

equation for the models that will be presented in the following sections. In this equation, λ

can be thought of as the probability that a charge will be located in the neighboring bin on

the next time-step. Since we have made quite a few assumptions (ignored higher terms in

the series expansion), inserting the values (δt, δx and D) into the equation for λ will give a
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slightly incorrect result. However, this probability is easily calculated with a toy Monte Carlo

(not to be confused with the model being presented) that allows a Gaussian charge cloud [82]

with a width defined as

σ =

√
2kT

q
µt (6.15)

to diffuse in 1 ns time steps. The probability, λ, is given by the original concentration at

the centroid minus the two neighboring concentrations at t. Figure 6.17 shows the results

of this simple toy Monte Carlo yielding a λ value of 0.07955. This value of λ will be used

in Equation 6.14 hereafter. If we had simply plugged the numbers in the above equation we

would have got 0.072345, which is close, but not correct.

Figure 6.17: Diffusion probability Monte Carlo results. After ∼104 iterations, the value for λ
settles at 0.07955. See Equation 6.14.
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In both of the models presented in the following sections, the basic diffusion modeling algo-

rithm is the same:

(1) Define the thickness over which to model the diffusion, i.e. the width of the DDR +

RDR.

(2) Discretize this thickness in 20 µm bins.

(3) For each interaction depth, i ∈ (0, X):

(a) Initialize the charge density to be localized in bin i.

(b) Loop over time, n ∈ (0, N):

→ Allow the charge density to diffuse (Equation 6.14), be collected and recom-

bine. The collection and recombination probabilities are depth-dependent,

i.e. they depend on i. The depth-dependent recombination probability is the

only difference between the models that follow.

(c) Calculate and report results for this interaction position, i.

6.4.2 Two-Plane Model

Equation 6.14 has been used to calculate the charge density as a function of time and position.

We have implemented a simple two-plane model for the recombination probability for this

study. In the two-plane model, the recombination probability is zero everywhere except for

at the surface of the detector. Similarly, the charge collection probability is zero everywhere

except for inside the depletion region (≥ FCCD), see Figure 6.18. In this model, a charge

cloud created in the DDR will diffuse in both directions, towards the RDR and towards the

depletion region, and only charges that make it to the depletion region will be collected and

contribute to the signal. The inputs to the model can be summarized as follows:

• time step (δt), taken to be 1 ns;

• depth bin size (δx), taken to be 20µm;
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• width of the RDR (wRDR) in units of depth bins, taken to be wRDR = 0 (no truly dead

region);

• width of the DDR (wDDR) in units of depth bins, taken to be wDDR = 47 (0.940 mm,

as close to the FCCD of MALBEK as possible);

• initial concentration of charges, ρ(i, 0) = 1000 cm−3. This value was chosen so as to

resemble a standard ADC with >8-bit resolution.;

• number of time steps, taken to be 10000;

• depth-dependent recombination and collection probabilities, described above.

For each position, the charges are allowed to diffuse in 10000 time steps. Using these values

as input, several parameters can be calculated that are experimentally verifiable:

• tx−y, rise time, where x, y can be any combination of percentages such that x < y;

• t50, drift time;

• fC , fraction of charge collected;

• Sdel(t), delayed ionization signal (fraction of charge collected as a function of time).

Results

Using the two-plane model for recombination and collection probabilities, the fraction of

charge collected as a function of depth has been calculated and is shown in Figure 6.18.

These results show that the fraction of charge collected linearly increases until the FCCD is

reached. Additionally, the 10–90% and 20–80% rise times have been calculated as a function

of depth, see Figure 6.20a. The drift time (t50) is also shown in Figure 6.20a. While the

assumption that the recombination probability is zero everywhere except at the detector

surface is unrealistic, these results qualitatively agree with the initial assumption that slower

signals, having longer drift times, originate near the n+ contact. These promising initial

results indicate that further investigation of the recombination probability is needed. The
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next section will outline a more realistic assumption of the recombination probability and its

affect on these results.

6.4.3 Probabilistic Recombination Model

The two-plane model showed promising results. To further our understanding of the processes

taking place near the n+ contact we developed a more realistic depth-dependent recombination

probability function. We assumed that the recombination probability is roughly proportional

to the lithium concentration until a certain depth at which it was set to zero. The width of

the non-zero recombination probability can be thought of as the thickness of the RDR. An

upper limit on this thickness has been measured for MALBEK and reported in Ref. [146], in

which the width of the RDR was found to be ≤0.44 mm. The recombination probability was

set to zero for depths greater than this value. The recombination probability as a function of

depth used is shown in Figure 6.19. Although this recombination probability is slightly more

physically motivated than the two-plane model, it is still just an educated guess that assumes

the recombination probability is proportional to an assumed lithium ion concentration.

Results

The results obtained with the new recombination probabilities are shown in Figures 6.19 and

6.20b, which show the fraction of charge collected and rise times respectively. It is clear that

the maximum rise time is lower than the two-plane model results. This was expected since

the slower signals near the n+ contact were now allowed to recombine and not contribute to

the total signal. Additionally, the fraction of charge collected as a function of depth was found

to be roughly linear between 0.44 mm and the FCCD and quickly drop to zero for depths

less than 0.44 mm. These results again support the initial hypothesis and data presented

thus far. The next logical step is to use these results in a Monte Carlo simulation to generate

an energy spectrum and also to calculate slow ionization signals. The next two sections will

discuss both of these, starting with the latter.
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Figure 6.18: Two-plane diffusion model recombination probability, collection probability and
fraction of charge collected versus depth. The plot is shown with both log (a) and linear
y-axes (b) to illustrate the linear fraction collected curve. The recombination probability and
collection probability are provided as input to the model. They are used to compute the
shown fraction collected. The fraction of charge collected linearly increases with depth, as
expected.

179



Depth (mm)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 P
ro

b
ab

ili
ty

 / 
F

ra
ct

io
n

 C
o

lle
ct

ed

-310

-210

-110

1

Recombination Probability

Collection Probability

Fraction Collected

Figure 6.19: The recombination and collection probabilities used in the probabilistic recom-
bination model are shown here. In addition, the calculated fraction of charge collected as
a function of interaction depth is also shown. The fraction of charge collected rises linearly
between 0.44 mm and the FCCD. At shallower depths, the charge collected drops faster, as
expected, due to the non-zero recombination probability. See text for details.
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(b) Probabilistic recombination model.

Figure 6.20: (a) Calculated results for the two-plane diffusion model 10–90%, 20–80% and
drift time versus depth. These values are larger than what is observed in data. See text
for more details. (b) Calculated results for the probabilistic recombination diffusion model
10–90%, 20–80% and drift time versus depth.
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6.4.4 Calculating the Shape of Slow-Signals

Using the siggen [95] software package, which takes into account the signal generation mech-

anisms described in Section 2.2.2, along with the probabilistic recombination model output,

the shapes of slow-signals as a function of depth have been calculated. The siggen package

was used to generate a prompt ionization signal (Sprompt(t)) in the MALBEK detector. By

convolving Sprompt(t) with the delayed signal (Sdel(t)),

S(t) =

t∑
x=1

(Sdel(x)− Sdel(x− 1))Sprompt(t− x) (6.16)

the shape of the slow-signals as a function of interaction depth was calculated. Figure 6.21

shows several ionization signals as a function of interaction depth. Energy degradation, long

rise times and long drift times are clearly reproduced.

6.4.5 Implementing the Diffusion Model in Monte Carlo

In an effort to quantify the effect the probabilistic diffusion model has on an energy spectrum,

a toy Monte Carlo model has been developed which makes use of the calculated fraction of

charge collected vs. depth (Figure 6.19). By choosing a detector geometry and randomly

sampling depths within the detector (correcting for attenuation of the gamma-rays in ger-

manium), an energy spectrum from the 241Am 59.5 keV gamma line has been calculated for

the MALBEK detector geometry (30.0 mm height). At each depth considered, the energy

collected was taken as 59.5 keV×fC(x), where fC(x) is the fraction of charge collected for an

interaction occurring at depth x. Additionally, the energy spectrum was smeared according

to the finite energy resolution of the MALBEK detector (see Section 5.2.2).

Results

The 241Am energy spectrum calculated with the toy Monte Carlo is shown in Figure 6.22.

The diffusion code and toy Monte Carlo qualitatively reproduce the increase in counts at

low-energy due to slow-signals. It should be noted that this has not been done with a model

before. Additionally, the model also shows a continuum between threshold and the full-energy
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Figure 6.21: Calculated slow-signals using the probabilistic recombination diffusion model. d
here denotes the depth of the interaction simulated.
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peak solely due to slow-signals (Compton scattering was not simulated). Figure 6.23 shows

the rise times calculated by the diffusion code (red circles) compared to data obtained with the

MALBEK detector; the results agree quite well with the rise times observed in the MALBEK

detector. These results are very promising and merit further investigation and fine tuning of

the probabilistic recombination model as well as the implementation in Monte Carlo.
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Figure 6.22: Energy spectrum from toy Monte Carlo based on probabilistic recombination
diffusion model. Notice an increase in counts at low-energy and a slow-signal continuum
(Compton scattering was not modeled).

6.4.6 Summary and Outlook

Based on the experimental measurements made in Sections 6.2 and 6.3, a numerical model

for diffusion and recombination in germanium detectors has been developed. This model

shows very promising preliminary results. The results qualitatively reproduce several critical

phenomena:

• The rise in counts at low-energy (<5 keV), see e.g. Figure 6.22;

• Slow-signals are also delayed (correlated with long drift times), see e.g. Figure 6.20b;

• The mean rise time of slow-signals in the MALBEK detector, see e.g. Figure 6.23;
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Figure 6.23: Measurement compared to model: 241Am rise time versus energy for MALBEK
data (intensity plot) and probabilistic recombination diffusion model output (red circles).

• The shape of a slow-signal ionization pulse, see e.g. Figure 6.21.

In addition, the thickness of the DDR was found to be directly related to the average maximum

rise time, i.e. max(〈t10−90〉). This is easily visualized in Figure 6.23, where max(〈t10−90〉) '

2900 ns. This relationship can be expressed as

max(〈t10−90〉) ∼ DDR2, (6.17)

which, upon further examination of Figure 6.11, implies that the DDR is roughly 1.6 to 2.0

times thicker on the top than on the side of MALBEK.

It should be noted that this model is far from complete. The recombination probability

as a function of depth needs to be more fully understood. Additionally, the depth of the

RDR and DDR change with location and this has not been taken into account. This could

be due to non-uniform lithium diffusion and/or the depth of the depletion layer changing as a

function of electric field. Furthermore, while the toy Monte Carlo reproduced, to first order,

the low-energy rise, it does not take into account additional gamma-ray interactions that also
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take place. In order for this to be done correctly, the fC(x) curve needs to be implemented

in a Geant4 based Monte Carlo model. In summary, while the diffusion models both give

only qualitative agreement thus far, this is an enormous improvement of what was available

prior to these models, which were just educated guesses at the shape of the fC(x) curve (see

e.g. Refs. [74, 75]). These models are represent a big first step towards fully understanding

the processes taking place near the n+-bulk boundary.

6.5 Attempts at Quantifying Slow-Signal Leakage After the

SSC

Numerous attempts were made at quantifying the number of slow-signals remaining after the

SSC has been applied, see Table 5.14. Additionally, an attempt was made to parameterize

the slow-signal energy spectrum in order to incorporate this in a WIMP fit. However, the

results from the analyses outlined below proved to be difficult to interpret. The reason for

this is the shape of the slow-signal energy spectrum depends on the source of slow-signals,

i.e. their energy and distribution. Section 6.3.4 showed that the shape of the rise time

spectrum is strongly dependent upon the source location and energy, therefore a slow-signal

energy spectrum from an external source cannot be used to parameterize a slow-signal energy

spectrum from backgrounds (cosmogenic 68,71Ge) alone. Any attempts at quantifying the

slow-signal leakage with a source measurement would also be difficult, but may be possible

[174], for these same reasons. The following sections will outline the attempts made in an

effort to document lessons learned.

6.5.1 Ratio Analysis

As mentioned in the previous chapter, the MALBEK detector collected data at KURF for

several months with 210Pb contamination in the cryostat (see Section 5.1). By using these

data (DS1c) and the data acquired after the lead shims were removed (DS3) it is possible

to determine if there was any slow-signal contribution after the SSC. In what follows, we

will take the proof-by-contradiction approach by assuming that the SSC is 100% efficient at
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rejecting slow-signals near threshold. If this were the case, then the rate of fast-signals near

threshold before (DS1c) and after (DS3) the lead shim removal should be equal (ignoring

bremsstrahlung and Compton scatters from 210Pb). Similarly, the rate of slow-signals with

the lead shims in place would be more than an order of magnitude larger than without (see

Section 5.1.3). A useful way to test this hypothesis is to count the number of slow- and

fast-signals, as determined by the SSC, in two separate energy regions for both data sets.

First, count the number of slow-signals (NS) in an energy region that the SSC is known to be

valid, e.g. 2–8 keV, in both data sets3. Second, count the number of fast-signals (NF ) near

threshold, e.g. 0.6–1.0 keV, in both data sets. Figure 6.24 illustrates this for DS1c. Lastly,

construct the following ratios for the energy regions outlined above,

RS =

(
NS events WITH Pb shims

NS events WITHOUT Pb shims

)
2−8 keV

, (6.18)

and

RF =

(
NF events WITH Pb shims

NF events WITHOUT Pb shims

)
0.6−1.0 keV

. (6.19)

From the arguments outlined above, RS should be ' 10 and RF ' 1. Therefore, the ratio of

RF /RS should be ∼ 0.1. However, this ratio has been measured to be 1.21 ± 0.11. Since we

calculated the number of slow-signals in an energy region in which the SSC can be trusted,

this points to RF being the cause of the discrepancy. In order to bring the ratio up to the

measured value, RF would have to increase by an order of magnitude, bringing into question

the rejection power of the SSC near threshold. Unfortunately, it is not possible to make a

statement on the number of slow-signals that contaminate the low-energy region after cuts.

This is again due to the fact that this background is strongly dependent on the nature of

the source. With the lead shims in place, the background due to slow-signals was dominated

by external gamma-rays, whereas once they were removed, the slow-signal background was

dominated by 68,71Ge, which is internal to the germanium crystal. In summary, the only

conclusion that can be drawn from this analysis is that the SSC does not remove all of the

3We were only interested in the slow-signal counts here since we were searching for a relationship that
related the number of observed slow-signals at higher energies to the number of expected slow-signals at lower
energies. However, the results here proved to be difficult to interpret.
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slow-signals and some remain after cuts.

Figure 6.24: The calculation of NS and NF for DS1c is shown here. See text for details.

6.5.2 Using a Slow Signal Dominated Source

A 10 µCi 241Am source was used for this analysis with the MALBEK detector. The source

was suspended 25 cm away from the top of the cryostat for 1.8 hours. It was clear from the

analysis that the 241Am data was dominated by slow-signals at low-energy (< 12 keV) and

the contribution due to fast-signals could be ignored – the background rate due to slow-signals

was much greater than that of fast-signals, i.e. > 80% of the events were slow.

For the data acquired in the configuration outlined above, slow-signals comprised ∼90%

of the event population between 0.6− 12 keV. Therefore, a slow-pulse acceptance curve was

generated in the same manner as in Figure 5.23. This slow-pulse acceptance curve is shown

in Figure 6.25 (dashed) along with the SSC curve (solid). The clear overlap at low energies

highlights the need to quantify the slow-signal rejection efficiency. But, once again, since

this analysis depends on an external source, 241Am, it cannot be used to quantify slow-signal

backgrounds from background data. In addition to the ratio analysis presented in the previous
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section, this analysis clearly shows that slow-signals remain after the SSC cut is applied to

background data (DS3).

6.6 Discussion

This chapter has discussed slow-signal backgrounds in depth. Several new qualities of slow-

signals were experimentally measured, e.g. background dependence on n+ contact material

and rise time/drift-time correlations. The results from these measurements agreed with the

hypothesized physical mechanism responsible for slow-signals, diffusion and recombination

near the n+-bulk boundary.

Additionally, two simple diffusion models were presented in this chapter: the two-plane

diffusion model and the probabilistic recombination diffusion model. Both of these models

show that slow-signals arise from interactions near the n+-bulk boundary and, to first order,

reproduce several experimental phenomena: rise in counts in the low-energy spectrum, shape

of slow ionization signals, rise time/drift-time correlation, and the mean rise time of slow-

signals in the MALBEK detector. While the initial results from these models look very

promising, there is still a lot to be done before a complete description of the physical processes

taking place can be developed. The recombination probability, which is arguably the most

important input to the model, needs to be more fully studied and this is currently being

pursued by collaborators within Majorana.

This chapter has also shown that slow-signals significantly contaminate the low-energy

spectrum after the SSC has been applied. This has been known, see e.g. Ref. [121]; however,

different analysis techniques and a different detector were used here. This additional evidence

of slow-signal contamination after cuts underscores the need to fully quantify slow-signal

backgrounds in any germanium detector whose primary region-of-interest is the low-energy

region (< 12 keV).

In summary, it is important to reiterate the fact that the shape of the slow-signal energy

spectrum depends on the source of slow-signals, i.e. their energy and distribution. For this

reason, there are only two ways to quantify this source of background:
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Figure 6.25: (a) A 98% slow-signal acceptance curve for 241Am with the MALBEK detector
is shown here (dashed). 98% of all events fall below the dashed curve drawn here and are
slow. Also plotted here is the SSC curve (solid) from Figure 5.30, which is also shown below.
There is a clear overlap of the two curves at low-energies. The intensity scale is in units of
Hz. (b) The SSC curve from DS3a used in the top plot is shown here.
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• Data driven method: data used to quantify slow-signal backgrounds must have the

same distribution of slow-signal sources, i.e. similar energy and location. To describe

slow-signal backgrounds due to cosmogenic 68,71Ge, this could be done by activating

the detector in order to obtain higher statistics, and using methods similar to those

presented in this chapter as well as in Ref. [121].

• Model driven method: once a complete model has been developed, this model could

be used to generate a fractional charge collected versus depth curve, fC(x). This curve

could then be input into a Geant4-based Monte Carlo to develop energy spectra PDFs

due to slow-signals. These PDFs could then be input into a WIMP analysis and also

provide a means to quantify the slow-signal leakage after the SSC has been applied.
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Chapter 7

Results From a Search for Light WIMPs

This chapter will report on results from a direct search for low-mass particle dark matter using

a 221.49 live day exposure with the MALBEK detector. The expected signal from WIMP

dark matter in germanium detectors, analysis techniques and results will be presented.

7.1 Introduction

As discussed in Section 1.1.3, WIMPs are a class of particle with masses between 1−1000 GeV

that explain the observed amount of nonbaryonic dark matter in the Universe, a result referred

to as the WIMP miracle. Direct detection experiments, such as the MALBEK detector, aim

to detect the nuclear recoils caused by WIMPs elastically scattering off atomic nuclei. The

event rate and energy of the recoil depend upon experimental, astrophysical and nuclear

factors:

• Experimental:

– Target material, detector efficiency, target mass, and atomic number,

– Backgrounds that can mimic WIMP signals, such as neutrons.

• Astrophysical:

– WIMP halo properties (i.e. particle density, particle distribution, velocity distri-

bution),



– The motion of the Earth relative to the WIMP halo.

• Nuclear:

– Nuclear form factor corrections due to the finite size of the nucleus. This also

differs for spin-independent and spin-dependent interactions.

The next section will outline the expected signal from WIMP dark matter in germanium

detectors.

7.2 The Signal from WIMP Dark Matter

This section will outline the signal from WIMP dark matter given the considerations outlined

in the previous section. Since we are only sensitive to spin-independent interactions1, there

will be no discussion of spin-dependent interactions.

7.2.1 Event Rate

The energy spectrum from WIMP-nuclear recoils arises from the kinematics of elastic scat-

tering. In the center-of-momentum frame, we assume that the WIMP scatters off a nucleus

through an angle φ, with cosφ uniformly distributed between −1 and +1 (isotropic scatter-

ing). Assuming the WIMPs are moving at non-relativistic velocities their kinetic energy is

expressed as Ei = MW v
2/2, and the nucleus will recoil with an energy (in the lab frame) of

ER = Eir
(1− cosφ)

2
, (7.1)

where r is a dimensionless kinematic parameter between 0 and +1 that is defined as r ≡

4MWMT /(MW + MT )2, MT is the mass of the target nucleus and MW is the mass of the

WIMP. It’s clear that the recoil energy is uniformly distributed between 0− Eir. It is inter-

esting to note that r = 1 only if MW = MT . The differential event rate, R, with dimensions

1The only naturally occurring isotope of germanium with a net nuclear spin is 73Ge (J = 9/2+). Un-
fortunately, 73Ge only makes up ∼7% of natural germanium, therefore we are essentially insensitive to spin-
dependent reactions.
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of inverse time and energy, can be shown to be

dR

dER
(ER) =

∫ Emax

Emin

dR(Ei)

Eir
. (7.2)

The maximum initial WIMP energy is based on the Galactic escape velocity, vesc: Emax =

MW v
2
esc/2. To cause a recoil of energy ER, the minimum WIMP energy is Emin = ER/r (φ =

π) and the corresponding WIMP velocity, vmin is vmin =
√

2Emin/MW =
√

2ER/(rMW ). In

order to determine the rate of WIMP-nucleus scattering, imagine the target nucleus moving

with velocity v relative to the WIMPs. In time dt, each nucleus will interact with any WIMP

inside a volume dV = σnucl v dt, where σnucl is the WIMP-nucleus cross section. The number

of WIMPs inside this volume moving with velocity v is then

dN = n0f(v,vE)σnucl v dt, (7.3)

where the local WIMP number density is related to the local mass density of WIMPs in our

Galactic neighborhood, n0 = ρD/MW . The above equation relies upon an assumption of

the WIMP velocity distribution, which depends on the velocity of the Earth with respect to

the Galaxy (vE) and the WIMP velocity with respect to the earth (v). The most common

assumption made is that the WIMPs follow a Maxwellian distribution [30],

f(v,vE) =
e−(v+vE)2/v20

k
, (7.4)

where v0 is the dark matter halo velocity dispersion and k is a normalization constant. Al-

though this is an assumption, a Maxwellian distribution is a good approximation and pro-

vides a useful standard for experiments to abide by [30, 175]. Additionally, most experiments

assume that ρD = 0.3 GeV cm−3 [77, 107–109, 111, 112], despite the fact that recent mea-

surements have shown this value to be closer to 0.4 GeV cm−3 [7, 176–180]. It is important

to follow the standards already laid out in order to be able to compare results from several

experiments. Therefore we have adopted a value of 0.3 GeV cm−3 for the local dark matter

density.
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The differential rate per kilogram of target mass is then the product of the number of

interactions per nucleon with the number of nuclei per kilogram of material, or

dR =
N0

A
n0f(v,vE)σnucl v d

3v (7.5)

whereN0 is Avogadro’s number, so thatN0/A is the number of nuclei per kilogram of material.

The full calculation of the energy spectrum for WIMP-nucleus elastic scattering, including

the effects of both escape velocity and the Earth’s velocity, has been done by Lewin and Smith

[181] and is given by,

dR

dER
=
k0

k1

R0

E0r

{
v0
√
π

4vE

[
erf

(
vmin + vE

v0

)
− erf

(
vmin − vE

v0

)]
− e−v2esc/v20

}
(7.6)

The parameters in the above equation are itemized as follows:

R – Event rate per unit mass,

R0 – Total event rate,

ER – Recoil energy of the nucleus,

v0 – Dark matter halo velocity dispersion,

E0 – Energy of WIMP moving with velocity v0,

vmin – Minimum WIMP velocity which can give a recoil energy ER,

vesc – Galactic escape velocity,

vE – Velocity of the Earth (target) relative to the dark matter distribution,

MW – Mass of a WIMP,

MT – Mass of a nucleus in the detector material,

r – Reduced mass (kinematical factor) given by 4MWMT
(MW+MT )2

,

A – Atomic number of a nucleus in the detector material,
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ρD – Local dark matter halo density,

NA – Avogadro’s number,

σnucl – WIMP-nucleus cross section at zero velocity.

with

k0

k1
=

[
erf

(
vesc
v0

)
− 2√

π

vesc
v0

e−v
2
esc/v

2
0

]−1

, (7.7)

and where the relationship between R0 and the WIMP-nucleus cross section, σnucl is given

by:

R0 =
2√
π

NA

A

ρD
MW

σnuclv0. (7.8)

In the above equations, the parameter k is a normalization constant such that
∫ vesc

0 dn = n0.

The normalization constants k0 and k1 seen in Equation 7.6 correspond to the value of k

truncated at differing escape velocities, vesc = ∞ and vesc = |v + vE|, respectively. Given

the assumptions about the WIMP density and velocity distributions, the interaction rate

depends on two unknowns, the WIMP mass (MW ) and the cross section of the WIMP-

nucleus interaction (σnucl). For this reason, experiments typically report results as a contour

plot in the WIMP mass-cross section plane. An example of such a contour plot was shown in

Figure 3.6 of Chapter 3.

The WIMP-nucleon Cross Section

In order to be able to compare results between experiments which use a different target

nucleus, Lewin and Smith [181] suggest to scale σnucl to a WIMP-nucleon cross section,

σW−n, whose relationship is defined as [182]:

σW−n =

(
µ1

µA

)2 1

A2
σnucl (7.9)
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where µA = MWMT
MW+MT

is the reduced mass of the WIMP-target system and µ1 is defined at

A = 1.

7.2.2 Nuclear Form Factor Correction

In a WIMP-nucleus recoil, if the momentum transfer (q =
√

2MTER) is large enough so

that the deBroglie wavelength h/q [183] is small compared to the size of the nuclear radius,

then the effective cross section begins to fall with increasing momentum transfer. This is

often referred to as ‘loss of coherence,’ and is due to the fact that the WIMP is no longer

probing average nuclear properties. The distribution of nucleons within the nucleus is now

important. This is accounted for by applying a nuclear form factor correction, F (qrn), such

that σnucl → σnuclF
2, where rn is the effective nuclear radius (' 1.14A1/3) [181, 184]. As

proposed by Engel et al. [185], and implemented by Lewin and Smith [181], the Woods-Saxon

form factor [186] is an excellent approximation for spin-independent interactions,

F (qrn) =
3[sin(qrn)− qrn cos(qrn)]

(qrn)3
e−(qs)2/2, (7.10)

where s is a measure of the nuclear skin thickness (0.9 fm for Ge [181, 184]) and qrn is given

as

qrn =

√
2MTER
197.3

1.14A1/3. (7.11)

This correction is implemented by replacing σnucl by σnuclF
2.

7.2.3 Quenching in Germanium

Quenching in germanium was briefly discussed in 2.1.1. A more in depth discussion is needed

since this is arguably the most important experimental input when calculating limits.

Gamma-ray and neutron/WIMP interactions within an ionization detector are funda-

mentally different — neutrons/WIMPs recoil off of nuclei, while photons interact with the

electrons in the detector. Since semiconductor gamma-ray detectors are typically calibrated

with standard gamma-ray check sources, this calibration will not be valid for nuclear recoils.

The apparent observed nuclear recoil energy is less than the true value. The ratio, or relative
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efficiency, fn is determined by neutron scattering measurements. Consequently, the nuclear

recoil energy in the above event rates should be replaced by the ionization energy, EI , using

ER = EI/fn. Lindhard et al. [86] represent fn by

fn =
kg(ε)

1 + kg(ε)
(7.12)

where, for a nucleus of atomic number Z,

ε ≡ 11.5ER(keV)Z−7/3, (7.13)

and g(ε) has been well fit by

g(ε) = 3ε0.15 + 0.7ε0.6 + ε. (7.14)

Barbeau et al. [85] have recently measured k to be ∼ 0.2 in germanium for energies < 4 keV.

To summarize, the relationship between nuclear and electronic recoils is expressed as follows,

EI =
kERg(ε)

1 + kg(ε)
(7.15)

Incorporating these results into a WIMP fit requires one to invert Equation 7.15, which can be

done numerically, but not analytically. Here we take the same approach used in Refs. [76, 121]

and use an empirical formula to describe this relationship

EI = αEβR, (7.16)

where α and β are 0.2 and 1.12, respectively [121].

7.2.4 Summary

In summary, the final observed event rate is given by

dR

dEI
=

(
dR

dER

)(
dER
dEI

)
F 2 (7.17)
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where
(
dR
dER

)
is given by Equation 7.6,

(
dER
dEI

)
is obtained by inverting Equation 7.16 and

taking the derivative with respect to EI and F is given in Equation 7.10. Equation 7.17

will be used to fit the observed energy spectrum from Data Set 3 (see Table 5.1) and search

for WIMP dark matter. Table 7.1 lists the parameters used in the WIMP fits shown in the

following sections. In addition, for illustrative purposes, Figure 7.1 shows the final observed

event rate as a function of energy (Eq. 7.17) in a germanium detector for a 5, 10 and 15 GeV

WIMP.

Table 7.1: Astrophysicala and experimental parameters used in the WIMP analysis.

Parameter Value Unit Reference

Fit parameters
Atomic Mass 72.61 amu [187]
Local dark matter density, ρD 0.3 GeV cm−3 [77, 107–109, 111, 112]
Halo velocity dispersion, v0 220 km s−1 [7, 188–194]
Galactic escape velocity, vesc 544 km s−1 [7, 188, 195]
Earth velocity, vE 244 km s−1 [181]
Detector mass 0.4042b kg [122]
Nuclear skin thickness, s 0.9 fm [181, 184]

Data Set 3 Specifics
Threshold 0.6 keV N/A
Max energy 4.0 keV N/A
Live time 221.494 d N/A
Exposure 89.528 kg-d N/A

a There remains significant uncertainty in the astrophysical parameters (ρD, v0,
vesc, vE), therefore we have used values used by other experimental programs,
e.g. Refs. [77, 107–109, 111, 112].

b The fiducial mass of the detector is smaller when the SSC is applied, see
Section 6.1.2.

7.3 Fitting Technique

This section will cover the analysis techniques used to extract a WIMP dark matter signal limit

from the MALBEK data. The MALBEK data used for this analysis is shown in Figure 7.2b

along with the data from CoGeNT [75, 121]. The aim here is to test if the WIMP signal

(Equation 7.17) is compatible with our experimental data given a specific background model.

The method used in this analysis follows the prescription outlined in Ref. [196]. This method
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Figure 7.1: Ionization spectrum induced from WIMP nuclear-recoils for various WIMP
masses.
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will be referred to as the Rolke method hereafter. The Rolke method was also used by

members of the CoGeNT collaboration to place a limit on σW−n as a function of MW [76],

i.e. calculation of a WIMP signal exclusion curve or signal region. The software package

pyWIMP [197]2 was developed by Michael Marino to calculate these limits with the Rolke

method. The framework of pyWIMP was used in this analysis. The following section will

introduce details of the Rolke method and how it was implemented.

7.3.1 Rolke Method

The Rolke method provides a means by which to calculate confidence intervals (or set limits)

on a parameter from a data set with unknown backgrounds. In our case, this parameter is

σnucl (which is directly related to σW−n). Prior to the Rolke method, the standard method

used by many in high-energy physics was the Feldman and Cousins method [198], which

assumes that the background is exactly known. An alternative method used prior to the

Feldman and Cousins method was the L + 1
2 method which relies on finding the points where

the profile likelihood function (details to follow) increases by a factor defined by the required

confidence level (CL). However, both of these methods have their problems:

• The L + 1
2 method performs poorly in cases with low-statistics, as is the case in most

rare-event searches [7, 196];

• The Feldman and Cousins method requires one to know their background exactly, which

is rarely the case [7, 196].

Rolke et al. developed their method in order to calculate confidence intervals when sources

of background are unknown, these backgrounds are referred to as a nuisance parameters.

The Rolke method combines the L + 1
2 method with the profile likelihood approach. Prior

to discussing the details of the profile likelihood approach, a discussion on the method of

Maximum Likelihood (ML) is needed.

2pyWIMP documentation can be found in Ref. [76].
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Figure 7.2: (a) The MALBEK energy spectrum with the SSC applied is shown here. (b)
The energy spectrum used for the CoGeNT analysis in Ref. [75] (blue) is shown here in
comparison to the MALBEK energy spectrum with the SSC applied (red hatched). Both
spectra have been corrected for cut acceptance efficiencies as well. In addition, the CoGeNT
collaboration has made an attempt to correct for slow-signal contamination in Ref. [121].
The black/gray hatched spectrum shows the CoGeNT spectrum from Ref. [121] corrected for
slow-signal leakage and with the L-lines removed. It is interesting to note that the flat part of
the background is identical in both experiments, even after CoGeNT corrected for slow-signal
contamination, a topic of future investigation.
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The Method of Maximum Likelihood

Suppose that we have N measured quantities x = (x1, . . . , xN ) that can be described by a

probability density function (PDF) f(x; θ) where θ = (θ1, . . . , θn) are a list of n parameters

that are unknown. The likelihood function is is then given by the PDF evaluated with the

data x, but viewed as a function of the parameters, L(θ) = f(x; θ). The likelihood function

is given by

L(θ) =
N∏
i=1

f(xi; θ). (7.18)

The ML method takes the estimators, θT, to be those values of θ that maximize L(θ), or

equivalently, minimize − log(L(θ)). In practice, it is easier to work with log(L(θ)) and the

ML estimators are then found by solving the likelihood equations

∂ log(L)

∂θi
= 0, i = 1, . . . , n. (7.19)

The solutions to the likelihood equations are usually found numerically.

Profile Likelihood Approach

When searching for a signal in a data set, it is useful to perform a hypothesis test that

compares the null hypothesis (no signal) to a model with signal included. In practice this is

performed using a profile likelihood test which involves the construction of a likelihood ratio,

λ(θ0), over a set of parameters, θ0,

λ(θ0) =
Lmax

Lmax(θ0, θn)
(7.20)

which can be rewritten as

− 2 log(λ(θ0)) = 2 (log(Lmax(θ0, θn))− log(Lmax)) (7.21)

where θ0 is a subset of θ, or θ = {θ0, θn}. Lmax is the likelihood function that has been

maximized over all parameters whereas Lmax(θ0, θn) is the likelihood function maximized
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over all parameters except θ0. A standard result from Statistics [199] is that −2 log(λ(θ0))

resembles a χ2 distribution with Ndof degrees of freedom. To find a 100(1− α)% confidence

interval, we start at the minimum of the −2 log(λ(θ0)) curve and then move to the left and

right to find the points at which the function increases by the α percentile for a χ2 distribution.

For example, if Ndof = 1, a 90% confidence interval corresponds to an increase of 2.71 and

95% corresponds to an increase of 3.84, see e.g. Figure 7.3 [7, 196].

Figure 7.3: An example of a −2 log(λ(θ0)) curve with the 95% confidence intervals shown by
vertical lines. Figure from Ref. [196].

Implementation

The Rolke method is very similar to the profile likelihood approach, with the exception that

it takes into account two scenarios:

(1) Best fit occurs in an unphysical region, e.g. σnucl < 0;

(2) There is no minimum of the −2 log(λ(θ0)) curve, e.g. signal and background very similar.

Rolke et al. proposed the following solution for dealing with these scenarios: If the best fit

of the parameter of interest occurs in an unphysical region, then the parameter is forced to
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its nearest boundary and this is used as the best fit (or starting point) to scan for confidence

intervals. On the other hand, if the best fit occurs in a physical region, this method is

identical to the profile likelihood method. For example, in Figure 7.3, if the best fit for the

signal rate was <0, then only an upper limit could have be found. If this were the case, the

upper limit is found by starting at a signal rate of 0 (nearest physical boundary) and scanning

to the right until a desired confidence interval is reached. Rolke et al. refer to this method

as the bounded-likelihood method and this method was used by Ref. [76] as well. In the

following sections, all limits will have been found using this method. Additionally, Ref. [76]

has performed a coverage test with their background model and has shown this method to

have sufficient coverage. The background model presented in the following section is identical

to the background model used in Ref. [76], therefore it is safe to conclude that all limits

derived using the Rolke method have sufficient coverage.

7.4 WIMP Dark Matter Limits from MALBEK

The data presented and analyzed in Chapter 5, specifically DS3, were used to constrain

the {MW , σW−n} parameter space. The Rolke method outlined above was used to calculate

upper limits on σnucl, and hence σW−n, for a range of WIMP masses at 90% CL. The following

sections will outline the data and fitting model, present the results and finish with a discussion

of the results obtained.

7.4.1 Data and Fitting Model

An unbinned extended maximum likelihood fit with the Rolke method has been implemented,

thus making the best possible use of the recorded energy of each individual event. Each data

point was multiplied by a weighting factor defined by the inverse of the cut efficiency at that

energy, see Figure 5.36. The fitting PDFs were split up into signal and background. The

components of each are listed in Table 7.2. An extended likelihood formalism was used since

the primary concern was the number of signal, or WIMP-related, events in DS3 for each
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WIMP mass. The total fit PDF then reduces to

ftotal(E) = NSS(E) +NBB(E), (7.22)

where S(E) = fW (E) is the signal PDF in Table 7.2 (Equation 7.17), B(E) is the sum of the

background PDFs in Table 7.2, NS is the number of signal events, and NB is the number of

background events. The above equation is normalized so that Ntotal = NS +NB, where Ntotal

is the total number of events in the sample (DS3). Additionally, each background PDF has

with it an associated amplitude in units of number of events, i.e.

NB = Nflat +Nexp +NZnL +NGeL (7.23)

where Nx is the number of counts associated with PDF x. The RooFit package [200] was used

to add these PDFs together and construct the likelihood ratio with the parameter of interest

being σnucl, or equivalently −2 log(λ(σnucl)). For each WIMP mass, ranging from 5.5 GeV

to 100 GeV, a −2 log(λ(σnucl)) curve was constructed by scanning the σnucl parameter space

so as to include the best fit (minimum of −2 log(λ(σnucl))) and sufficient samples above the

90% CL, see e.g. Figure 7.4.

Table 7.2: Likelihood fitting PDF components - parameters are provided in Table 7.3.

Description Functional Form

Background PDF Components
Flat background fflat(E) = 1
Exponential backgrounda fexp(E) = exp (c1E)

65Zn L-capture γ line fZnL(E) = 1
σZnL

√
2π

exp

(
− (E−µZnL )2

2σ2
ZnL

)
68,71Ge L-capture γ line fGeL(E) = 1

σGeL

√
2π

exp

(
− (E−µGeL )2

2σ2
GeL

)
Signal PDF Components

WIMP signal fW (E) =
(
dR
dER

)(
dER
dEI

)
F 2

a The fit was performed both with and without the exponential
component.

The parameters in the PDFs listed in Table 7.2 were given ranges of values for the fit –
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Figure 7.4: An example of a −2 log(λ(θ0)) curve with θ0 ≡ σW−n. Vertical and horizontal
lines intersect at the 90% CL upper limit on the cross section. σnucl was converted into σW−n
after the fit was performed. This curve was generated for MW = 10.2 GeV. It is clear that
the lower limit at which 90% CL occurs is in an unphysical region, i.e. σW−n < 0.

Table 7.3: Allowed ranges and values for input parameters used in the WIMP fit.

Parameter Range Unit

Background PDF Components
Exponential shape parameter, c1 −100→ 5 keV−1

Zn L-capture mean, µZnL 1.096 (fixed) keV
Zn L-capture sigma, σZnL 7.22e-2→ 7.51e-2 keV
Ge L-capture mean, µGeL 1.299 (fixed) keV
Ge L-capture sigma, σGeL 7.31e-2→ 7.60e-2 keV
Nflat 0→ 105 counts
Nexp

c 0→ 105 counts
NGeL +NZnL 0→ 105 counts

Signal PDF Components
WIMP-nucleus cross section, σnucl −10→ 100a pbb

a The upper limit was expanded dynamically to ensure that
λ(σnucl) would exceed the desired χ2-quantile value.

b 1 pb = 10−36 cm2.
c The fit was performed both with and without the exponential

component.
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these parameters are summarized in Table 7.3. In addition, the 68,71Ge and 65Zn L-capture

lines were grouped as one PDF during the fit. Results were obtained by fitting the energy

spectrum with the SSC applied using Equation 7.17. As mentioned in the previous chapter, we

were unable to parameterize the slow-signal energy spectrum since it is dominated by internal

cosmogenics. If we were successful in doing so, we would incorporate a slow-signal PDF into

the background PDFs. Members of the CoGeNT collaboration have taken an approach that

utilizes an exponential PDF to encapsulate their ignorance of the shape of the slow-signal

energy spectrum [76] – we have taken the same approach. In addition, Ref. [112] has re-

analyzed CoGeNT data sets with this exponential. The WIMP and exponential PDFs closely

resemble one another over various WIMP masses, therefore the inclusion of an exponential

PDF can result in an unphysical enhanced sensitivity to WIMP-nucleus recoils. The enhanced

sensitivity results from the fact that more events could be attributed to the exponential PDF

rather than the WIMP PDF for a certain WIMP mass – this is illustrated in Figure 7.5 for a

7.4 GeV WIMP. A more conservative approach would be to eliminate the exponential PDF

entirely, therefore the observed increase in counts at low-energy (< 2 keV) would be completely

attributed to WIMP-nucleus recoils in the fit. Therefore, we have calculated results both with

and without the exponential PDF. In summary, results have been calculated to constrain the

{MW , σW−n} parameter space in the following scenarios:

(1) With the SSC applied AND using the exponential PDF (SSC + Exp),

(2) With the SSC applied AND without using the exponential PDF (SSC + No Exp),

We will see in the following sections that the removal of the exponential PDF has a significant

effect on the fit at higher WIMP masses. This stems from the fact that at higher WIMP

masses, the WIMP PDF does not resemble the observed low-energy rise.

7.4.2 Results

We have calculated WIMP exclusion limits at 90% CL under various background assumptions

and with differing cuts applied. The following sub-sections will highlight these results.
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Figure 7.5: Best fit result for a 7.4 GeV WIMP with the SSC applied. The WIMP signal
is in dashed blue, 68,71Ge and 65Zn L-capture lines in solid red, exponential in dashed red
and total fit result in solid blue. Notice how the exponential and WIMP components closely
resemble one another.
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Example Spectral Fits

It is important to examine the spectral fits for each WIMP mass. Fits for MW = 8.0 and 60.0

GeV were chosen for each of the fit methods outlined above. Figure 7.6 shows spectral fits

with the SSC applied and with the exponential PDF – it is clear that at 8.0 GeV, the 90%

CL fit attributes most of the low-energy rise to WIMPs. However, this is not the case at

MW = 60.0 GeV, where the low-energy rise is attributed solely to the exponential PDF.

As alluded to previously, while the removal of the exponential PDF may be more conserva-

tive, this does not imply that is the correct avenue to pursue. This is illustrated in Figure 7.7b

which shows fit results for MW = 60.0 GeV – it is apparent that the signal and background

models do not agree with the data. This can be attributed to the sharp increase in counts at

low-energy; the shape of this feature is not encapsulated in the background PDFs after the

removal of the exponential PDF. However, at lower WIMP masses (MW . 10.0 GeV), the

data is well fit without the exponential PDF as shown in Figure 7.7a. The features observed

in the spectral fits both with and without the exponential PDF merit a more in depth study

of the fit stability as a function of WIMP mass. This is covered in the following section.

Fitted Background Component Stability

The previous section illustrated that the removal of the exponential PDF leads to poor fits

at higher WIMP masses, and subsequently less stringent exclusion limits. For this reason, a

study of the background component amplitude as a function of WIMP mass was performed.

The amplitude of each background component was traced as the WIMP mass was varied.

This provided a means by which to search for fit systematics. Figure 7.8 shows the back-

ground amplitudes without the exponential PDF. It is clear that as MW increases, the flat

background component approaches zero - this is caused by the WIMP signal taking over the

flat background component, see e.g. Figure 7.7b. However, the L-capture lines amplitude

remained quite stable throughout the entire fitting range.

Figures 7.9 and 7.10 illustrate these results with the exponential PDF included. These

figures show that the flat and exponential backgrounds exhibit a give-and-take relationship –
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Figure 7.6: 90% CL exclusion limit spectral fits with exponential component and SSC applied.
The 68,71Ge and 65Zn L-capture lines are shown as solid red, exponential background as dashed
red, WIMP signal as dashed blue and total fit as solid blue.
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Figure 7.7: 90% CL exclusion limit spectral fits without exponential component and SSC
applied. The 68,71Ge and 65Zn L-capture lines are shown as solid red, WIMP signal as dashed
blue and total fit as solid blue.
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as one of the components is decreased the other is increased. In regions like this, the WIMP

signal and exponential background closely resemble each other. Taking Figure 7.10 as an

example, this figure illustrates the fit stability as a function of WIMP mass with the SSC

and the exponential PDF. This figure clearly shows the give-and-take relationship outlined

above, however it should be noted that the number of counts attributed to the exponential

PDF is negligible otherwise. Additionally, in all of these figures, 7.8 → 7.10, the L-capture

line components were extremely stable, indicating that their contribution to the fit has little

effect on the WIMP signal component.

90% CL Exclusion Limits

The limits derived from the analysis described above are shown in Figure 7.11. In addition,

a zoom in to lower WIMP masses is shown in Figure 7.12. These results echo what we have

stated previously, that the removal of the exponential PDF decreases the sensitivity. However,

it should be noted that if we were able to correct for slow-signal contamination, similar to

Ref. [121], then our sensitivity would be enhanced. This enhancement was illustrated for

CoGeNT by Refs. [111, 112].

7.4.3 Discussion and Comparison to Other Experiments

Figures 7.13 and 7.14 show the 90% CL MALBEK exclusion limits compared to several other

experimental programs. There is slight tension between the MALBEK results and those from

CoGeNT [74, 75], DAMA/LIBRA [104] and CRESST-II [77]. The CoGeNT and MALBEK

detectors are nearly identical (see Table 3.1), therefore one would naturally attribute the in-

creased sensitivity to lower backgrounds. This is exactly the case as is shown in Figure 7.2b.

The MALBEK backgrounds are lower than those of CoGeNT in Ref. [75] below the L-capture

peaks. Despite a higher threshold (600 eV compared to ∼500 eV), the decreased backgrounds

allowed MALBEK to be more sensitive to the WIMP signal. However, it is clear from the

energy spectrum shown in Figure 7.2b that a low-energy rise is still observed – this could be

attributed to WIMPs or the known leakage from slow-signals (see Chapter 6). As previously

stated, the CoGeNT collaboration has recently made an attempt to correct for slow-signal
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Figure 7.8: (SSC + No Exp) The 90% CL final floating parameter values are shown here
in units of counts kg−1 d−1 versus WIMP mass. The SSC has been applied, whereas the
exponential PDF was not included. The horizontal red line in the L-capture component
panel indicates the expected number of counts based on the number of K-capture events
(68Ge [10.367 keV]: 965 events; 65Zn[8.979 keV]: 414 events) – see Section 5.3.4. However, it
should be noted that during the first 40 days of DS3 a non-negligible amount of 71Ge was
present.
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Figure 7.10: (SSC + Exp) Zoomed in version of Figure 7.9.
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Figure 7.11: The MALBEK WIMP exclusion limits at 90% CL are shown here. See text for
detailed explanation.
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Figure 7.12: The MALBEK WIMP exclusion limits at 90% CL are shown here zoomed in.
See text for detailed explanation.
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contamination in Ref. [121]. This correction to their energy spectrum is also shown in Fig-

ure 7.2b with the L-capture lines removed. Ref. [111] has re-analyzed the CoGeNT data in

Ref. [75] taking into account the slow-signal leakage – their results moved the CoGeNT claim

down in cross-section making it more sensitive, see Figure 7.14. If we were able to do the

same with MALBEK, our limits would also become more sensitive, thus increasing the ten-

sion of our results with those of CRESST-II and DAMA/LIBRA. However, there would likely

still be room for both CoGeNT and MALBEK to be compatible. We should also note that

the MALBEK exclusion limits are in agreement with several other null-result experiments:

CDMS II (low-energy analysis)[109] and XENON10-LE [108].

7.5 Concluding Remarks

We have performed a search for low-mass WIMPs with the MALBEK detector. It is very im-

portant to reiterate that we know that slow-signals contaminate the spectrum after the SSC.

Since we were unable to quantify this background, we have performed an identical WIMP

analysis to Ref. [76] due to the fact that the MALBEK and CoGeNT detectors are very

similar (same material, roughly the same mass and energy threshold and similar dominant

background components - slow signals and cosmogenics). The MALBEK results were found to

be in agreement with null observations and in slight disagreement with CoGeNT, CRESST-II

and DAMA/LIBRA. It is very important to note that there exist astrophysical and exper-

imental uncertainties that could bring these disagreements into alignment [111, 112], most

notably the proper inclusion of the slow-signal contamination. The investigation into this

contamination will be followed up by other members of the Majorana Collaboration and

we will hopefully have an answer in the near future.
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Ref. [104]. The other experiments that have shown a positive result are CRESST II [77] (95%
CL), CoGeNT 2010 [74] and CoGeNT again in 2011 (annual modulation) [75]. Additionally,
the CoGeNT 2011 result as interpreted by Ref. [111] is also shown. Several experiments have
reported null results, or show no signs of a low-mass WIMP. Two of these experiments are
shown here: XENON10-LE [108] and CDMS II [109]. (Data obtained using DMTools [114].)
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Appendix A

ORCA Scripts

A.1 Status Script

The status script was written by Graham Giovanetti and me with a lot of help from Mark

Howe.

f unc t i on main ( ) {

// l oop f o r e v e r

ln2 a larm = 0 ;

while ( ln2 a larm ==0){

i = 0 ;

j = 0 ;

k = 0 ;

l = 0 ;

t o t a l s i z e = 0 ;

to ta l count1 = 0 ;

to ta l count2 = 0 ;

to ta l count3 = 0 ;

to ta l count4 = 0 ;

t o t a l q d c t r i g g e r s = 0 ;

runLength = 3600 ;

energyS ize = 64000;

array runNum [ 2 4 ] ;

array startTime [ 2 4 ] ;

array f i l e S i z e [ 2 4 ] ;

array counts1 [ 2 4 ] ;

array counts2 [ 2 4 ] ;

array counts3 [ 2 4 ] ;

array counts4 [ 2 4 ] ;

array qdc t r i g g e r s [ 2 4 ] ;

array energy [ energyS ize ] ;

rc = f i nd (ORRunModel , 1 ) ;

d a t a f i l e = f i nd (ORDataFileModel , 1 ) ;

ds = f ind (ORHistoModel , 1 ) ;

s = f i nd (ORScriptTaskModel , 6 ) ;

ami = f ind (ORAmi286Model , 1 ) ;

vme c pu = f ind (ORVmecpuModel , 0 , 0 ) ;

sbc = [ vmecpu sbcLink ] ;

hv mod = f ind (ORVHQ224LModel , 0 , 2 ) ;

qdc = f ind (ORCaen965Model , 0 , 1 3 ) ;
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// l oop u n t i l midn igh t

while ( [ rc hour ] < 23 | | sent ){

s l e ep ( 5 . 0 ) ;

// check to see i f t h e d e t e c t o r l n l e v e l ( channe l 0) i s

// alarming , i f so unb ia s t h e d e t e c t o r

[ ami po l l L e v e l s ] ;

LN2 low alarm leve l = [ ami lowAlarmLevel : 0 ] ;

LN2 cur r en t l eve l = [ ami l e v e l : 0 ] ;

i f ( LN2 cur r en t l eve l < LN2 low alarm leve l ){

ln2 a larm = 1 ;

break ; // g e t out o f t h e rc run hour < 23 l oop

}

s l e ep ( 1 . 0 ) ;

[ rc startRun ] ;

wa i tUnt i l ( [ rc isRunning ] ) ;

// Added t h i s l oop to s l e e p t h e SBC wh i l e running .

// This w i l l s t o p whenever t h e run s t o p s .

do{

[ sbc pauseRun ] ;

s l e ep (0 . 001 ) ;

[ sbc resumeRun ] ;

}while ( [ rc isRunning ] ) ;

wa i t un t i l ( ! [ rc isRunning ] ) ;

s l e ep ( 1 0 . 0 ) ;

// h i gh ga in = channe l 0 = low energy channe l

// low ga in = channe l 1 = h i gh energy channe l

data lowG = [ ds dataSetWithName : ”SIS3302 , Energy , 0 , 10 , 1 ” ] ;

data highG = [ ds dataSetWithName : ”SIS3302 , Energy , 0 , 10 , 0 ” ] ;

d a t a i nh i b i t = [ ds dataSetWithName : ”SIS3302 , Energy ,0 , 10 , 2 ” ] ;

da ta pu l s e r = [ ds dataSetWithName : ”SIS3302 , Energy , 0 , 10 , 5 ” ] ;

data qdc = [ ds dataSetWithName : ”CAEN965QDC(L) ,0 ,13 ,0 ” ] ;

// add to array h o l d i n g h i s togram data

for ( l =0; l < energyS ize ; l++){

energy [ l ]= energy [ l ] + [ data lowG value : l ] ;

}

// f i l l a r ray w i th run i n f o

runNum [ i ] = [ rc runNumber ] ;

startTime [ i ] = [ rc startTime ] ;

f i l e S i z e [ i ] = [ d a t a f i l e da t aF i l eS i z e ] ;

counts1 [ i ] = [ data lowG tota lCounts ] ;

counts2 [ i ] = [ data highG tota lCounts ] ;

counts3 [ i ] = [ d a t a i nh i b i t tota lCounts ] ;

counts4 [ i ] = [ da ta pu l s e r tota lCounts ] ;

qd c t r i g g e r s [ i ] = [ data qdc tota lCounts ] ;

i f ( counts1 [ i ] < 1) {

content1 = ”” ;
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content1 = s t r c a t ( content1 , ”Run Number : ” , runNum [ i ] , ”\n” ) ;

[ s sendMailTo : ”FIXME@gmail . com , FIXME 2@gmail . com” cc : n i l sub j e c t : ”NO LOW−GAIN COUNTS! ( ch 1) ”

content : content1 ] ;

}

i f ( counts2 [ i ] < 1) {

content2 = ”” ;

content2 = s t r c a t ( content2 , ”Run Number : ” , runNum [ i ] , ”\n” ) ;

[ s sendMailTo : ”FIXME@gmail . com , FIXME 2@gmail . com” cc : n i l sub j e c t : ”NO HIGH−GAIN COUNTS! ( ch 0) ”

content : content2 ] ;

}

i f ( counts3 [ i ] < 1) {

content3 = ”” ;

content3 = s t r c a t ( content3 , ”Run Number : ” , runNum [ i ] , ”\n” ) ;

[ s sendMailTo : ”FIXME@gmail . com , FIXME 2@gmail . com” cc : n i l sub j e c t : ”NO INHIBIT COUNTS! ( ch 2) ”

content : content3 ] ;

}

i f ( counts4 [ i ] < 1) {

content4 = ”” ;

content4 = s t r c a t ( content4 , ”Run Number : ” , runNum [ i ] , ”\n” ) ;

[ s sendMailTo : ”FIXME@gmail . com , FIXME 2@gmail . com” cc : n i l sub j e c t : ”NO PULSER COUNTS! ( ch 5) ”

content : content4 ] ;

}

sent = fa l se ;

i++;

}// end l oop u n t i l midn igh t

// i f t h e LN2 l e v e l i s be low the alarm l e v e l , unb ia s t h e d e t e c t o r and s t op runs

i f ( ln2 a larm == 1){

[ hv mod setRampRate : 0 withValue : 5 ] ;

[ hv mod setVo l tage : 0 withValue : 0 ] ;

[ hv mod loadValues : 0 ] ;

postalarm ( ”Detector LN2 Level Alarm” ,11) ;

postalarm ( ”Detector Unbiased” ,11) ;

content5 = ”” ;

content5 = s t r c a t ( content5 , ”Unbiased de t e c to r a f t e r run number : ” , [ rc runNumber ] , ”\n” ) ;

sub j e c t5 = ”” ;

sub j e c t5 = s t r c a t ( subject5 , ”LN2 Level Alarm − Unbiased Detector a f t e r run ” , [ rc runNumber ] , ”\n

” ) ;

[ s sendMailTo : ”FIXME@gmail . com , FIXME 2@gmail . com” cc : n i l sub j e c t : sub j e c t5 content : content5 ] ;

break ; // s t o p s t h e s t a t u s s c r i p t

}

// combine run i n f o

while ( k < i ){

t o t a l s i z e += f i l e S i z e [ k ] ;

t o ta l count1 += counts1 [ k ] ;

t o ta l count2 += counts2 [ k ] ;

t o ta l count3 += counts3 [ k ] ;

t o ta l count4 += counts4 [ k ] ;

t o t a l q d c t r i g g e r s += qdc t r i g g e r s [ k ] ;

k++;

}
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avg s i z e = t o t a l s i z e / i /1000000;

avgcount1 = tota l count1 / i / runLength ;

avgcount2 = tota l count2 / i / runLength ;

avgcount3 = tota l count3 / i / runLength ;

avgcount4 = tota l count4 / i / runLength ;

avgqdc t r i gge r s = t o t a l q d c t r i g g e r s / i / runLength ;

// conca t g en e r a l run i n f o

content = s t r c a t ( ”MALBEK RUN STATS\n” ) ;

content = s t r c a t ( content , ”\nrun numbers : ” , runNum [ 0 ] , ” − ” , runNum [ i −1] , ”\navg f i l e s i z e : ” ,

f i x ed ( avgs ize , 2 ) , ” MB” ) ;

content = s t r c a t ( content , ”\navg low gain ra t e : ” , f i x ed ( avgcount1 , 3 ) , ” Hz” ) ;

content = s t r c a t ( content , ”\navg high gain ra t e : ” , f i x ed ( avgcount2 , 3 ) , ” Hz” ) ;

content = s t r c a t ( content , ”\navg i n h i b i t ra t e : ” , f i x ed ( avgcount3 , 3 ) , ” Hz” ) ;

content = s t r c a t ( content , ”\navg pu l s e r ra t e : ” , f i x ed ( avgcount4 , 3 ) , ” Hz” ) ;

content = s t r c a t ( content , ”\navg qdc t r i g g e r ra t e : ” , f i x ed ( avgqdct r igger s , 3 ) , ” Hz” ) ;

content = s t r c a t ( content , ”\n\ndetec tor dewar l e v e l : ” , [ ami l e v e l : 0 ] ) ;

content = s t r c a t ( content , ”\npurge dewar l e v e l : ” , [ ami l e v e l : 1 ] , ”\n\n” ) ;

// conca t s i n g l e run i n f o

while ( j < i ){

s i z e = f i l e S i z e [ j ] /1000000 ;

count1norm = counts1 [ j ] / runLength ;

count2norm = counts2 [ j ] / runLength ;

count3norm = counts3 [ j ] / runLength ;

count4norm = counts4 [ j ] / runLength ;

qdcnorm = qdc t r i g g e r s [ j ] / runLength ;

content = s t r c a t ( content , ”

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n” ) ;

content = s t r c a t ( content , ” run number ” , runNum [ j ] , ” s t a r t i n g at ” , startTime [ j ] ) ;

content = s t r c a t ( content , ”\ n f i l e s i z e : ” , f i x ed ( s i z e , 2 ) , ” MB” ) ;

content = s t r c a t ( content , ”\nlow gain ra t e : ” , f i x ed ( count1norm , 3 ) , ” Hz” ) ;

content = s t r c a t ( content , ”\nhigh gain ra t e : ” , f i x ed ( count2norm , 3 ) , ” Hz” ) ;

content = s t r c a t ( content , ”\ n i nh i b i t ra t e : ” , f i x ed ( count3norm , 3 ) , ” Hz” ) ;

content = s t r c a t ( content , ”\npul se r ra t e : ” , f i x ed ( count4norm , 3 ) , ” Hz” ) ;

content = s t r c a t ( content , ”\nqdc t r i g g e r ra t e : ” , f i x ed ( qdcnorm , 3 ) , ” Hz\n” ) ;

j++;

} // end conca t s i n g l e run i n f o

content = s t r c a t ( content , ”

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n\n” ) ;

content = s t r c a t ( content , ”Energy \n\n” ) ;

for ( l =0; l < energyS ize ; l++){

i f ( energy [ l ] != 0){

content = s t r c a t ( content , l , ”\ t ” , energy [ l ] , ”\n” ) ;

}

}

content = s t r c a t ( content , ”\n lowrate \n\n” ) ;

for ( l =0; l < 24 ; l++){

i f (runNum [ l ] != 0){

count1norm = counts1 [ l ] / runLength ;

content = s t r c a t ( content , runNum [ l ] , ”\ t ” , f i x ed ( count1norm , 3 ) , ”\n” ) ;

}

}
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content = s t r c a t ( content , ”\n h ighrate \n\n” ) ;

for ( l =0; l < 24 ; l++){

i f (runNum [ l ] != 0){

count2norm = counts2 [ l ] / runLength ;

content = s t r c a t ( content , runNum [ l ] , ”\ t ” , f i x ed ( count2norm , 3 ) , ”\n” ) ;

}

}

content = s t r c a t ( content , ”\n i n h i b i t r a t e \n\n” ) ;

for ( l =0; l < 24 ; l++){

i f (runNum [ l ] != 0){

count3norm = counts3 [ l ] / runLength ;

content = s t r c a t ( content , runNum [ l ] , ”\ t ” , f i x ed ( count3norm , 3 ) , ”\n” ) ;

}

}

pr in t ” sending mail ” ;

[ s sendMailTo : ”FIXME 2@gmail . com , FIXME 3@gmail . com” cc : n i l sub j e c t : ”MALBEK STATUS UPDATE” content

: content ] ;

sent = true ;

}// end l oop f o r e v e r

}// end main

226



A.2 Data Filter

The data filter script was written by Graham Giovanetti and me with a lot of help from Mark

Howe and Michael Marino.

f i l t e r

{

WaveformLimit0 = FIXME;

WaveformLimit1 = FIXME;

// Also , r e q u i r e t h e l a s t v a l u e to be g r e a t e r than ze ro s i n c e we chose our DAC o f f s e t t o cause t h e

b i p o l a r

// i n h i b i t p u l s e s to go be low ze ro .

i f ( currentRecordIs (ORSIS3302DecoderForEnergy ) ) {

f i r s tVa l u e = 0 ;

lastValueValue = 0 ;

recLen = extractRecordLen ( CurrentRecordPtr [ 0 ] ) ;

channel = extractValue ( CurrentRecordPtr [ 1 ] , 0xFF00 , 8 ) ;

WfLenthFromOrca = CurrentRecordPtr [ 2 ] ;

EnergyWfLenthFromOrca = CurrentRecordPtr [ 3 ] ;

i f ( channel == 0 | | channel == 1){

WrapModeOn = ( CurrentRecordPtr [ 1 ] & 0x1 ) ;

i f (WrapModeOn==1){

headerLen= 8 ;

t r a i l e r O f f s e t = headerLen + WfLenthFromOrca + EnergyWfLenthFromOrca ;

hardware energy = CurrentRecordPtr [ t r a i l e r O f f s e t ] ;

W fLeng th = CurrentRecordPtr [ 6 ] ; //# samples

WfStartingIndex = CurrentRecordPtr [ 7 ] ; //# samples o f f s e t t o s t a r t

s1 = WfStartingIndex ;

i f ( s1 != 0) s2 = s1−1;

else s2 = WfLength−1;

r e co rdOf f s e t 1 = headerLen + s1 /2 ; // o f f s e t i n t o record f o r f i r s t sample

r e co rdOf f s e t 2 = headerLen + s2 /2 ; // o f f s e t i n t o record f o r l a s t sample

i f ( ( r e co rdOf f s e t 1 < recLen ) && ( r e co rdOf f s e t 2 < recLen ) ) {

i f ( s1 % 2) f i r s tVa l u e = CurrentRecordPtr [ r e co rdOf f s e t 1 ] & 0xFFFF ;

else f i r s tVa l u e = extractValue ( CurrentRecordPtr [ r e co rdOf f s e t 1 ] , 0 xFFFF0000 , 1 6 ) ;

i f ( s2 % 2) la s tVa lue = CurrentRecordPtr [ r e co rdOf f s e t 2 ] & 0xFFFF ;

e l s e l a s tVa lue = extractValue ( CurrentRecordPtr [ r e co rdOf f s e t 2 ] , 0 xFFFF0000 , 1 6 ) ;

}

}

else {

headerLen = 6 ; // orcaheader + s i s h e a d e r

t r a i l e r O f f s e t = headerLen + WfLenthFromOrca + EnergyWfLenthFromOrca ;

hardware energy = CurrentRecordPtr [ t r a i l e r O f f s e t ] ;

W fLeng th = CurrentRecordPtr [ 2 ] ;

f i r s tVa l u e = CurrentRecordPtr [ headerLen ] & 0xFFFF ;

l a s t V a l u e = extractValue ( CurrentRecordPtr [ headerLen + WfLength − 1 ] , 0 xFFFF0000 , 1 6 ) ;

}

// Now g e t r i d o f i n h i b i t r e l a t e d even t s , t y p i c a l l y l o o k l i k e s l o p i n g l i n e s or a b i p o l a r p u l s e

// whose l a s t v a l u e i s much l e s s than the f i r s t v a l u e
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i f ( channel==0)checkLimit = WaveformLimit0 ;

else checkLimit = WaveformLimit1 ;

i f ( ( f i r s tVa l u e > checkLimit ) && ( la s tVa lue > 1) ) {

shipRecord ( CurrentRecordPtr ) ;

}

}

else shipRecord ( CurrentRecordPtr ) ;

}

else shipRecord ( CurrentRecordPtr ) ;

}
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Appendix B

Calculated Waveform Parameters

Table B.1: A list of the parameters that are saved for each waveform in the MALBEK analysis
chain.

Parameter Description

fSwEnergy
Uncalibrated peak height as calculated by averaging the pole-zero

corrected tail of the waveform

fCalSwEnergy
Calibrated peak height as calculated by averaging the pole-zero

corrected tail of the waveform

fTrapEnergyOne
Uncalibrated peak height of an 11 µs peaking time, 1 µs gap time

trapezoidal filtered waveform

fCalTrapEnergyOne
Calibrated peak height of an 11 µs peaking time, 1 µs gap time

trapezoidal filtered waveform

fTrapEnergyTwo
Uncalibrated peak height of a 5 µs peaking time, 1 µs gap time

trapezoidal filtered waveform

fCalTrapEnergyTwo
Calibrated peak height of a 5 µs peaking time, 1 µs gap time

trapezoidal filtered waveform

fSISTrapEnergy
Uncalibrated peak height as calculated by the SIS3302 on-board

energy filter

fCalSISTrapEnergy
Calibrated peak height as calculated by the SIS3302 on-board energy

filter

fRiseTime 10%-90% rise-time of the waveform

fStartRiseTime location in time of the 10% peak height

fEndRiseTime location in time of the 90% peak height

fSecondaryRiseTime 75%-95% rise-time of the waveform

fSecondaryStartRiseTime Location in time of the 75% peak height

fSecondaryEndRiseTime Location in time of the 95% peak height

...continued on next page...
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Table B.1 – continued from previous page

Parameter Description

fFitConstant
Parameter B from a fit to the baseline using the formula:

f(x) = Ax+B

fFitSlope
Parameter A from a fit to the baseline using the formula:

f(x) = Ax+B

fFitDecayTau
Parameter τ from a fit to the tail of the waveform using the formula:

f(x) = Ae−(x−B)/τ

fFitDecayAmplitude
Parameter A from a fit to the tail of the waveform using the formula:

f(x) = Ae−(x−B)/τ

fFitDecayBaseline
Parameter B from a fit to the tail of the waveform using the formula:

f(x) = Ae−(x−B)/τ

fFitDecayEnergy
Difference between parameters A and B from a fit to the tail of the

waveform using the formula: f(x) = Ae−(x−B)/τ

fFitDecayChiSq
χ2 from a fit to the tail of the waveform using the formula:

f(x) = Ae−(x−B)/τ

fFitDecayPVal
P-value from a fit to the tail of the waveform using the formula:

f(x) = Ae−(x−B)/τ

fFitDecayNDF
Number of degrees of freedom in fit to the tail of the waveform using

the formula: f(x) = Ae−(x−B)/τ

fFitPZSlope
Parameter A from a fit to the pole-zero corrected tail of the waveform

using the formula: f(x) = Ax+B

fFitPZConstant
Parameter B from a fit to the pole-zero corrected tail of the waveform

using the formula: f(x) = Ax+B

fBaselineValue Baseline average

fBaselineRMS RMS of the baseline

fIntegral The integral (or sum) of the waveform ADC values

fMaxTrapOneTLoc
Location in time of the maximum of an 11 µs peaking time, 1 µs gap

time trapezoidal filtered waveform

fMaxRawWfVal Global maximum of the raw waveform

fMaxRawWfTLoc Location in time of the global maxima of the raw waveform

fMinRawWfVal Global minimum of the raw waveform

fMinRawWfTLoc Location in time of the global minima of the raw waveform

...continued on next page...
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Table B.1 – continued from previous page

Parameter Description

fMaxBlRmWfVal Global maximum of the baseline removed waveform

fMaxBlRmWfTLoc
Location in time of the global maxima of the baseline removed

waveform

fMinBlRmWfVal Global minimum of the baseline removed waveform

fMinBlRmWfTLoc
Location in time of the global minima of the baseline removed

waveform

fMaxDerivativeVal Global maximum of the derivative of the waveform (current pulse)

fMaxDerivativeTLoc
Location in time of the global minimum of the derivative of the

waveform (current pulse)

fCDPowerFWHM FWHM of the wavelet power spectrum (Equation 5.5)

fCDPowerFWHM start
Location in time of the start of the FWHM of the wavelet power

spectrum (Equation 5.5)

fCDPowerFWHM end
Location in time of the end of the FWHM of the wavelet power

spectrum (Equation 5.5)

fCDPowerFWTM FWTM of the wavelet power spectrum (Equation 5.5)

fCDPowerFWTM start
Location in time of the start of the FWTM of the wavelet power

spectrum (Equation 5.5)

fCDPowerFWTM end
Location in time of the end of the FWTM of the wavelet power

spectrum (Equation 5.5)

fCDPowerAmplitude Global maxima of the wavelet power spectrum (Equation 5.5)

fCDPowerBaselineValue Baseline average of the wavelet power spectrum (Equation 5.5)

fCDPowerBaselineRMS Baseline RMS of the wavelet power spectrum (Equation 5.5)

fCDNNonZeroCoeffs[n]
Number of non-zero c

(i)
D (n) left after thresholding for each level of

decomposition n = 0, . . . , 8

fCDAbsSumOfCoeffs[n]
Sum of the absolute value of c

(i)
D (n) for each level of decomposition

n = 0, . . . , 8

fCDSumOfCoeffs[n] The regular sum of c
(i)
D (n) for each level of decomposition n = 0, . . . , 8

fCDRMS[n] RMS/STD of c
(i)
D (n) for each level of decomposition n = 0, . . . , 8

fCDVariance[n] Variance of c
(i)
D (n) for each level of decomposition n = 0, . . . , 8

fCDMean[n] Mean of c
(i)
D (n) for each level of decomposition n = 0, . . . , 8

fCDMin[n] Global minima of c
(i)
D (n) for each level of decomposition n = 0, . . . , 8

...continued on next page...
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Table B.1 – continued from previous page

Parameter Description

fCDMinTLoc[n]
Location in time of the global minima of c

(i)
D (n) for each level of

decomposition n = 0, . . . , 8

fCDMax[n] Global maxima of c
(i)
D (n) for each level of decomposition n = 0, . . . , 8

fCDMaxTLoc[n]
Location in time of the global maxima of c

(i)
D (n) for each level of

decomposition n = 0, . . . , 8
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Appendix C

Peak Fitting

An Unbinned Maximum Likelihood (UMxL) fit was performed on each of the peaks in this

chapter using the RooFit package [200]. In each plot, the blue curve represents the total

Probability Density Function (PDF), and where shown, the individual components are shown

in red. The χ2 and P-values listed were calculated using the PSF RooFitResultCalc.py

program. For more details on PSF RooFitResultCalc.py, see Appendix D.
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C.1 Data Set 3a Uncalibrated Peak Fits

65Zn (1.096 keV), 68,71Ge (1.299 keV) L-Capture
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Figure C.1: DS3a fit to the 68,71Ge L-capture line. The χ2 was 83.1 with 94 degrees of freedom,
corresponding to a 0.782 P-value. Note: only the 68,71Ge line was used for calibration (1.299
keV).

234



55Fe K-Capture (6.539 keV)
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Figure C.2: DS3a fit to the 55Fe K-capture line. The χ2 was 11.0 with 96 degrees of freedom,
corresponding to a 1.000 P-value.
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68,71Ge (10.367 keV), 68Ga (9.659 keV), 65Zn (8.979 keV) K-Capture
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Figure C.3: DS3a fit to the 65Zn, 68Ga and 68,71Ge K-capture lines. The χ2 was 81.2 with 90
degrees of freedom, corresponding to a 0.736 P-value.

236



C.2 Data Set 3b Uncalibrated Peak Fits

65Zn (1.096 keV), 68,71Ge (1.299 keV) L-Capture
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Figure C.4: DS3b fit to the 68,71Ge L-capture line. The χ2 was 75.9 with 94 degrees of freedom,
corresponding to a 0.914 P-value. Note: only the 68,71Ge line was used for calibration (1.299
keV).
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55Fe K-Capture (6.539 keV)
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Figure C.5: DS3b fit to the 55Fe K-capture line. The χ2 was 14.1 with 96 degrees of freedom,
corresponding to a 1.000 P-value.
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68,71Ge (10.367 keV), 68Ga (9.659 keV), 65Zn (8.979 keV) K-Capture

Energy (ADC)
2200 2300 2400 2500 2600 2700 2800 2900 3000

310×

C
o

u
n

ts

0

5

10

15

20

25

30

35

40

45

Energy (ADC)
2200 2300 2400 2500 2600 2700 2800 2900 3000

310×

R
es

id
u

al

-20

-15

-10

-5

0

5

10

15

20

Figure C.6: DS3b fit to the 65Zn, 68Ga and 68,71Ge K-capture lines. The χ2 was 51.6 with 90
degrees of freedom, corresponding to a 1.000 P-value.
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C.3 Data Set 3a Calibrated Peak Fits

65Zn (1.096 keV), 68,71Ge (1.299 keV) L-Capture
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Figure C.7: Calibrated fit for 65Zn L (1.096 keV) and 68,71Ge L (1.299 keV) in DS3a. The fit
has a χ2/DOF =117.1/92 (1.27), corresponding to a P-value of 3.982e-02.
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49V K-Capture (4.966 keV)
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Figure C.8: Calibrated fit for 49V K (4.966 keV) in DS3a. The fit has a χ2/DOF =38.6/46
(0.84), corresponding to a P-value of 7.726e-01.
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55Fe K-Capture (6.539 keV)
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Figure C.9: Calibrated fit for 55Fe K (6.539 keV) in DS3a. The fit has a χ2/DOF =38.5/46
(0.84), corresponding to a P-value of 7.746e-01.
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68,71Ge (10.367 keV), 68Ga (9.659 keV), 65Zn (8.979 keV) K-Capture
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Figure C.10: Calibrated fit for 65Zn K (8.979 keV), 68Ga K (9.659 keV), and 68,71Ge K
(10.367 keV) in DS3a. The fit has a χ2/DOF =59.8/90 (0.66), corresponding to a P-value of
9.941e-01.

243



210Pb (46.539 keV)
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Figure C.11: Calibrated fit for 210Pb (46.539 keV) in DS3a. The fit has a χ2/DOF =34.7/96
(0.36), corresponding to a P-value of 1.000e+00.
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234Th (92.38, 92.80 keV)
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Figure C.12: Calibrated fit for 234Th (92.38, 92.80 keV) in DS3a. The fit has a
χ2/DOF =49.0/96 (0.51), corresponding to a P-value of 1.000e+00.

57Co 122.06 keV)
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Figure C.13: Calibrated fit for 57Co (122.06 keV) in DS3a. The fit has a χ2/DOF =110.9/96
(1.15), corresponding to a P-value of 1.423e-01.
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57Co γ + X-ray summing (136.57 + 7.06 (143.53) keV)
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Figure C.14: Calibrated fit for 57Co γ + X-ray summing (136.57 + 7.06 (143.53) keV) in
DS3a. The fit has a χ2/DOF =104.5/96 (1.09), corresponding to a P-value of 2.594e-01.
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C.4 Data Set 3b Calibrated Peak Fits

65Zn (1.096 keV), 68,71Ge (1.299 keV) L-Capture
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Figure C.15: Calibrated fit for 65Zn L (1.096 keV) and 68,71Ge L (1.299 keV) in DS3b. The
fit has a χ2/DOF =166.2/92 (1.81), corresponding to a P-value of 3.457e-06.
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55Fe K-Capture (6.539 keV)
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Figure C.16: Calibrated fit for 55Fe K (6.539 keV) in DS3b. The fit has a χ2/DOF =25.3/46
(0.55), corresponding to a P-value of 9.945e-01.
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68,71Ge (10.367 keV), 68Ga (9.659 keV), 65Zn (8.979 keV) K-Capture
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Figure C.17: Calibrated fit for 65ZnK (8.979 keV), 68Ga K (9.659 keV) and 68,71Ge K (10.367
keV) in DS3b. The fit has a χ2/DOF =54.5/90 (0.61), corresponding to a P-value of 9.989e-
01.
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210Pb (46.539 keV)
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Figure C.18: Calibrated fit for 210Pb (46.539 keV) in DS3b. The fit has a χ2/DOF =51.6/96
(0.54), corresponding to a P-value of 9.999e-01.
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234Th (92.38, 92.80 keV)
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Figure C.19: Calibrated fit for 234Th (92.38, 92.80 keV) in DS3b. The fit has a
χ2/DOF =104.3/96 (1.09), corresponding to a P-value of 2.645e-01.
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57Co (122.06 keV)
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Figure C.20: Calibrated fit for 57Co (122.06 keV) in DS3b. The fit has a χ2/DOF =78.1/96
(0.81), corresponding to a P-value of 9.085e-01.
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57Co γ + X-ray summing (136.57 + 7.06 (143.53) keV)
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Figure C.21: Calibrated fit for 57Co γ + X-ray summing (136.57 + 7.06 (143.53) keV) in
DS3b. The fit has a χ2/DOF =112.2/96 (1.17), corresponding to a P-value of 1.240e-01.
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C.5 Data Set 3 Calibrated Peak Fits

65Zn (1.096 keV), 68,71Ge (1.299 keV) L-Capture
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Figure C.22: Calibrated fit for 65Zn L (1.096 keV) and 68,71Ge L (1.299 keV) in DS3. The fit
has a χ2/DOF =154.8/92 (1.68), corresponding to a P-value of 4.582e-05.
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49V K-Capture (4.966 keV)
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Figure C.23: Calibrated fit for 49V K (4.966 keV) in DS3. The fit has a χ2/DOF =92.4/46
(2.01), corresponding to a P-value of 5.948e-05.
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55Fe K-Capture (6.539 keV)
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Figure C.24: Calibrated fit for 55Fe K (6.539 keV) in DS3. The fit has a χ2/DOF =69.9/46
(1.52), corresponding to a P-value of 1.304e-02.
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68,71Ge (10.367 keV), 68Ga (9.659 keV), 65Zn (8.979 keV) K-Capture
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Figure C.25: Calibrated fit for 65Zn K (8.979 keV), 68Ga K (9.659 keV) and 68,71Ge K (10.367
keV) in DS3. The fit has a χ2/DOF =73.2/90 (0.81), corresponding to a P-value of 9.014e-01.
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210Pb (46.539 keV)
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Figure C.26: Calibrated fit for 210Pb (46.539 keV) in DS3. The fit has a χ2/DOF =121.5/96
(1.27), corresponding to a P-value of 4.054e-02.
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234Th (92.38, 92.80 keV)
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Figure C.27: Calibrated fit for 234Th (92.38, 92.80 keV) in DS3. The fit has a
χ2/DOF =195.0/96 (2.03), corresponding to a P-value of 1.001e-08.
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57Co (122.06 keV)
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Figure C.28: Calibrated fit for 57Co (122.06 keV) in DS3. The fit has a χ2/DOF =133.6/96
(1.39), corresponding to a P-value of 6.771e-03.
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57Co γ + X-ray summing (136.57 + 7.06 (143.53) keV)
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Figure C.29: Calibrated fit for 57Co γ + X-ray summing (136.57 + 7.06 (143.53) keV) in
DS3. The fit has a χ2/DOF =97.4/96 (1.01), corresponding to a P-value of 4.423e-01.
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Appendix D

RooFit Tools

Extracting χ2 and P-Values from ML Fits

Extracting a goodness-of-fit for an UMxL fit is not as straight forward as a least squares fit.

Assuming we have an unbinned data set (a ROOT TTree), using the RooFit package [200],

we can then fit the data set with an arbitrary PDF that best describes the data (model).

The RooFit package performs the UMxL fit, and will plot the model on a binned histogram,

despite the fact that the fit was performed by UMxL. Using the histogram (which is really a

TGraphAsymmErrors object), we can then easily calculate the χ2 and P-values for the model

and binned histogram. The code below provides a means in which to do this, handling

the asymmetric bin errors using the same method that ROOT uses to fit TGraphAsymmErrors

objects (Source Code Here).

#!/ usr / b in / env python

# encod ing : u t f−8

”””

PSF RooFitResu l tCa lc . py

Created by paddy on 2012−12−14.

Copyr i gh t ( c ) 2012 UNC Chapel H i l l . A l l r i g h t s r e s e r v e d .

”””

import sys

import os

import un i t t e s t

import numpy

from ROOT import ∗

class PSF RooFitResultCalc :

def i n i t ( s e l f , m, d , nFitParams , f i tMin=None , f itMax=None , verbose=False ) :

”””

m = model , d = data , nFitParams = number o f f l o a t i n g parameters

Grab t h e model from the frame :

m = xframe . ge tCurve (” mode l 1 p l o t ”) # i n h e r i t s from TGraph

Grab t h e data from the frame :

d = xframe . g e tH i s t (” h da t a ”) # i n h e r i t s from TGraphAsymmErrors (TGraph )
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Grab the nFitParams from the PDF:

f l pa rams = RooArgSet (PDF. ge tParameter s ( RooArgSet ( r fEne r g y b i n ) ) . s e l e c t B yA t t r i b (” Constant ” ,

kFALSE) )

nFitParams = f l pa rams . g e t S i z e ( )

Returns t h e chiSq , p va l u e , n dof , redChiSq , and a NiceLookingGraph .

NiceLookingGraph i s a TGraphAsymmErrors o b j e c t t h a t we can p l o t w i th l a t e r in case t h e r e are

e n t r i e s w i th

z e ro con t en t ( and we i gh t ed zero , so not used in t h e f i t ) .

”””

x = d .GetX ( )

y = d .GetY ( )

eyh = d . GetEYhigh ( )

ey l = d . GetEYlow ( )

exh = d . GetEXhigh ( )

ex l = d . GetEXlow ( )

i f not f i tMin : f i tMin = x [ 0 ]

i f not f itMax : fitMax = x [ d .GetN( ) − 1 ]

n=0

for i in range ( d .GetN ( ) ) :

i f x [ i ] < f i tMin or x [ i ]> f itMax : continue

# Only con s i d e r data p o i n t s w i th non−z e ro con t en t ( )

i f y [ i ] > 0 . 0 : n += 1

s e l f . graph = TGraphAsymmErrors (n − 1)

s e l f . graph . SetName( d .GetName ( ) )

# // ( y − f ( x ) ) ∗∗2 fsum∗ fsum

# // c = SUM −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− = −−−−−−−−−−−−−−−−−−

# // ey ∗∗2 + (0 . 5∗ ( e x l + exh )∗ f ’ ( x ) ) ∗∗2 ey∗ ey + eux∗ eux

c = 0 .0 # ch i2

r f c = 0 .0

n data pt s = 0 .0

n = 0

for i in range ( d .GetN ( ) ) :

i f x [ i ] < f i tMin or x [ i ] > f itMax : continue

# Only con s i d e r data p o i n t s w i th non−z e ro con t en t ( )

n data pt s += 1.0

i f y [ i ] > 0 . 0 :

s e l f . graph . SetPoint (n , x [ i ] , y [ i ] )

s e l f . graph . SetPointError ( n , ex l [ i ] , exh [ i ] , ey l [ i ] , eyh [ i ] )

n+=1

fsum = y [ i ] − m. Eval (x [ i ] )

# Check to see i f t h e curve l i e s above or be low the data po i n t

i f fsum < 0 : ey = eyh [ i ]

else : ey = ey l [ i ]

# Check to see i f t h e e r r o r bar s go be low zero , i f so s e t them to ze ro

i f ( ex l [ i ] < 0) : ex l = 0 ;

264



i f ( exh [ i ] < 0) : exh = 0 ;

i f ( ey < 0) : ey = 0 ;

i f ( exh [ i ] > 0 or ex l [ i ] > 0) :

# Calc d e r i v a t i v e f ’ ( x ) = ( f ( x+h ) − f ( x−h ) ) / 2h

# Fi r s t , check i f we are a t t h e f i t l i m i t s

x l = x [ i ] − ex l [ i ]

i f xl<f i tMin : x l = f i tMin

xu = x [ i ] + exh [ i ]

i f xu>f itMax : xu = fitMax

h = xu − x l

der = 0 .5∗ (m. Eval ( xu ) − m. Eval ( x l ) ) / h

eux = 0 .5∗ ( ex l [ i ] + exh [ i ] ) ∗der

else : eux = 0.0

eu = ey∗ey + eux∗eux

i f eu <= 0: eu = 1 .

c += fsum∗ fsum / eu

s e l f . n dof = in t ( n data pt s − nFitParams )

s e l f . chiSq = f l o a t ( c )

i f s e l f . n dof : s e l f . redChiSq = s e l f . chiSq / f l o a t ( s e l f . n dof )

else : s e l f . redChiSq = 0.0

s e l f . p va lue = TMath . Prob ( s e l f . chiSq , s e l f . n dof )

i f verbose :

print ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’

print ’ PSF RooFitResultCalc ’

print ’ Resu l t s ’

print ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’

print ’\tN Data Pts : %i ’ % n data pt s

print ’\ tF i t Params : %i ’ % nFitParams

print ’\ t ch i 2 : %.4 f ’ % s e l f . chiSq

print ’\tDOF : %i ’ % s e l f . n dof

print ’\tP−value : %.4 f ’ % s e l f . p va lue

print ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’

def GetFitResul ts ( s e l f ) :

return s e l f . chiSq , s e l f . n dof , s e l f . p value , s e l f . redChiSq , s e l f . graph

def GetPValue ( s e l f ) :

return s e l f . p va lue

def GetChiSq ( s e l f ) :

return s e l f . chiSq

def GetRedChiSq ( s e l f ) :

return s e l f . redChiSq

def GetDOF( s e l f ) :

return s e l f . n dof
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def GetGraphWithoutEmptyBins ( s e l f ) :

return s e l f . graph
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matter: Indirect neutrino signals vis-à-vis direct detection recoil rates,” Phys. Rev. D
82 (Sep, 2010) 063505.

[189] Y. Sofue, “Pseudo Rotation Curve connecting the Galaxy, Dark Halo, and Local
Group,” arXiv:0811.0860 [astro-ph].

[190] M. J. Reid, K. M. Menten, X. W. Zheng, A. Brunthaler, L. Moscadelli, Y. Xu,
B. Zhang, M. Sato, M. Honma, T. Hirota, K. Hachisuka, Y. K. Choi, G. A.
Moellenbrock, and A. Bartkiewicz, “Trigonometric Parallaxes of Massive Star-Forming
Regions. VI. Galactic Structure, Fundamental Parameters, and Noncircular Motions,”
Astrophys. J. 700 no. 1, (2009) 137.

278

http://dx.doi.org/10.1088/0004-637X/756/1/89
http://dx.doi.org/10.1088/0004-637X/756/1/89
http://arxiv.org/abs/1205.4033
http://arxiv.org/abs/1211.7063
http://dx.doi.org/10.1051/0004-6361/201014385
http://dx.doi.org/10.1103/PhysRevD.82.023531
http://dx.doi.org/10.1103/PhysRevD.82.023531
http://dx.doi.org/10.1016/S0927-6505(96)00047-3
http://dx.doi.org/10.1016/S0927-6505(96)00047-3
http://dx.doi.org/10.1016/j.astropartphys.2005.02.004
http://dx.doi.org/10.1016/0370-2693(91)90712-Y
http://dx.doi.org/10.1142/S0218301392000023
http://dx.doi.org/10.1142/S0218301392000023
http://dx.doi.org/10.1103/PhysRev.104.1466
http://physics.nist.gov/PhysRefData/Handbook/Tables/germaniumtable1.htm
http://dx.doi.org/10.1103/PhysRevD.82.063505
http://dx.doi.org/10.1103/PhysRevD.82.063505
http://arxiv.org/abs/0811.0860


[191] J. Bovy, D. W. Hogg, and H.-W. Rix, “Galactic Masers and the Milky Way Circular
Velocity,” Astrophys. J. 704 no. 2, (2009) 1704.

[192] P. J. McMillan and J. J. Binney, “The uncertainty in Galactic parameters,”
arXiv:0907.4685 [astro-ph.GA].

[193] M. Pato, L. Baudis, G. Bertone, R. Ruiz de Austri, L. E. Strigari, and R. Trotta,
“Complementarity of dark matter direct detection targets,” Phys. Rev. D 83 (Apr,
2011) 083505.

[194] SDSS Collaboration, X. X. Xue et al., “The Milky Way’s Circular Velocity Curve to
60 kpc and an Estimate of the Dark Matter Halo Mass from the Kinematics of 2400
SDSS Blue Horizontal-Branch Stars,” Astrophys. J. 684 no. 2, (2008) 1143.

[195] M. C. Smith et al., “The RAVE survey: constraining the local Galactic escape speed,”
Mon. Not. R. Astron. Soc. 379 no. 2, (2007) 755–772.
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[235] W. A. Rolke and A. M. López, “Confidence intervals and upper bounds for small
signals in the presence of background noise,” Nucl. Inst. & Meth. A 458 no. 3, (2001)
745 – 758.

[236] A. Stuart, J. K. Ord, and S. Arnold, Advanced Theory of Statistics, Volume 2A:
Classical Inference and the Linear Model: 6th Ed. London Oxford University Press,
1999.

[237] A. H. Wapstra, Nuclear spectroscopy tables, by A.H. Wapstra, G.J. Nijgh [and] R.
Van Lieshout. North-Holland Pub. Co.; Interscience Publishers, Amsterdam, New
York,, 1959.

281

http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1016/0168-9002(85)90893-9
http://dx.doi.org/10.1103/PhysRevD.82.123509
http://dx.doi.org/10.1103/PhysRevD.82.123509
http://arxiv.org/abs/1107.0717v2
http://dx.doi.org/10.1103/PhysRev.87.387
http://dx.doi.org/10.1103/PhysRev.87.387
http://dx.doi.org/10.1007/BF02655557
http://dx.doi.org/10.1016/S0168-9002(96)00474-3
http://dx.doi.org/10.1016/S0168-9002(96)00474-3
http://dx.doi.org/10.1016/j.nima.2005.03.122
http://dx.doi.org/10.1103/PhysRev.81.835
http://dx.doi.org/10.1103/PhysRev.75.310
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123038
http://dx.doi.org/10.1016/S0168-9002(00)00935-9
http://dx.doi.org/10.1016/S0168-9002(00)00935-9


[238] R. Bernabei, P. Belli, A. Bussolotti, F. Cappella, R. Cerulli, C. Dai, A. d’Angelo,
H. He, A. Incicchitti, H. Kuang, J. Ma, A. Mattei, F. Montecchia, F. Nozzoli,
D. Prosperi, X. Sheng, and Z. Ye, “The DAMA/LIBRA apparatus,” Nucl. Inst. &
Meth. A 592 no. 3, (2008) 297 – 315.

[239] J. J. Simpson, “Measurement of the β-energy spectrum of 3H to determine the
antineutrino mass,” Phys. Rev. D 23 no. 3, (Feb, 1981) 649–662.

[240] M. H. Chen, B. Crasemann, and H. Mark, “Widths and fluorescence yields of atomic
L-shell vacancy states,” Phys. Rev. A 24 (July, 1981) 177–182.

[241] E. Gatti, P. F. Manfredi, M. Sampietro, and V. Speziali, “Suboptimal filtering of
1/f -noise in detector charge measurements,” Nucl. Inst. & Meth. A 297 no. 3, (1990)
467 – 478.

[242] F. Gatti et al., “Study of Sensitivity Improvement for MARE-1 in Genoa,” J. Low
Temp. Phys. 151 (2008) 603–606.

[243] J. Kopp, V. Niro, T. Schwetz, and J. Zupan, “DAMA/LIBRA data and leptonically
interacting dark matter,” Phys. Rev. D 80 no. 8, (Oct, 2009) 083502.

[244] I. Barabanov, S. Belogurov, L. Bezrukov, A. Denisov, V. Kornoukhov, and
N. Sobolevsky, “Cosmogenic activation of germanium and its reduction for low
background experiments,” Nucl. Inst. & Meth. B 251 no. 1, (2006) 115 – 120.

[245] E. J. McGuire, “Atomic M-Shell Coster-Kronig, Auger, and Radiative Rates, and
Fluorescence Yields for Ca-Th,” Phys. Rev. A 5 (Mar., 1972) 1043–1047.

[246] P. Morrison and L. I. Schiff, “Radiative K Capture,” Phys. Rev. 58 (July, 1940) 24–26.

[247] D.-M. Mei, Z.-B. Yin, and S. Elliott, “Cosmogenic production as a background in
searching for rare physics processes,” Astroparticle Phys. 31 no. 6, (2009) 417 – 420.

[248] G. Raffelt and A. Weiss, “Red giant bound on the axion-electron coupling
reexamined,” Phys. Rev. D 51 no. 4, (Feb, 1995) 1495–1498.

[249] CDMS Collaboration, Z. Ahmed et al., “Search for Axions with the CDMS
Experiment,” Phys. Rev. Lett. 103 no. 14, (Oct, 2009) 141802.

[250] S. Yellin, “Finding an upper limit in the presence of an unknown background,” Phys.
Rev. D 66 no. 3, (Aug, 2002) 032005.

[251] J. Orrell, “Pulse Shape Analysis of a p-Type Point Contact Germanium Detector for
Neutrinoless Double-beta Decay and Dark Matter Searches,” Tech. Rep.
M-TECHDOCPHYS-2008-008, Majorana internal document, 2008.

[252] S. R. Elliott and P. Vogel, “Double beta decay,” Ann. Rev. Nucl. Part. Sci. 52 (2002)
115–151, arXiv:hep-ph/0202264.

[253] A. Barabash, “Review of modern double-beta-decay experiments,” Phys. Atom. Nucl.
70 (2007) 1191–1202(12).

282

http://dx.doi.org/10.1016/j.nima.2008.04.082
http://dx.doi.org/10.1016/j.nima.2008.04.082
http://dx.doi.org/10.1103/PhysRevD.23.649
http://dx.doi.org/10.1103/PhysRevA.24.177
http://dx.doi.org/10.1016/0168-9002(90)91331-5
http://dx.doi.org/10.1016/0168-9002(90)91331-5
http://dx.doi.org/10.1007/s10909-008-9716-7
http://dx.doi.org/10.1007/s10909-008-9716-7
http://dx.doi.org/10.1103/PhysRevD.80.083502
http://dx.doi.org/10.1016/j.nimb.2006.05.011
http://dx.doi.org/10.1103/PhysRevA.5.1043
http://dx.doi.org/10.1103/PhysRev.58.24
http://dx.doi.org/10.1016/j.astropartphys.2009.04.004
http://dx.doi.org/10.1103/PhysRevD.51.1495
http://dx.doi.org/10.1103/PhysRevLett.103.141802
http://dx.doi.org/10.1103/PhysRevD.66.032005
http://dx.doi.org/10.1103/PhysRevD.66.032005
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090641
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090641
http://arxiv.org/abs/hep-ph/0202264
http://dx.doi.org/10.1134/S1063778807070083
http://dx.doi.org/10.1134/S1063778807070083


[254] M. D. Messier, “Review of Neutrino Oscllations Experiments,” in Flavor Physics &
CP Violation Conference. 2006. hep-ex/0606013.

[255] M. Frigo and S. G. Johnson, “The Design and Implementation of FFTW3,”
Proceedings of the IEEE 93 no. 2, (2005) 216–231. Software available:
http://www.fftw.org/.

[256] C. E. Aalseth, Germanium spectrometer pulse-shape discrimination for germanium-76
double-beta decay. PhD thesis, University of South Carolina, 2000.

[257] EDELWEISS Collaboration, P. Di Stefano, “Background discrimination capabilities
of a heat and ionization germanium cryogenic detector,” Astroparticle Phys. 14 (2001)
329–337.

[258] P. Belli et al., “Charge non-conservation restrictions from the nuclear levels excitation
of Xe-129 induced by the electron’s decay on the atomic shell,” Phys. Lett. B 465
(1999) 315–322.

[259] C. E. Aalseth et al., “Comment on ’Evidence for neutrinoless double beta decay’,”
Mod. Phys. Lett. A 17 (2002) 1475–1478, hep-ex/0202018.

[260] F. T. Avignone, C. E. Aalseth, and R. L. Brodzinski, “Comment on ’Limits on the
Majorana neutrino mass in the 0.1-eV range’,” Phys. Rev. Lett. 85 (2000) 465.

[261] F. T. Avignone et al., “Confirmation of the observation of 2 neutrino beta-beta decay
of Ge-76,” Phys. Lett. B 256 (1991) 559–561.

[262] W. N. Hess, H. W. Patterson, R. Wallace, and E. L. Chupp, “Cosmic-Ray Neutron
Energy Spectrum,” Phys. Rev. 116 (Oct., 1959) 445–457.

[263] M. W. Goodman and E. Witten, “Detectability of certain dark-matter candidates,”
Phys. Rev. D 31 (Jun, 1985) 3059–3063.

[264] R. Trotta, F. Feroz, M. Hobson, L. Roszkowski, and R. R. de Austri, “The impact of
priors and observables on parameter inferences in the constrained MSSM,” J. High
Energy Phys. 2008 no. 12, (2008) 024.

[265] KIMS Collaboration, H. S. Lee et al., “Limits on Interactions between Weakly
Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors,”
Phys. Rev. Lett. 99 (Aug, 2007) 091301.

[266] KIMS Collaboration, S. C. Kim et al., “New Limits on Interactions between Weakly
Interacting Massive Particles and Nucleons Obtained with CsI(Tl) Crystal Detectors,”
Phys. Rev. Lett. 108 (Apr, 2012) 181301.

[267] CDMS II Collaboration, “Dark Matter Search Results from the CDMS II
Experiment,” Science 327 no. 5973, (2010) 1619 – 1621.

[268] M. T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, and K. Schmidt-Hoberg,
“Resolving astrophysical uncertainties in dark matter direct detection,” J. Cosm.
Astro. Phys. 2012 no. 01, (2012) 024.

283

http://arxiv.org/abs/hep-ex/0606013
http://dx.doi.org/10.1109/JPROC.2004.840301
http://www.fftw.org/
http://arxiv.org/abs/hep-ex/0202018
http://dx.doi.org/10.1103/PhysRev.116.445
http://dx.doi.org/10.1103/PhysRevD.31.3059
http://dx.doi.org/10.1103/PhysRevLett.99.091301
http://dx.doi.org/10.1103/PhysRevLett.108.181301
http://dx.doi.org/10.1126/science.1186112
http://dx.doi.org/10.1088/1475-7516/2012/01/024
http://dx.doi.org/10.1088/1475-7516/2012/01/024


[269] R. Foot, “Mirror dark matter interpretations of the DAMA, CoGeNT, and
CRESST-II data,” Phys. Rev. D 86 (Jul, 2012) 023524.

[270] CDMS Collaboration, Z. Ahmed et al., “Search for annual modulation in low-energy
CDMS-II data,” arXiv:1203.1309 [astro-ph.CO].

[271] J. F. Navarro, C. S. Frenk, and S. D. White, “The Structure of cold dark matter
halos,” Astrophys. J. 462 (1996) 563 – 575.

284

http://dx.doi.org/10.1103/PhysRevD.86.023524
http://arxiv.org/abs/1203.1309
http://dx.doi.org/10.1086/177173

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Dark Matter in the Universe
	The Standard Cosmological Model
	Observational Evidence
	Dark Matter Candidates

	Neutrinos
	A brief history
	Neutrinos in the Standard Model
	Neutrinos beyond the Standard Model
	The Nature of the Neutrino: Dirac or Majorana?

	The Majorana Experiment
	Outline of this Dissertation

	Germanium Detectors
	Basics of Semiconductor Gamma-Ray Detectors
	Introduction
	Electron and Hole Mobility
	Charge Carrier Creation
	Nature of Semiconductors
	Practical Semiconductor Materials

	High-Purity Germanium Detectors
	Configurations of HPGe Detectors
	Electric Field, Electric Potential and Induced Charge
	`Dead' Layers
	Charge Collection
	Electronics and Readout
	Energy Resolution

	Summary

	The Majorana Experiment
	Overview of the Majorana Experiment
	Detector Technology
	Background Mitigation Techniques
	Demonstrator Implementation
	Dark Matter and Motivation for this Dissertation

	MALBEK Hardware and Infrastructure
	Introduction
	MALBEK Characteristics
	Dimensions and Distinguishing Features
	Operational Characteristics

	The Kimballton Underground Research Facility (KURF)
	Shielding
	Shield Stand Design
	Lead Brick Cleaning
	Shield Calibration Track

	The MALBEK DAQ and Slow-Control System
	Overview
	Signal Chain
	Liquid Nitrogen Auto-Fill System

	Discussion

	MALBEK Data and Analysis
	Description of Data Acquired
	With Lead Shims
	Without Lead Shims
	Slow Signal Backgrounds and Lead Shims

	Digital Signal Processing
	Overview
	Energy Calculation
	Rise-Time Discrimination Techniques

	Data Cleaning
	Pulser, Inhibit, and LN Cuts
	Microphonics and Noise Cuts
	Slow Signal Cut
	Order of Cuts Applied
	Cut Efficiencies

	Stability
	Detector Health Versus Time
	SIS3302 Special Mode Stability
	Poisson Distribution of Event Timing in Data Sets 3a and 3b

	Summary of Possible Systematic Uncertainties
	Discussion

	Slow Signals
	Introduction
	The p-n Junction
	Charge Collection Near the p-n Junction

	Slow Signal Dependence on n+ Contact Material
	Data and Analysis of the PHDs Co. Detectors
	Results

	Correlation Between Rise Time and Drift Time
	Experimental Technique
	Data Acquisition
	Data Analysis
	Results

	Modeling Diffusion in the DDR
	Introduction
	Two-Plane Model
	Probabilistic Recombination Model
	Calculating the Shape of Slow-Signals
	Implementing the Diffusion Model in Monte Carlo
	Summary and Outlook

	Attempts at Quantifying Slow-Signal Leakage After the SSC
	Ratio Analysis
	Using a Slow Signal Dominated Source

	Discussion

	Results From a Search for Light WIMPs
	Introduction
	The Signal from WIMP Dark Matter
	Event Rate
	Nuclear Form Factor Correction
	Quenching in Germanium
	Summary

	Fitting Technique
	Rolke Method

	WIMP Dark Matter Limits from MALBEK
	Data and Fitting Model
	Results
	Discussion and Comparison to Other Experiments

	Concluding Remarks

	ORCA Scripts
	Status Script
	Data Filter

	Calculated Waveform Parameters
	Peak Fitting
	Data Set 3a Uncalibrated Peak Fits
	Data Set 3b Uncalibrated Peak Fits
	Data Set 3a Calibrated Peak Fits
	Data Set 3b Calibrated Peak Fits
	Data Set 3 Calibrated Peak Fits

	RooFit Tools
	BIBLIOGRAPHY

