

Ian Guinn, UNC & TUNL Anna Reine, UNC & TUNL Clint Wiseman, UW & CENPA Ralph Massarczyk, LANL On behalf of the MAJORANA collaboration

The broad physics program

of the MAJORANA DEMONSTRATOR at SURF: Final results and new directions

Outline: Final Results and New Directions

lan Guinn (UNC & TUNL)

• Overview of MAJORANA, and final neutrinoless double beta decay result

Anna Reine (UNC & TUNL)

• Studies of radioactive backgrounds and development of a full background model

Clint Wiseman (UW & CENPA)

- Search for beyond standard model physics, dark matter Ralph Massarczyk (LANL)
 - First results from a search for the decay of nature's rarest isotope Tantalum-180

Neutrinoless Double-^β Decay

Discovery of neutrinoless double-β decay would provide:

- Proof that the neutrino is a Majorana fermion
- An explanation for the tiny mass of the neutrino
- A direct observation of lepton number non-conservation
- A mechanism to explain excess of matter over anti-matter
- A pathway to extending the standard model

Neutrinoless double- β decay ($0\nu\beta\beta$) is a hypothetical, ultra-rare process that converts 2 neutrons into 2 protons, 2 electrons and no neutrinos

Current limits on the $0\nu\beta\beta$ half-life in ⁷⁶Ge are around 10²⁶ yrs This was achieved with quasi-background-free measurements with ~100 kg-yrs of exposure

High purity germanium detectors have many advantages in this search:

- Well understood technology
- High detection efficiency
- Low intrinsic backgrounds
- Excellent energy resolution
- Background rejection techniques using pulse-shape analysis
- Long history of $0\nu\beta\beta$ searches

Searching for 0vßß in ⁷⁶Ge

Source & Detector: Array of p-type, point contact detectors 30 kg of 88% enriched ⁷⁶Ge crystals - 14 kg of natural Ge crystals Included 6.7 kg of ⁷⁶Ge inverted coaxial, point contact detectors in final run

Low Background: 2 modules within a compact graded shield and active muon veto using ultra-clean materials

Reached an exposure of ~65 kg-yr before removal of the enriched detectors for the LEGEND-200 experiment at LNGS

The MAJORANA DEMONSTRATOR

- Searching for neutrinoless double-beta decay of ⁷⁶Ge in HPGe detectors, probing additional physics beyond the standard model, and informing the design of the next-generation LEGEND experiment
- Continuing to operate at the Sanford Underground Research Facility with natural detectors for background studies and other physics

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Sp Clara Cu

> Duke University, Durham, NC, and TL Matthew B

> > Indiana University, Bloomington, Walter Pe

Joint Institute for Nuclear Research, Dubna, Ru Sergey Vasi

Lawrence Berkeley National Laboratory, Berkeley, Yuen-Dat Chan, Alan P

Los Alamos National Laboratory, Los Alamos, Pinghan Chu, Steven Elliott, In Wook Kim, Ralph Massarczyk, Samuel J. Me Keith Rielage, Danielle Schaper, Brian

National Research Center 'Kurchatov Institute' Institute of Theoretical and Experimental Physics, Mose Rus Alexander Baral

> North Carolina State University, Raleigh, NC and TL Matthew P. Green, Ethan Blalock, Rushabh (

Oak Ridge National Laboratory, Oak Ridge, Vincente Guiseppe, José Mariano Lopez-Castaño, David Radford, Robert Varner, Chang-Hon

> Osaka University, Osaka, Ja Hiroyasu

ENERGY Office of Science The MAJORANA Collaboration

pain: Pacific Northwest National Laboratory, Richland, WA: Iesta Isaac Arnquist, Maria-Laura di Vacri, Eric Hoppe, Richard T. Kouzes				
JNL:	<mark>Queen's University, Kingston, Canada:</mark>			
usch	Ryan Martin			
, IN:	South Dakota Mines, Rapid City, SD:			
ettus	Cabot-Ann Christofferson, Sam Schleich, Ana Carolina Sousa Ribeiro, Jared Thompson			
<mark>ssia:</mark>	Technische Universität München, and Max Planck Institute, Munich, Germany:			
ilyev	Susanne Mertens			
CA:	Tennessee Tech University, Cookeville, TN:			
Poon	Mary Kidd			
NM:	University of North Carolina, Chapel Hill, NC, and TUNL:			
eijer,	Kevin Bhimani, Brady Bos, Thomas Caldwell, Morgan Clark, Julieta Gruszko, Ian Guinn, Chris Haufe, Re			
Zhu	Henning, David Hervas, Aobo Li, Eric Martin, Gulden Othman, Anna Reine, Jackson Waters, John F. Wil			
cow,	University of South Carolina, Columbia, SC: Franklin Adams, Frank Avignana, Thomas Lannan, David Tadasahi			
bash	Franklin Adams, Frank Avignone, Inomas Lannen, David Tedeschi			
J <mark>NL:</mark> Gala	C.J. Barton, Laxman Paudel, Tupendra Oli, Wenqin Xu			
TN:	University of Tennessee, Knoxville, TN:			
ng Yu	Yuri Efremenko			
pan:	University of Washington, Seattle, WA:			
Ejiri	Micah Buuck, Jason Detwiler, Alexandru Hostiuc, Nick Ruof, Clint Wiseman			
,	Williams College, Williamstown, MA: Graham K. Giovanetti			

TUNL

Tennessee TECH

The MAJORANA Collaboration

OAK RIDGE National Laboratory

THE UNIVERSITY of TENNESSEE

KNOXVILL

A History of the MAJORANA DEMONSTRATOR

Achieving Low Backgrounds

Ultra-pure materials

- Low-mass design NIM A 828 22 (2016) -
- Custom cable connectors and front-end boards ____
- Selected plastics and low-mass Cu coax cables
- Underground electroformed copper NIM A 775 93 (2015)

Machining, cleaning, and assembly

- Cu machining in an underground cleanroom
- Cleaning of Cu parts by acid etching and passivation
- Nitric leaching of plastic parts
- Dedicated glove boxes with a purged N2 environment

Cosmogenic backgrounds

- Limit and track Ge above-ground exposure to prevent _ cosmic activation. NIM A 877 314 (2018) NIM A 779 52 (2015)
- Veto events coincident with muons _

Astropart. Phys. 93 70 (2017)

Excellent Energy Resolution

Energy estimated via optimized trapezoidal filter of ADC-nonlinearity-corrected¹ traces with charge-trapping correction² FWHM of 2.5 keV at $Q_{\beta\beta}$ of 2039 keV (0.12%) is a record for $0\nu\beta\beta$ searches

- Charge trapping correction improves FWHM at 2039 keV from 4 keV to 2.5 keV
- Calibrated on weekly ²²⁸Th calibration data^{3,4}

²²⁸Th line source deployed duringcalibration

IEEE Trans. on Nuc Sci 10.1109/TNS.2020.3043671

2. arXiv:2208.03424 (accepted PRC)

3. NIMA 872 (2017) 16

4. Calibration Procedure Paper to appear soon

P-Type Point Contact Detectors

Advantages of P-type Point-Contact detector geometries

- Low capacitance for improved energy resolution and low thresholds
- Drift time highly dependent on position of charge deposition due to slow charge drift and highly localized weighting potential

IEEE Trans. on Nuc. Sci., 36, 1, 926-930 (1989)

PPC

JCAP 09 (2007) 009

- Small mass (< 1 kg) \bullet
- Excellent background rejection

BeGe

Eur. Phys. J. C 79, 978 (2019)

Excellent background rejection

Pulse Shape Analysis: Multi-Site Events

- Reject by comparing current amplitude to pulse height (AvsE)
- Tuned on ²²⁸Th calibration data to accept 90% of single-site DEP events. Rejects >50% of the Compton continuum near Q_{BB}

0vββ is localized within ~1 mm (i.e. single-site). Many backgrounds are multi-site

New to 2022 result: Improved uniformity and stability, increased signal acceptance by 6%

Pulse Shape Analysis: Surface Events

Ονββ is most likely located in the bulk of the detector. Many backgrounds are located near detector surfaces. Pulse-shape discrimination can distinguish between these topologies.

Inverted Coaxial Point Contact Detectors

Inverted coaxial point contact (ICPC) detectors are larger (1.4 - 4 kg) than PPC detectors (0.6 - 1.2 kg). MAJORANA operated 4 ICPCs from Aug. 2020 to Mar 2021

- Beneficial for background reduction in LEGEND
- Larger range of drift times requires more refined analysis techniques
- MAJORANA has demonstrated comparable performance with ICPCs and PPCs. Best energy resolution for ICPCs to date!

New analysis techniques improve combined energy resolution of ICPCs from 2.9 keV to 2.4 keV FWHM at 2039 keV

MAJORANA DEMONSTRATOR Final Result

Operating in a low background regime and benefiting from excellent energy resolution

²⁰⁸Tl (²³²Th)-like after cuts

PRL 130 062501 (2022)

Final enriched detector active exposure:

 64.5 ± 0.9 kg-yr

Background index at 2039 keV in lowest background configuration

 15.7 ± 1.4 cts/(FWHM t yr)

Second lowest background index by any $0\nu\beta\beta$ search to date!

MAJORANA DEMONSTRATOR Final Ovßß Result

Bayesian Limit: (flat prior on rate) 65 kg-yr Exposure Limit: $T_{1/2} > 7.0 \times 10^{25}$ yr (90% C.I.)

Next Steps in the Search for $0\nu\beta\beta$

to date, benefitting from:

- Clean materials and techniques
- Control of surface exposure
- P-type Point-Contact detectors
- Radiopurity of components near detectors • Best energy resolution of any $0\nu\beta\beta$ to date
- Low noise electronics, for low energy thresholds and more powerful cuts

Next step: the LEGEND collaboration will continue a phased search for 0vBB in ⁷⁶Ge, with an ultimate discovery potential of 10²⁸ yr half-life

• Combine the people, materials and techniques from GERDA (lowest BGs) and MAJORANA (second lowest BGs)

The MAJORANA DEMONSTRATOR PRL **130** 062501 (2022) Backgrounds: 16 cts/(FWHM t yr) Exposure: 65 kg-yr exposure Limit: $T_{1/2} > 8.3 \times 10^{25}$ yr (90% C.I.)

GERDA PRL **125** 252502 (2020) Backgrounds: 1.5 cts/(FWHM t yr) Exposure: 104 kg-yr exposure Limit: $T_{1/2} > 1.8 \times 10^{26}$ yr (90% C.I.)

Final steps for MAJORANA: build a background model

The MAJORANA DEMONSTRATOR achieved the second lowest backgrounds of any $0\nu\beta\beta$

LEGEND-200 is currently operating, with an expected half-life discovery potential of 10²⁷ yrs after 5 years

Outline: Final Results and New Directions

lan Guinn (UNC & TUNL)

• Overview of MAJORANA, and final neutrinoless double beta decay result

Anna Reine (UNC & TUNL)

• Studies of radioactive backgrounds and development of a full background model

Clint Wiseman (UW & CENPA)

- Search for beyond standard model physics, dark matter Ralph Massarczyk (LANL)
 - First results from a search for the decay of nature's rarest isotope Tantalum-180

Backgrounds in the MAJORANA DEMONSTRATOR

Background Modeling Goals

20

²³²Th Excess Implications for LEGEND

LEGEND design builds on radiopurity of near-detector parts in MAJORANA

- Front end electronics •
- Electroformed copper ٠

Radiopurity requirements are essential for near-detector components where LAr veto is less efficient

Determining how much of the DEMONSTRATOR's observed background excess originates in near-detector components has been critically important for LEGEND

21

Background Modeling Goals

- - **Evaluate effect on LEGEND**

Background Modeling Goals

3. Model backgrounds across wide energy range for use in searches for BSM processes **Ex: deviations of the 2\nu\beta\beta spectral shape**

23

Spatial Non-Uniformity of Observed Backgrounds

Module 2: $8.4^{+1.9}_{-1.7}$ cts/ (FWHM t yr)

2615 keV rate in datasets prior to upgrade* *Excluding high background commissioning data

Background originates near the crossarm region, separated from two hot detectors by a small amount of shielding Strengthens conclusion from earlier studies that excess cannot be dominated by contamination uniformly distributed in a near-detector component group and is not a problem for LEGEND

****One detector that was biased down early omitted due to low statistics**

Spectral Fitting Algorithm

Simulation details

MaGe/Geant Monte Carlo simulations

- Approximately 4000 parts, combined into 27 component groups
- 9 decay chains or isotopes
- ⁵⁷Co 40**K** ⁷⁶Ge $(2\nu\beta\beta)$ - ⁶⁸Ge ²³²Th chain - ⁶⁰Co
- ²³⁸U chain

210**Pb**

- ²²²Rn

Frequentist fitting details

- Binned likelihood fits over a wide energy range (from 100 keV to above 2615 keV peak)
- Multiple spectra simultaneously fit
 - Detectors divided into groups based on module and enrichment
- ~100 activities floated during fits

Simulated Datasets

MAJORANA statistics simulated datasets 2νββ half-life determined with <0.5% statistical uncertainty*

*Does not account for systematic effects

Statistical Limitations of Fitting

Fits to Subsets of Data

uniform distribution in a component group within the detector array

A contamination for a component in middle region would not pose a problem for LEGEND

Fits to be performed with final exposure to complete the background model

Systematics studies to fully quantify uncertainties

Ongoing assay measurements of components from suspect regions

Fit to open data confirm earlier studies indicated that the source of the ²³²Th excess cannot be due to a

Summary of Backgrounds

- The MAJORANA DEMONSTRATOR achieved the second lowest background of all neutrinoless double beta decay experiments but observed a significant excess over assay-based projections
- Background excess is due to ²³²Th decay chain and is distributed non-uniformly between the two modules, with an excess near the Module 1 crossarm region
- Spectral fits point to a ²³²Th background excess that does not originate within the detector array
 - Background excess does not pose a problem for the next-generation LEGEND-200 experiment, which uses similar materials near the detectors
- Working towards a final paper including fits with the DEMONSTRATOR's full exposure and evaluations of systematic uncertainties

Outline: Final Results and New Directions

lan Guinn (UNC & TUNL)

• Overview of MAJORANA, and final neutrinoless double beta decay result

Anna Reine (UNC & TUNL)

• Studies of radioactive backgrounds and development of a full background model

Clint Wiseman (UW & CENPA)

- Search for beyond standard model physics, dark matter **Ralph Massarczyk** (LANL)
 - First results from a search for the decay of nature's rarest isotope Tantalum-180

The MAJORANA Low-Energy Program

The MAJORANA Low-E program is founded on four important aspects:

- Ultra-low backgrounds (0.01 cts/kev/kg-d at 20 keV)
- Substantial effort during design & construction to optimize electronics readouts
- Pre-MJ studies (MALBEK, CoGeNT) showing ways to reject surface event backgrounds
- Advanced data cleaning developed based on waveform fitting & wavelet denoising

We have opened up a **new frontier** in sensitivity to fundamental physics signatures in underground, low-background experiments!

Cleaning up the data set

Advanced data cleaning techniques were applied:

C. Wiseman

"a rich and broad physics program"

Tests of Fundamental Symmetries and Conservation Laws • Lepton number violation via neutrinoless double beta decay $(0\nu\beta\beta)$ arXiv:2207.07638 (2022) • $0\nu\beta\beta$ decay to excited states PRC 100 025501 (2019) **MAJORANA DEMONSTRATOR** • Baryon number violation Excellent energy performance, PRD **99** 072004 (2019) and low backgrounds Pauli Exclusion Principle violation in broad energy regions arXiv:2203.02033 (2022) **Standard Model Physics,** and particular backgrounds **Exotic Physics** • In situ cosmogenics PRC 103 015501 (2021) • (alpha, n) reactions PRC **105** 014617 (**2022**) • Cosmic ray muons

C. Wiseman

PRC **105** 064610 (**2022**)

Low-mass dark matter signatures

- Pseudoscalar (axionlike) dark matter
- Vector (dark photon) dark matter PRL **118** 161801 (2017)
- Fermionic dark matter
- Sterile neutrino dark matter arXiv:2206.10638 (2022)
- Primakoff solar axion
- 14.4-keV solar axion PRL **129** 081803 (2022)

- Quantum wavefunction collapse PRL **129** 080401 (**2022**)
- Lightly ionizing particles PRL **120** 211804 (2018)

"a rich and broad physics program"

On the Cover

Axion signatures from coherent Primakoff-Bragg scattering over a 24-hour period.

From the article:

Search for Solar Axions via Axion-Photon Coupling with the MAJORANA DEMONSTRATOR I.J. Arnquist et al. (MAJORANA Collaboration) Phys. Rev. Lett. 129, 081803 (2022)

C. Wiseman

PHYSICAL REVIEW LETTERS

Contents

Articles published 13 August–19 August 2022

	VOLUME 129, NUMBER 8 19 Augu	9 August 2022			
	General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.				
	Search for Spontaneous Radiation from Wave Function Collapse in the MAJORANA DEMONSTRATOR I. J. Arnquist <i>et al.</i> (MAJORANA Collaboration)	080401			
	Floquet Engineering a Bosonic Josephson Junction Si-Cong Ji, Thomas Schweigler, Mohammadamin Tajik, Federica Cataldini, João Sabino, Frederik S. Møller, Sebastian Erne, and Jörg Schmiedmayer	080402			
ී	Measurement-Induced Power-Law Negativity in an Open Monitored Quantum Circuit Zack Weinstein, Yimu Bao, and Ehud Altman	080501			
	Solitons in Overdamped Brownian Dynamics	080601			
	Gravitation and Astrophysics				
	Impact of Dynamical Tides on the Reconstruction of the Neutron Star Equation of State Geraint Pratten, Patricia Schmidt, and Natalie Williams	081102			
	Elementary Particles and Fields				
	Perfect Fluid Hydrodynamic Picture of Domain Wall Velocities at Strong Coupling Romuald A. Janik, Matti Järvinen, Hesam Soltanpanahi, and Jacob Sonnenschein	081601			
	Measurement of the Coherent Elastic Neutrino-Nucleus Scattering Cross Section on CsI by COHERENT D. Akimov et al. (COHERENT Collaboration)	081801			
	Search for Higgs Boson Pair Production in the Four <i>b</i> Quark Final State in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV	081802			
	Search for Solar Axions via Axion-Photon Coupling with the MAJORANA DEMONSTRATOR I. J. Arnquist <i>et al.</i> (MAJORANA Collaboration)	081803			
	Learning Uncertainties the Frequentist Way: Calibration and Correlation in High Energy Physics Rikab Gambhir, Benjamin Nachman, and Jesse Thaler	082001			
	Renormalization of Transverse-Momentum-Dependent Parton Distribution on the Lattice	082002			
	Atomic, Molecular, and Optical Physics				
	Measurement of the Electric Dipole Moment of ¹⁷¹ Yb Atoms in an Optical Dipole Trap T. A. Zheng, Y. A. Yang, SZ. Wang, J. T. Singh, ZX. Xiong, T. Xia, and ZT. Lu	083001			
	Tuning Long-Range Fermion-Mediated Interactions in Cold-Atom Quantum Simulators Javier Argüello-Luengo, Alejandro González-Tudela, and Daniel González-Cuadra	083401			
S.	Observing the Influence of Reduced Dimensionality on Fermionic Superfluids Lennart Sobirey, Hauke Biss, Niclas Luick, Markus Bohlen, Henning Moritz, and Thomas Lompe	083601			

34

New limits on axion-gamma coupling

We perform an energy- and time-dependent analysis, 5 minute precision over a 3 year data set. The solar axion flux is consistent with zero within 2.2σ .

Our limit on the axion-photon coupling: $g_{a\gamma} < 1.45 \times 10^{-9} \text{ GeV}^{-1}$ (95 % CL) Surpasses previous best lab-based limit for 21 years (DAMA, 90% CL) with a 95% CL limit, in the 1-100 eV mass range

C. Wiseman

Search for wave function collapse PRL 129 080401 (2022)

Experiments Spell Doom for Decades-Old Explanation of Quantum Weirdness

Physical-collapse theories have long offered a natural solution to the central mystery of the quantum world. But a series of increasingly precise experiments are making them untenable

A timely result for MAJORANA with interdisciplinary appeal! Featured in Quanta magazine, Oct 2022. Article by Sean Carroll highlights broader interest from the community for this style of test.

PHYSICS TODAY

q 1 | **x**

Page 62, doi:10.1063/PT.3.504

Addressing the quantum measurement problem

Attempts to solve the problem have led to a number of well-defined competing theories. Choosing between them might be crucial for progress in fundamental physics.

- How does the wave function collapse when a quantum system interacts with its surroundings?
- Or is it "continuously spontaneously localized" (CSL) ?
- Objective WFC models add **nonlinear terms** to the Schrodinger equation.

Is there a detectable signature of WFC for a large, low-background, low-threshold experiment? • In the CSL model, particles continuously interact with a noise field and emit low-E X-rays.

the Majorana Demonstrator

I. J. Arnquist et al. (MAJORANA Collaboration) Phys. Rev. Lett. 129, 080401 – Published 16 August 2022

Where is the border between the microscopic and macroscopic worlds?

Search for Spontaneous Radiation from Wave Function Collapse in

Signature of WFC:

 $d\Gamma(E)$ $r_C^2 E$ dE

 λ : collapse rate r_C : correlated radius 1/E : spectral shape

MAJORANA improves previous limits by orders of magnitude!

We expect similar searches from Xe experiments such as LZ, XENON-nT, and PandaX

Search for rare peaks & exotic dark matter

Adapted from APS / Carin Cain

C. Wiseman

There are many DM models (alternative to WIMPs) that would create a sharp peak in Ge detectors. Some examples: Axionlike particles, dark photons, fermionic DM, sterile neutrino conversion, etc.

A common "bump hunt" strategy: set a 90% upper limit on counts attributable to the DM peak (N_U), by scanning a small moving window 1-100 keV. If signal peak overlaps w/ bkg, all strength goes to signal.

Results from exotic DM search

C. Wiseman

Bosonic dark matter, pseudoscalar (axionlike)

Bosonic dark matter, vector (dark photon)

Coming Soon: Charge Conservation & PEP Violation

Another search for rare peaks, in the low-e exposure and in the ²²⁸Th calibration data.

- This paper is another "interdisciplinary" result and test of QM.
- Best CNC result in 22 years for this mode

511 keV

Take-aways from the Low-E program

With low cosmogenic activation, excellent energy resolution, and ~1 keV thresholds,

the DEMONSTRATOR is well-positioned to look for Beyond Standard Model physics at low energy:

- Solar axion-photon coupling, wavefunction collapse (PRL 2022, 2 articles!)
- Bosonic, fermionic, and other exotic dark matter (PRL 2017, <u>arXiv:2206.10638 (2022)</u>)
- Lightly ionizing (fractionally-charged) particles (PRL 2018)
- 14.4 keV solar axions, electron decay (PRL 2017)

MAJORANA results can inform Low-E BSM searches in next generation ⁷⁶Ge: LEGEND! • Advances in background modeling, pulse shape analysis, extensive physics topics list

C. Wiseman

Outline: Final Results and New Directions

lan Guinn (UNC & TUNL)

• Overview of MAJORANA, and final neutrinoless double beta decay result

Anna Reine (UNC & TUNL)

• Studies of radioactive backgrounds and development of a full background model

Clint Wiseman (UW & CENPA)

• Search for beyond standard model physics, dark matter

Ralph Massarczyk (LANL)

• First results from a search for the decay of nature's rarest isotope - Tantalum-180

Physics of isomers ... context

- All physical systems tend to be in the lowest energetic state (ground-state)
- Frederick Soddy, Nature 99 (1917)

"We can have isotopes with identity of atomic weight, as well as of chemical character, which are different in their stability and mode of breaking up."

Carl von Weizsäcker 1936:

Spin is the important quantity

Today isomers we have found from 10⁻⁹ seconds ... >10¹⁶ years

Chemistry Nobel prize 1921

Physics of isomers...excitation

Physics of isomers...deexciation

Physics of isomers...but sometimes

The Tantalum problem

- 1 2 ppm of earth's crust is Ta 99.98% is ¹⁸¹Ta
- Best previous measurement used ~1kg of ^{nat}Ta (~0.2 g of ^{180m}Ta)
- ¹⁸⁰Ta ground state has a half-life of 8 hours
- All the ¹⁸⁰Ta is metastable:

the only naturally occurring long-lived isomer

Testing basic nuclear physics on the extremes

Tantalum... the longest living isomer

Tantalum... the longest living isomer

^{180m}Ta → ¹⁸⁰Ta g.s. Single peak at 93/103 keV (and 77, 40, 37 keV)

Tantalum... the longest living isomer

668.4 keV 337.5 keV 103.5 keV 0 keV

 180mTa → 180Ta g.s.
 Single peak at 93/103 keV (and 77, 40, 37 keV)
 180mTa → 180Hf* / 180W*
 Transition into excited state
 Coincidence measurement

 $180 \text{mTa} \rightarrow 180 \text{Ta} \text{g.s.}$ Single peak at 93/103 keV (and 77, 40, 37 keV) $180 \text{mT}_{a} \rightarrow 180 \text{Hf}^{*} / 180 \text{W}^{*}$ Transition into excited state *Coincidence measurement*

^{180m}Ta interacts with DM

A bit of history...

Measurement	half-life EC	half-life β	
theory expectation	$5.4 \cdot 10^{23}$	$1.4 \cdot 10^{20}$	1.4
Bauminger 1958 Norman 1981 Cumming 1985 Hult 2006 Hult 2009 Lehnert 2017	$\begin{array}{l} 2.3 \cdot 10^{13} \\ 5.6 \cdot 10^{13} \\ 3.0 \cdot 10^{15} \\ 1.7 \cdot 10^{16} \\ 4.5 \cdot 10^{16} \\ 2.0 \cdot 10^{17} \end{array}$	$\begin{array}{l} 2.7 \cdot 10^{13} \\ 5.6 \cdot 10^{13} \\ 1.9 \cdot 10^{15} \\ 1.2 \cdot 10^{16} \\ 3.6 \cdot 10^{16} \\ 5.8 \cdot 10^{16} \end{array}$	
$\begin{array}{c} \text{MJD} \\ \text{Dec} \ 2022 \end{array}$		a few r	nore

half-life $via\,gs$

 $4 \cdot 10^{31} (\gamma); 10^{18} \cdot 10^{19} (IT)$

 $>2.3 \cdot 10^{13}$ - $>1.8 \cdot 10^{14}$ $>3.7 \cdot 10^{14}$

slides

What is needed for a good measurement ?

- A lot of material
- Detector with excellent energy resolution
- If possible multiple detectors that can detect coincidences
- A clean, ultra lowbackground system and environment

Perfect use of MJD facility after enriched detector removal

Installation and preparation

- Material cleaning following MJD standards
- 120 disks, 99.999% pure

Installation

Installation and run time

- 17.39 kg installed
 - ~ 2 g ^{180m}Ta
- 23 active detectors
- Detectors and Ta arranged to maximize efficiency
- Start of data taking: 05/2022
- Today: first data release:
 - 229 days of data
 - 225.5 days of ^{180m}Ta data
 (97.7% life time)

Spectral analysis

- First look at blinded data
- Low contributions from natural radioactivity ($< 0.5 \text{ mBq/kg}_{Ta}$)
- Contributions from surface activation in Ta
 - ¹⁸²Ta 114 days half-life \bigcirc
 - ¹⁷⁵Hf 70 days half-life \bigcirc
- Background improving over time

Unblinding... (almost live)

Signal region for deexcitations after β -decay

*Note: blinding regions are 4 keV wide

Signal region for deexcitations after electron capture

Unblinding... (almost live)

Signal region for deexcitations after β -decay

Signal region for deexcitations after electron capture

Measurement

Results

- Background of early data (with ¹⁸²Ta) comparable with previous efforts
- Main improvements
 - \circ Efficiency (x2-3)
 - Mass (x12)
 - Detector number (23)
 - Background
- multiplicity analysis
 - Not done in past
 - Significant background improvement

theory expectatio

Bauminger 1958 Norman 1981 Cumming 1985 Hult 2006 Hult 2009 Lehnert 2017

 $\begin{array}{c} \mathrm{MJD} \\ \mathrm{Dec} \ 2022 \end{array}$

	half-life EC	half-life β	half-life $viags$
on	$5.4 \cdot 10^{23}$	$1.4 \cdot 10^{20}$	$1.4 \cdot 10^{31} (\gamma); 10^{18} \cdot 10^{19} (IT)$
3	$\begin{array}{l} 2.3 \cdot 10^{13} \\ 5.6 \cdot 10^{13} \\ 3.0 \cdot 10^{15} \\ 1.7 \cdot 10^{16} \\ 4.5 \cdot 10^{16} \\ 2.0 \cdot 10^{17} \end{array}$	$\begin{array}{l} 2.7 \cdot 10^{13} \\ 5.6 \cdot 10^{13} \\ 1.9 \cdot 10^{15} \\ 1.2 \cdot 10^{16} \\ 3.6 \cdot 10^{16} \\ 5.8 \cdot 10^{16} \end{array}$	$>2.3 \cdot 10^{13}$ - $>1.8 \cdot 10^{14}$ $>3.7 \cdot 10^{14}$ - Prel Pan
	$1.0\cdot10^{19}$	$1.2\cdot 10^{19}$	Prepa >8.8 · 10 ¹⁷

First half-life sensitivities for classic β -decays and electron captures > 10¹⁹ years (only some α and $\beta\beta$ longer)

Improvements of 2-3 orders of magnitude

iminary Per in Fation

Dark matter induced deexcitation

- No observation of ^{180m}Ta decay \rightarrow no DM-induced decay
- Improved sensitivities to DM models that couple to nuclei (left)
- Additional sensitivities to more complex DM with multiple states and or particles (right)

Dark matter induced deexcitation

- No observation of ^{180m}Ta decay \rightarrow no DM-induced decay
- Improved sensitivities to DM models that couple to nuclei (left)
- Additional sensitivities to more complex DM with multiple states and or particles (right)

duced decay ple to nuclei (left) with multiple states

Summary

- Most sensitive search for half-life measurements in isomers world-wide
 - First data improved previous measurements by \bigcirc **2-3 orders of magnitude**
 - Background continues to improve \bigcirc
 - Estimated final sensitivity of 10¹⁹ years in all channels \bigcirc has the potential to discover the decay
- Made possible by
 - The unique facility at SURF \bigcirc
 - The cleanliness procedures and performance \bigcirc of the Majorana experiment
 - LANL LDRD LA-UR-23-21726 \bigcirc

Overview of MAJORANA, and final neutrinoless double beta decay result

• Established methods & techniques for the next generation of Ge experiments

Studies of radioactive backgrounds and developing a background model

- Developed a better understanding of background sources Search for beyond standard model physics, including dark matter
 - Auxiliary searches increase the impact of large underground arrays

First results from a search for the decay of nature's rarest isotope -Tantalum-180

Continuing to get excellent science from the MAJORANA DEMONSTRATOR!

Review, summary, and thanks!

