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Abstract

Absolute Determination of the 22Na(p, γ)23Mg Reaction Rate: Consequences for
Nucleosynthesis of 22Na in Novae

Anne L. Sallaska

Chair of the Supervisory Committee:
Professor Alejandro Garcia

Physics Department

Hydrodynamic simulations of classical novae on ONe white dwarfs predict substantial production

of 22Na. Observation of 22Na decay should be correlated with the corresponding nova because

the half life of 22Na is only 2.6 years. The 1275-keV gamma ray from the β decay of 22Na is,

therefore, an excellent diagnostic for the nova phenomenon and a long-sought target of gamma-ray

telescopes. Nova simulations determine the maximum 22Na-detection distance to be < 1 kpc for

the INTEGRAL spectrometer SPI, consistent with its non-observation to date. However, model

estimates are strongly dependent on the thermonuclear rate of the 22Na(p, γ)23Mg reaction, which

is the main destruction mechanism of 22Na in novae. The 22Na(p, γ)23Mg rate is expected to be

dominated by narrow, isolated resonances with Ep < 300 keV. The currently employed rate is based

on a single set of absolute resonance-strength measurements with Ep ≥ 290 keV, and one relative

measurement of resonances with Ep ≥ 214 keV. Recently, a new level has been found in 23Mg

which would correspond to a resonance at Ep = 198 keV that might dominate the reaction rate at

nova temperatures.

We have measured the 22Na(p, γ)23Mg resonance strengths directly and absolutely, in addition to

resonance energies and branches. Proton beams were produced at the University of Washington and

delivered to a specially designed beam line that included rastering and cold vacuum protection of the
22Na-implanted targets (fabricated at TRIUMF-ISAC). Two high-purity germanium detectors were

employed and surrounded by anticoincidence shields to reduce cosmic backgrounds. Measurements





were made on known 22Na+p resonances, which we observed at laboratory energies Ep = 213, 288,

454, 610 keV and on proposed resonances at Ep = 198, 209, and 232 keV. The proposed resonances

were not observed, and the upper limit placed on the 198-keV resonance strength indicates that the

resonance at Ep = 213 keV still dominates the reaction rate across the temperature range important

to novae. However, we measured the strengths of the known resonances to be higher than previous

direct measurements by factors of 2.4 to 3.2. Using both post-processing network calculations and

hydrodynamic simulations to estimate the effect of the new 22Na(p, γ)23Mg reaction rate, we find

the amount of 22Na produced by novae to be lower by a factor of 2 from current estimates, revising

the prospects for its observation. Full analysis of results are presented. Experimental improvements

and future prospects are discussed.
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Chapter 1

INTRODUCTION

Classical novae are an excellent laboratory in which to explore the details of explosive nucle-

osynthesis. Nova temperatures are high enough to ignite a chain of nucleosynthetic processes far

above what main sequence stars can synthesize, yet they remain low relative to other explosive

events. Therefore, before attempting to deconstruct much hotter and more complicated events such

as supernovae, it is beneficial to unravel the nova system. A key to demystifying explosive nu-

cleosynthesis in general is the detection of specific radionuclides in our Galaxy. The elusive 22Na

radionuclide is thought to be produced by nova and Type II supernova explosions and but has yet

to be observed by orbiting gamma-ray telescopes. This isotope, in particular, is pivotal because its

half life (2.6 yr) is long enough to survive the explosion yet short enough to allow identification of

its progenitor star. Although other radionuclides have been observed, as discussed in Sec. 2.2, none

have this unique property and are specifically associated with nova outbursts above other astrophys-

ical phenomena. With the aid of low-energy accelerators and radioactive targets, one can recreate

some of these important reactions directly in a laboratory setting and aid in validating or nullifing

theoretical models of these violent stellar events.

1.1 Motivation

A classical nova is the consequence of thermonuclear runaway on the surface of a white-dwarf star

that is accreting hydrogen-rich material from its partner in a binary system. Discussed in detail in

Sec. 2.3, such novae are ideal sites for the study of explosive nucleosynthesis because the observa-

tional [2], theoretical [3, 4], and nuclear-experimental [5, 6] aspects of their study are each fairly

advanced. In particular, due to the relatively low peak temperatures in nova outbursts (0.1 < T < 0.4

GK), most of the nuclear reactions involved are not too far from the valley of beta stability to be

studied in the laboratory, and the corresponding thermonuclear reaction rates are mostly based on

experimental information [5]. It may also be quite helpful to obtain a more firm grasp of nova
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nucleosynthesis before venturing to the more complicated system of nucleosynthesis in supernovae.

It is important to reduce uncertainties in the rates of key reactions that are expected to affect the

production of 22Na so that accurate comparisons can be made between observations and models [7].

The production of 22Na in novae depends strongly on the thermonuclear rate of the 22Na(p, γ)23Mg

reaction [5, 7, 8], which is the predominant mechanism for destruction of 22Na. The thermonuclear
22Na(p, γ) reaction rate in novae is dominated by narrow, isolated resonances with laboratory proton

energies Ep < 300 keV. Consequently, the rate is dependent on the energies and strengths of these

resonances, which have been investigated both indirectly and directly in the past. Indirect informa-

tion on potential 22Na(p, γ) resonances has been derived from measurements of the 24Mg(p, d) [9],
25Mg(p, t) [10], and 22Na(3He,d) [11] reactions, and from the beta-delayed proton- and gamma-

decays of 23Al [12, 13, 14]. The first published attempt to measure the 22Na(p, γ) reaction directly

employed a chemically prepared, radioactive 22Na target and produced only upper limits on the

resonance strengths [15]. A measurement contemporary to Ref. [15] in the range Ep > 290 keV

by Seuthe et al. employed ion-implanted 22Na targets [16], resulting in the first direct observa-

tion of resonances and the only absolute measurement of resonance strengths. Later, Stegmüller et

al. [17] discovered a new resonance at 213 keV and determined its strength relative to the strengths

from Ref. [16]. More recently, a new level in 23Mg (Ex = 7770 keV) has been discovered us-

ing the 12C(12C,nγ) [1] reaction. This level corresponds to a 22Na(p, γ) laboratory proton energy

of 198 keV, and the authors of Ref. [1] proposed that this potential resonance could dominate the
22Na(p, γ) reaction rate at nova temperatures, shown in Fig. 1.1. With the advent of radioactive ion-

beam facilities coming online in the last decade, the doors have been opened to directly explore (in

inverse kinematics) a plethora of reactions relevant to nuclear astrophysics which have previously

been unmeasurable; however, the 22Na half life is long enough that a direct measurement in regular

kinematics is still a viable option.

1.2 The Experiment: Measuring the 22Na(p,γ) Reaction Rate

We have measured the energies, strengths, and branches of known resonances [16, 17] and searched

for proposed [1, 12, 13, 14] resonances in the energy range Ep ∼ 195 to 630 keV. The measurements

were performed on a new 0◦ beamline of the tandem Van de Graaff accelerator at the Center for
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Figure 1.1: Individual resonance contributions to the thermonuclear reaction rate for 22Na(p, γ)
derived from the strengths and energies tabulated in Jenkins et al. [1]. Uncertainties shown are
calculated analytically.

Experimental Nuclear Physics and Astrophysics (CENPA) of the University of Washington with

ion-implanted 22Na targets prepared at TRIUMF-ISAC. To achieve high currents at low energies,

we utilized a terminal ion source (TIS). Two high-purity 100% (as compared to 3 in × 3 in NaI)

germanium (HPGe) detectors were used at ± 55◦ to the beam axis to detect the gamma rays pro-

duced from the bombardment of protons on the 22Na target. Because of the harsh environment

generated from the radioactivity, 26 mm of lead was placed between the detector and the target to

lower the detector rate to an acceptable level. Although the radioactivity provides an extremely

large background signal around 1 MeV, the dominant background signal (not beam-related) in the

energy region of interest to the resonance measurements (∼ 5 MeV) is from cosmic rays. Therefore,

cosmic-ray anticoincidence shields, consisting of planar and annular plastic scintillator detectors

surrounded by lead, were installed around each germanium detector. Thanks to evaporated protec-

tive layers [18], the targets exhibited little to no degradation over ∼ 20 C of bombardment. Using

mainly the strengths and energies obtained in this work together with supplemental information
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from other work [16, 19], we have re-evaluated the thermonuclear reaction rate of 22Na(p, γ), and

full hydrodynamic simulations have been performed to estimate the effect of the new rate on the

flux of 22Na from novae. This is a detailed presentation of our experiment, its results, and their

implications, expanding on our previous reports [20, 21].

1.2.1 Strategy

The number of reactions, NR, produced by a beam of incident particles with areal density dNb/dA

on a target with areal density dNT/dA is given by

NR = σ

∫
dNT

dA
dNb

dA
dA, (1.1)

where σ is the cross section. Conventional methods employ a small-diameter beam that impinges

on a large-area target, where the target density is nearly uniform. However, this technique can lead

to target damage in cases where large beam currents are used, and there is a long history of differing

results on resonance strengths that have been attributed to target instabilities [22, 23, 24, 25]. We

designed our experiment closer to the opposite limit, similar to Ref. [26], where the beam was swept

over an area larger than the full extent of the target with a rastering device. In the limit of uniform

beam density over the target area, Eq. 1.1 becomes

NR = σNT
dNb

dA
. (1.2)

This method requires knowledge of only the total number of target atoms and, thus, is not very

sensitive to target non-uniformities. On the other hand, this method also requires a determination

of the beam density. The reaction yield, Y , is defined as the number of reactions per incident

particle [27] and is given by

Y = σNTρb, (1.3)

where ρb =
dNb
dA /(Q/e) is a beam density normalized to the accumulated charge, Q.

In addition, we determined the integrated yield of the excitation function over the beam energy,

minimizing uncertainties associated with the energy loss in the target and beam energy distribution,

which can be substantial in determinations using only the yield at a particular energy. The latter

method, which was used in Ref. [16], depends on knowing the energy loss in the target, the tar-
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get stochiometry and uniformity, and often assumes stable target conditions, which are unlikely in

experiments with currents of tens of microamps, such as ours.

Beginning with Eq. 1.3, the integrated yield for a finite-thickness target is given by∫
Yi dE = 2π2o2 m + M

M
NT ρb ωγi, (1.4)

where
∫

Yi dE is the integral over the laboratory beam energy E with a range spanning the resonance

for branch i, m is the projectile mass, M is the target mass, and ωγi is the partial resonance strength.

The total resonance strength, ωγ, is simply equal to the sum of the partial strengths for all branches.

o is the center-of-mass de Broglie wavelength and is given by:

o =
m + M

M
~

√
2mElab

. (1.5)

A complete derivation of Eq. 1.4 is given in the next chapter.

1.2.2 Challenges

Although this experiment was straightforward in theory–proton beams bombard a target, and the

gamma rays produced in the reaction are detected–it was quite challenging in practice. The main

challenge was acquiring data in a very harsh radioactive environment. 22Na beta decays to an excited

state of 22Ne, which then de-excites to the ground state by emitting a 1275-keV gamma ray, as

shown in Fig. 1.2. In the substrate, the positron annihilated with an electron, producing two 511-

keV gamma rays. This onslaught of 511- and 1275-keV gamma rays led to very high detector rates,

which in turn caused massive detector dead times. In addition to high detector thresholds, shielding

was necessary to decrease detector rate, and the details are discussed in Sec. 3.2.1.

Another challenge for this experiment was that the resonance strengths are weak, ranging from

only a few meV to a few hundred meV due to the Coulomb barrier at low proton energies. As is

derived in the next chapter, the reaction rate is proportional to the negative exponential of the reso-

nance energy, so even resonances with very weak strengths can have significant contributions to the

total rate if the corresponding proton energy is low. Weak resonances signify that copious amounts

of data for extended periods of time or high beam currents are needed to achieve decent statistics.

This in turn could cause target degradation, another non-trivial experimental challenge. Longer or

more intense irradiations begin to erode any protective layer and then the target substrate. Because
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Figure 1.2: Decay scheme of 22Na.

we integrated resonance yields, our method was not very sensitive to evolving target distributions

within the substrate due to proton bombardment; however, the possible sputtering of 22Na nuclei out

of the substrate does affect our method and must be taken into account. Characterizing this transfor-

mation can be very difficult so much effort was expended to design targets which suffered minimal

degradation [18]. Target fabrication is discussed in Sec. 3.4, and details of possible degradation and

how it was handled in the analysis are outlined in Sec. 5.4.

1.3 Previous Measurements of 22Na(p,γ) Resonances

In 1990, Seuthe et al. [16] was the first to measure the strengths of the 22Na(p, γ) reaction rate

directly and absolutely. In 1996, Stegmüller et al. [17] followed with a direct, relative measurement

and discovered an additional resonance at Ep = 213 keV and concluded that it dominated the reaction

rate. Eight years later, Jenkins et al. [1] performed an indirect measurement of the rate using heavy-

ion fusion of 12C+12C, which unveiled a new level in 23Mg. The corresponding 22Na(p, γ) resonance

to this level would supersede all others for nova temperatures if its strength was found to be on the

order of 4 meV. The following subsections detail each of these key papers, leading to previous

determinations of the 22Na(p, γ) reaction rate.
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1.3.1 Seuthe

Before the experiment detailed in this dissertation was conducted, the measurement by Seuthe et

al. [16] was the first and only direct, absolute measure of 22Na(p, γ) resonance strengths. (Previ-

ously, only upper limits had been set with chemically fabricated targets [15].) Seuthe et al.’s 22Na

targets were ion implanted, like our own; however, with the ISOLDE-II mass separator at CERN,

they implanted 700 µCi into a pure Ni layer (40 mg/cm2 thick) on a 0.2 mm Ta backing at 60 keV.

After scanning the target area with a NaI(Tl) detector (similar to our method with a Geiger counter

described in Sec. 3.4.1), Seuthe et al. estimated that their target was homogenous with a mean radius

of 4.25 ± 0.25 mm.

Using the 450-kV Sames accelerator and the 4-MV Dynamitron tandem accelerator at the Ruhr-

Universität Bochum, they achieved up to 80 µA proton currents for Ep = 0.17-1.29 MeV. In their

chamber, a 1-m long liquid-nitrogen cold trap was employed with a 9-mm diameter collimator on

the downstream end. A thin, copper disc (1 cm downstream of the cold trap and 2 cm upstream

of the target) served as an electron suppressor, biased at −300 V, and as a final collimator with an

open diameter of 11 mm. The chamber maintained a pressure of ∼ 2 × 10−7 torr, and the target

was directly water-cooled. A significant difference between this experiment and our own is the

absence of a rastering mechanism for their proton beam. It is possible that their non-rastered beam

effectively carved out a hole in the middle of their target, since the intense heat from the beam spot

was more concentrated and not moved to different positions on the target continuously throughout

bombardment.

Seuthe et al. utilized three different detector systems. First was a D2O cylindrical tank (242

liters), surrounded by 30 3He proportional counters. This detector provides no gamma-ray energy

resolution, but because its threshold is at 2.22 MeV for the photodisintegration of deuterium, the

detector rate in the presence of the hot 22Na target was quite low (only a few events per second).

Secondly, a separate, exchangeable detector system was installed in a beam pipe passing in the

center of the tank at 0◦ to the beam axis. For low-resolution measurements, a 7.6 cm diameter ×

7.6 cm NaI(Tl) crystal was used and for higher resolution was replaced with a 145 cm3 intrinsic Ge

detector. For reference, our two Ge detectors, discussed in detail in Sec. 3.2.1, each had a crystal

volume of 356 cm3 and were protected by cosmic-ray anticoincidence shielding to filter out excess
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backgrounds.

Before Seuthe et al.’s measurement, no 22Na(p, γ) resonances had ever been observed in the

laboratory. Therefore, the first effort was to search for their possible presence with the D2O and

NaI(Tl) detector combination by stepping in 5 keV increments over the energy range from 0.17-

1.29 MeV. Throughout 100 C of deposited charge, this search produced observable resonances at

Ep = 290, 457, 503, 613, 740, and 796 keV. For the resonances at 290- and 613-keV, branches to the

second and fourth excited states and to the ground state, first, and second excited states, respectively,

were determined with the Ge detector. Because of 22Na target deterioration and a fivefold increase

in backgrounds during the 100 C bombardment, no other resonances yielded meaningful branching

information. However, even after 140 C, the 22Na loss was only 35%. Resonance energy information

was obtained with methods similar to ours, described in Sec. 5.5.

In order to extract the resonance strengths, they used the conventional method mentioned in

Sec. 1.2.1, whereby a narrow beam irradiates an extended target. This method employs peak yields

and a determination of both the target density and effective stopping power. In order to determine

the density, the target activity was measured to be 0.69 ± 0.07 mCi with the NaI(Tl) detector. After

assuming a spatial distribution as discussed above, a density, NNa, of (4.3 ± 0.5) × 1015 atoms/cm2

was calculated. An effective stopping power, εeff , was necessary because the active 22Na atoms were

embedded in a matrix of inactive Ni host atoms. This quantity is calculated via:

εeff =
∆eff

NNa
= εNa + xεNi, (1.6)

where ∆eff is the effective target thickness measured at the 613-keV resonance, εi is the stopping

power for i = Na or Ni, and x is the ratio of Ni to Na areal density. The extracted value for x was

equal to 130.

Absolute efficiency is a necessary component in both this measurement and in ours. The effi-

ciency was measured with calibrated 60Co and RdTh sources, in addition to using gamma rays from
15N(p, αγ) and 19F(p, αγ) reactions, and was in good agreement with calculation. Results for the

yield from each detector are in fairly good agreement with each other (additionally validating the

efficiency determination), and their weighted average was used to calculate the strength. A dead

time correction ranging from 10-40% was also applied. There is a notation that in addition to the

peak yield analysis, an integrated yield analysis was performed, and the two methods agreed. No
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further documentation of this agreement has been published.

Using the same narrow-resonance formalism as our experiment, Seuthe et al. also calculated

the thermonuclear reaction rate and determined that the resonance at Ep = 290 keV dominated the

rate in the temperature region of interest to novae. Contributions from direct capture were also

calculated.

1.3.2 Stegmüller

Building on the results of Seuthe et al. [16], Stegmüller et al. [17] also performed a direct (but

relative) measurement of the 22Na(p, γ) reaction rate. This group did not attempt an absolute mea-

surement and aimed only to probe the possible resonances at lower energies than Seuthe et al.

observed, as it is possible for a lower-energy resonance to dominate the reaction rate even with a

smaller value for the resonance strength. The accelerator facility utilized by Seuthe et al. was also

used to measure the resonances, in addition to using a similar experimental setup. Stegmüller et

al.’s 22Na targets were also ion-implanted on a Ni backing and had an activity of 190 µCi at the time

of proton bombardment. A similar target distribution scan was performed with a Ge detector. This

target, however, did not withstand bombardment like Seuthe et al.’s did: after ∼ 15 C, a catastrophic

loss of target was discovered, when the peak yield of the 290-keV resonance used to monitor target

degradation dove by nearly an order of magnitude due to an increase of the beam current from 60 to

90 µA. Yet, even up to 11 C, the target had deteriorated by 20%, which is fairly high compared to

its predecessor in the Seuthe et al. measurement.

Stegmüller et al. employed a high-purity Ge detector with 100% efficiency as compared to NaI.

A 5-cm thick lead shield was placed between the target and detector to decrease the event rate to

an acceptable level. The efficiency was determined using resonances from the 11B(p, γ), 14N(p, γ),

and 27Al(p, γ) reactions. An additional element this experiment possessed that ours did not was that

all efficiency measurements were carried out in the presence of the strong 22Na source. (We did,

however, verify that this difference in dead time had a negligible effect on our gamma-ray yields

(Sec. 3.3), although it did cause a slight shift of the gamma-ray energies (Sec. 5.5.1), which we

corrected.)

Stegmüller et al. observed a new resonance at Ep = 213 keV and determined the strength
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relative to the 290- and 613-keV resonances measured by Seuthe et al. Skirting potential problems

with peak yields, integrated yields were used to extract the relative strength. As a check, Stegmüller

et al.’s ratio of the 613- to the 290-keV resonance strength was 16.1 ± 1.3, as compared to Seuthe

et al.’s ratio of 16.8 ± 4.3, which are clearly in stellar agreement. Due to rapid target deterioration

that occurred during the bombardment of the 213-keV resonance, its strength was more difficult to

extract, and the excitation function had to be split up into three regions with different assumptions

about the state of the target. In order to account for unobserved branches, the value of the resonance

strength was increased from 1.4 ± 0.3 to 1.8 ± 0.7 meV.

Stegmüller et al. also observed a new branch for the 290-keV resonance, and, in the absence

of a finite measurement, upper limits were placed on branches to the first four levels of 23Mg for

resonances at Ep = 213, 225, 288, and 613 keV. The reaction rate was also re-evaluated, which

indicated that the newly discovered 213-keV resonance dominated the rate in novae.

1.3.3 Jenkins

Using the heavy-ion fusion of 12C+12C, Jenkins et al. [1] performed an indirect measure of the
22Na(p, γ) reaction rate. This indirect method avoided the difficulty of 1) fabricating a hot radioac-

tive 22Na target, and 2) working in its vicinity that could cause not only health and safety problems

but massive detector rates and dead times. Jenkins et al. populated the particle-unbound states of
23Mg by bombarding a 40 µg/cm2 thick 12C target with a 22 MeV 12C beam from the ATLAS accel-

erator at Argonne National Laboratory. Gammasphere, a 4π gamma-ray spectrometer consisting of

100 HPGe detectors, was used to detect the following gamma rays with excellent energy resolution.

This measurement indicates there are possible resonances at 198.2(19) and 209.4(17) keV, which

have never been observed previously. The potential 198-keV resonance decays to 9/2+ and 5/2+

states (strongest branch), and, by mirror symmetry with the 23Na nucleus, Jenkins et al. associate

this initial 23Mg state with 9/2−. Further documentation on the rationale behind this assignment was

never published. However, if this spin-parity assignment is accurate, Jenkins et al. set an upper limit

of 4 meV on the resonance strength, thereby non-negligibly increasing the 22Na(p, γ) reaction rate.

It is difficult to say whether or not the 209-keV resonance is a separate resonance or has mistakenly

been separated from the 214-keV resonance, as the density of states in this energy region is quite
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high. We investigate both possibilities in Sec. 5.2.
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Chapter 2

THEORY

This chapter describes the theory behind various aspects of nuclear astrophysics. First, a brief

description of stellar evolution is given, followed by a more detailed account of the type of stellar

path relevant to this dissertation: the nova. The main motivation for this dissertation is to further

understand the nucleosynthesis that occurs in these violent explosions by helping in the search

for their signatures, certain cosmic gamma-ray emitters. Two very important quantities in nuclear

astrophysics are the yield of an interaction between two particles, whether in the laboratory or in

a stellar environment, and the rate of the interaction. Both will be described in detail later in this

chapter for narrow resonant reactions.

2.1 Stellar Evolution

The beginning stages of stellar life originate from the gravitational coalescing of gas and dust par-

ticles, which gradually converts gravitational energy into thermal energy, heating the protostar.

Depending on the mass of the initially formed object, different paths are available for evolution.

Figs. 2.1 and 2.2 illustrate a snapshot into the lives of stars (Hertzsprung-Russell diagrams), and

Fig. 2.3 shows several sample life cycles of stars with varying masses. The Hertzprung-Russell

diagrams of Figs. 2.1 and 2.2 plot increasing luminosity, L, as a function of decreasing surface tem-

perature, Ts, or increasing color index, or spectra class. In a simplistic model of a star radiating as a

black body, luminosity, star radius R, and temperature are related by:

L = 4πR2σT 4
s , (2.1)

where σ is the Stefan-Boltzmann constant. Depending on their temperature and where they are

in their life cycle, these stars can synthesize different nuclei, a partial chart of which is shown in

Fig. 2.4.

Nuclear reactions provide the energy source in stars and temporarily halt gravitational contrac-

tion, maintaining a balanced equilibrium until the element fueling the reactions is depleted. Once



13

Figure 2.1: Detailed Hertzprung-Russell dia-
gram [28]. Luminosity is relative to the sun. Tem-
perature, color index, and spectral type are all
shown on the x-axis. Position of the sun is in-
dicated slightly left of center.

Figure 2.2: Qualitative Hertzprung-Russell dia-
gram, comparing two sample lifecycles of a sun-
like star and a much more massive star. Repro-
duced from [27].

Figure 2.3: Three sample lifecycles of stars [29].
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Figure 2.4: Partial chart of nuclides. Reproduced and expanded from Ref. [30].

formed, most stars start out on the main sequence sector, burning hydrogen into helium which pro-

vides the pressure to combat collapse due to gravity. The simplest energy generation cycle is this p-p

chain, taking 4 protons and, through a series of nuclear reactions, ending with 4He, two positrons,

two electron neutrinos, and 27 MeV of liberated energy. Quantum mechanical tunneling is essential

to most processes occurring in stars, as the kinetic energy of the initial nuclei is below the Coulomb

barrier.

If the temperature is high enough (∼ 1.7 × 107 K) and some remnant carbon is already present,

these stars can ignite the CNO cycle as a path to produce helium [31]. When the hydrogen fuel

has been depleted, helium burning then commences. The triple-alpha process, which forms 12C

from 4He, circumvents elements in between these cycles (lithium, beryllium, and boron) from being

formed with any high probability. As lithium, beryllium, and boron are highly reactive, upon for-

mation during the p-p cycle, they are almost immediately destroyed. However, their measured solar
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system abundance is much higher than is estimated from stellar nucleosynthesis owing to production

in the interstellar medium via interactions of protons with very energetic cosmic rays; the density

in free space is drastically lower than in stars, therefore their ability to react with other neighboring

nuclei is greatly reduced.

Depending on the mass, stars can survive on the main sequence path for tens of millions to tens

of billions of years, until the initial hydrogen fuel in the core has been consumed. A degenerate

helium core surrounded by a hydrogen burning shell then remains. When the core ignites, the outer

layers are heated, can expand immensely, and the surface reddens as the temperature drops due to

the large increase in surface area. This is the red giant phase shown in Figs. 2.2 and 2.3.

Most stars have masses comparable to the sun and will then continue into the next phase, plan-

etary nebula, where the outer layers of the star are shed and released into the interstellar medium.

What remains is a white dwarf (Fig. 2.2 (a)), which can then become a black dwarf. A much dif-

ferent end to the life cycle can occur, however, if the white dwarf is in a binary system, described

in the following section. If the star is massive enough, instead of following the path of a white

dwarf, a supernova might take place (Fig. 2.2 (b)) in which the star explosively ejects most of its

nuclei, leaving either a neutron star or black hole. Fig. 2.5 illustrates the interplay of gravitational

contraction and fresh fuel ignition for such a massive star, leading to a supernova explosion.

2.2 Stellar Death and Nucleosynthesis

The most interesting phenomena for nuclear astrophysicists manifests in systems that occur at the

end of stellar life cycles, such as novae, supernovae, or X-ray and gamma-ray bursts, where devia-

tions from the quiescent hydrogen burning of main-sequence stars is staggering. Novae and super-

novae are cataclysmic variable systems, wherein a significant fraction of their mass is ejected into

the interstellar medium during their violent explosions and their increase in energy output is dra-

matic. Specifically, a classical nova is a thermonuclear outburst on the surface of a white dwarf star

that is accreting hydrogen-rich material from its binary companion. Type Ia supernovae originate

from a similar system, although the underlying white dwarf is entirely destroyed, as mentioned in

the previous section, unlike in novae. Other types of supernovae include core-collapse supernovae,

which require no binary companion to trigger the explosion.
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Figure 2.5: Sample burning cycle for a massive star leading to a supernova explosion. Reproduced
from [27].

Because these cataclysmic variable systems have such a dramatic increase in temperature, they

have the ability to synthesize nuclei much heavier than is produced in main-sequence stars. Proton

fusion allows up nuclei up to Fe to be produced; however, above the Fe peak the Q value for fusion

is no longer positive, as it has the largest binding energy per nucleon. Therefore, neutron capture

reactions, which also are unaffected by the large Coulomb barrier, dominate above the Fe peak with

the s-process and r-process which help to complete the chart of nuclides by successive neutron cap-

tures and beta decays, albeit on different time scales and paths. Because peak nova temperatures are

several orders of magnitude less than peak supernova temperatures, only nuclides up to 40Ca can be

produced [6]. Although novae are expected to account for only 0.03% of the mass of the gas and

dust in the Galactic disk, they are thought to contribute significantly to the overproduction of specific

nuclei above the solar abundances, such as 7Li, 13C, 15N, 17O, 22Na, and 26Al [3]. This is shown

in Fig. 2.6 for various models. Both the models and the specifics of nova nucleosynthesis will be

discussed in Sec. 2.3. If the potential ejecta are radioactive gamma-emitters, they have the ability to

be detected by orbiting gamma-ray telescopes. INTEGRAL, the International Gamma-Ray Astro-

physics Laboratory, is currently searching for these characteristic gamma-ray lines. It was deployed
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by the European Space Agency in 2002 and currently has funding through 2012. SPI is a gamma-ray

spectrometer consisting of 19 cooled, masked Ge detectors with massive anticoincidence shielding

of BGO detectors [32]. Its range is 20 keV to 10 MeV and, along with its detection of 26Al, it has

also detected 44Ti and 60Fe. It has not yet observed the characteristic line from 22Na. Examples of

these cosmic gamma-ray emitters from various astronomical sources are listed in Table 2.1.

Table 2.1: Table of cosmic gamma-ray emitters, reproduced from Ref. [33].
Isotopes above the horizontal line are from individual objects or events. Those
below the line are cumulative from many events. Elements with A > 40 cannot
be produced by novae.

Isotope Mean lifetime Decay chain Eγ (keV)

7Be 77 d 7Be→7Li∗ 478
56Ni 111 d 56Ni→56Co∗→56Fe∗+e+ 158, 812; 847, 1238
57Ni 51 d 57Co→57Fe∗ 122
22Na 3.8 y 22Na→22Ne∗+e+ 1275
44Ti 85 y 44Ti→44Sc∗→44Ca∗+e+ 78, 68; 1157

26Al 1.04 × 106 y 26Al→26Mg∗+e+ 1809
60Fe 3.8 × 106 y 60Fe→60Co∗→60Ni∗ 59, 1173, 1332

Along with enriching the chemicals in the interstellar medium, nova may also be responsible

for anomalous ratios discovered in pre-solar grains [34]. The outer nova shells in which most of

the ejected material originates are much cooler and have much lower densities than the shells near

the white dwarf core, thereby allowing dust particles to condense before leaving the system. One of

the first anomalous ratios to be discovered was in the Orgueuil meteorite [35], in which 22Ne/20Ne

≥ 0.67, as compared to a value equal to 0.1 on Earth. Because 22Na beta decays to 22Ne, this

enrichment is likely due to an overabundance of 22Na. Recently, additional SiC and graphite grains

have been identified to have enrichments that could be attributed to nova: low ratios for 12C/13C,
14N/15N, 29Si/28Si, 27Al/26Al, and again for 20Ne/22Ne [34, 36]. Excesses were also measured for
30Si. These ratios greatly help to constrain nova models [6].

As mentioned in Chapter 1, novae are ideal sites to probe explosive nucleosynthesis and mech-
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dwarf with the same input parameters as model CO5. The
lower amount of 12C present in its envelope reduces the role
played by the CNO cycle, and less nuclear energy is released
at the same temperature. Therefore, model ONe3 accretes a
more massive envelope before the TNR begins (3.2] 10~5

Since the ignition density (and hence the degeneracy)M
_
).

is also higher, a higher peak temperature is attained
K). The net e†ect is a partial extension of(Tmax \ 2.2 ] 108

the nuclear activity toward higher Z nuclei, both because of
the di†erent peak temperature and the di†erent chemical
composition of the envelope. In particular, model ONe3
shows the dominant role played by some reactions of the
MgAl cycle at peak temperature that are absent in model
CO5. A second feature, which turns out to be crucial, is the
di†erent timescales of the TNR: model ONe3 requires

s to increase the temperature at thetrise D 1.3 ] 107
burning shell from to 108 K, plus sTbs \ 3 ] 107 tmax D 540
to reach peak value (see for a summary of theTable 1
results). These larger times deeply inÑuence the Ðnal abun-
dances in the ejecta (see ° 3.2).

In order to mimic the uncertain process of mixing
between the solarlike accreted material and the outermost
layers of the underlying CO or ONe white dwarf, we have
adopted di†erent degrees of mixing, ranging from 25% to
75%. Computations with 1.15 ONe white dwarfs (i.e.,M

_models ONe2, ONe3, and ONe4) show that a more massive
envelope is accreted when a higher degree of mixing is
adopted, leading to a more violent outburst. For instance,
model ONe4 (with 75% mixing) attains a peak temperature
of K and ejects matter with a mean kineticTmax\ 2.5] 108
energy of K \ 1.9] 1045 ergs, as compared to model ONe2
(with only 25% mixing), for which K andTmax \ 2.2 ] 108
K \ 1.1] 1045 ergs (see A similar trend is foundTable 1).
for models ONe6 and ONe7, involving 1.35 ONe whiteM

_dwarfs with 50% and 75% mixing, respectively. We have
also performed several computations involving 1.15 M

_CO white dwarfs (i.e., models CO4, CO5, and CO6, with
25%, 50%, and 75% mixing, respectively), as well as 0.8 M

_CO white dwarfs (models CO1 and CO2, with 25% and
50%, respectively). Contrary to the ONe models, the most
massive envelopes are accreted on top of white dwarfs with
25% mixing, with a minimum mass around 50% mixing.
However, the strength of the explosion, as indicated by a
higher peak temperature and a higher mean kinetic energy,
increases with the mixing level (see Table 2).

As shown in Tables and massive white dwarfs1 2,
develop a TNR after a shorter accretion phase (and hence
accrete less mass), as compared to lighter white dwarfs,
because of the higher surface gravity. Also, the evolution
toward peak temperature takes place with a shorter time-
scale. The most relevant outcome is the increase of the peak
temperature attained during the TNR as the mass of the
white dwarf increases. We stress that this is especially
noticeable for model ONe6 (with whichMwd\ 1.35 M

_
),

attains a maximum temperature of 3.2 ] 108 K.
Two di†erent prescriptions for the radiative opacities

have been considered in order to estimate their potential
e†ect on the progress of the outburst and on the resulting
nucleosynthesis : model CO5 has been evolved using IbenÏs

Ðts to the opacity tables of Cox & Stewart(1975) (1970a, b),
whereas & Rogers opacities have beenIglesias (1993)
adopted in model CO7. As shown by the use ofJose� (1996),

& Rogers opacities reduces the mass of theIglesias (1993)
accreted envelope, leading to a softer explosion. The reason

is that the Iglesias & Rogers opacities are larger than the
Iben ones. Therefore, a signiÐcant temperature increase in
the envelope of model CO7 ensues, reducing the time
required to achieve the critical conditions for a TNR (see

A similar trend has been recently pointed out byTable 2).
et al. Nucleosynthesis results from modelStarrÐeld (1997).

CO7 do not reveal large di†erences from those of model
CO5 (see Table 4).

3.2. Nucleosynthesis
In this section we will examine the yields of our numerical

nova models. Tables and list the mean chemical com-3 4
position of the ejecta in mass fractions a few days after the
explosion, resulting from our evolutionary sequences of
ONe and CO novae, respectively. Overproduction factors,
relative to solar abundances, for models CO5, ONe3, and
ONe6 are displayed in Figures 1È3.

3.2.1. Synthesis of 7BeÈ7Li

The synthesis of 7Li in classical novae has been recently
analyzed in detail by et al. who have con-Hernanz (1996),
Ðrmed that the beryllium transport mechanism can effi-
ciently lead to large amounts of 7Li. In that paper we
showed that lithium production is favored when CO novae
are adopted, instead of ONe novae. The faster evolution
of CO novae allow photodisintegration of 8B through
8B(c, p)7Be to prevent 7Be destruction [synthesized in the
Ðrst part of the TNR by means of 3He(a, c)7Be].

Ejected masses of 7Li in the CO models are almost an
order of magnitude larger than in the ONe ones, with a
maximum production for a 50% mixing. Because of the
higher degeneracy attained in massive white dwarfs, which
results in stronger outbursts with shorter evolutionary
timescales, production is enhanced when the initial mass of
the underlying white dwarf is increased. Although large
overproduction factors are obtained for most of the CO
models (up to f D 900 ; see classical novae can onlyFig. 1),
account for D10% of the Galactic 7Li content, assuming
the solar system level. This result is similar to the estimates
given by et al. in the framework of hydro-StarrÐeld (1978)

FIG. 1.ÈOverproduction factors relative to solar abundances vs. mass
number for model CO5 (1.15 CO white dwarf with 50% mixing).M

_
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TABLE 3

YIELDS FROM ONe NOVA MODELS (MASS FRACTIONS)

MODEL

NUCLEUS ONe1 ONe2 ONe3 ONe4 ONe5 ONe6 ONe7

1H . . . . . . . . . 3.2E[ 1 4.7E[ 1 3.0E[ 1 1.2E[ 1 2.8E[ 1 2.4E[ 1 7.3E[ 2
3He . . . . . . . 7.1E[ 8 2.1E[ 9 4.3E[ 8 1.7E[ 7 2.8E[ 8 2.9E[ 8 9.7E[ 8
4He . . . . . . . 1.8E[ 1 2.8E[ 1 2.0E[ 1 1.3E[ 1 2.2E[ 1 2.4E[ 1 1.7E[ 1
7Be . . . . . . . . 2.3E[ 7 4.6E[ 8 6.0E[ 7 1.2E[ 6 6.9E[ 7 1.3E[ 6 2.4E[ 6
11B . . . . . . . . 8.8E[ 13 4.0E[ 13 4.4E[ 12 1.7E[ 11 1.2E[ 11 2.5E[ 10 1.9E[ 9
12C . . . . . . . . 1.3E[ 2 1.8E[ 2 2.3E[ 2 2.2E[ 2 2.8E[ 2 2.1E[ 2 2.6E[ 2
13C . . . . . . . . 1.7E[ 2 2.3E[ 2 2.8E[ 2 2.7E[ 2 3.2E[ 2 1.5E[ 2 2.5E[ 2
14N . . . . . . . 2.6E[ 2 3.0E[ 2 2.2E[ 2 2.7E[ 2 3.2E[ 2 4.6E[ 2 3.5E[ 2
15N . . . . . . . 7.7E[ 3 1.7E[ 2 2.3E[ 2 2.4E[ 2 4.2E[ 2 1.2E[ 1 1.4E[ 1
16O . . . . . . . 1.7E[ 1 2.4E[ 2 1.2E[ 1 2.3E[ 1 7.1E[ 2 2.2E[ 2 9.1E[ 2
17O . . . . . . . 1.8E[ 2 1.1E[ 2 2.8E[ 2 4.1E[ 2 3.9E[ 2 1.7E[ 2 5.1E[ 2
18O . . . . . . . 8.2E[ 3 2.4E[ 3 6.0E[ 3 7.3E[ 3 4.2E[ 3 9.8E[ 4 1.8E[ 3
19F . . . . . . . . 8.5E[ 6 4.7E[ 6 8.9E[ 6 1.2E[ 5 1.3E[ 5 2.2E[ 5 4.0E[ 5
20Ne . . . . . . 1.8E[ 1 9.0E[ 2 1.8E[ 1 2.6E[ 1 1.8E[ 1 1.5E[ 1 2.4E[ 1
21Ne . . . . . . 1.9E[ 5 1.3E[ 5 3.0E[ 5 4.0E[ 5 3.5E[ 5 5.1E[ 5 8.4E[ 5
22Ne . . . . . . 2.0E[ 3 5.9E[ 4 1.7E[ 3 2.5E[ 3 1.0E[ 3 1.5E[ 4 4.2E[ 4
22Na . . . . . . 4.8E[ 5 3.1E[ 5 5.3E[ 5 1.5E[ 4 9.6E[ 5 6.0E[ 4 6.5E[ 4
23Na . . . . . . 1.2E[ 3 3.6E[ 4 7.5E[ 4 3.6E[ 3 1.4E[ 3 6.6E[ 3 7.9E[ 3
24Mg . . . . . . 2.5E[ 4 1.6E[ 5 1.0E[ 4 1.5E[ 3 2.0E[ 4 3.6E[ 4 1.2E[ 3
25Mg . . . . . . 1.0E[ 2 7.8E[ 4 2.9E[ 3 7.4E[ 3 2.4E[ 3 4.2E[ 3 6.6E[ 3
26Mg . . . . . . 9.4E[ 4 7.8E[ 5 3.4E[ 4 1.0E[ 3 2.8E[ 4 5.9E[ 4 1.0E[ 3
26Al . . . . . . . 2.7E[ 3 1.8E[ 4 9.3E[ 4 2.0E[ 3 5.4E[ 4 7.2E[ 4 1.5E[ 3
27Al . . . . . . . 1.2E[ 2 7.6E[ 4 4.5E[ 3 9.2E[ 3 2.0E[ 3 1.8E[ 3 4.5E[ 3
28Si . . . . . . . 3.4E[ 2 3.0E[ 2 5.4E[ 2 7.3E[ 2 5.6E[ 2 3.5E[ 2 5.8E[ 2
29Si . . . . . . . 8.7E[ 5 3.1E[ 4 4.2E[ 4 7.8E[ 4 8.8E[ 4 1.7E[ 3 2.7E[ 3
30Si . . . . . . . 4.3E[ 5 1.4E[ 3 6.9E[ 4 1.7E[ 3 4.8E[ 3 1.1E[ 2 1.7E[ 2
31P . . . . . . . . 4.5E[ 6 2.6E[ 4 5.9E[ 5 1.9E[ 4 1.3E[ 3 7.6E[ 3 1.2E[ 2
32S . . . . . . . . 2.0E[ 4 3.6E[ 4 2.0E[ 4 1.2E[ 4 8.3E[ 4 2.3E[ 2 1.9E[ 2
33S . . . . . . . . 4.7E[ 6 4.3E[ 5 1.2E[ 5 7.0E[ 6 7.7E[ 5 9.1E[ 3 4.4E[ 3
34S . . . . . . . . 9.2E[ 6 1.8E[ 5 9.2E[ 6 4.7E[ 6 1.9E[ 5 6.4E[ 3 1.8E[ 3
35Cl . . . . . . . 1.5E[ 6 6.2E[ 6 2.2E[ 6 1.2E[ 6 6.1E[ 6 7.0E[ 3 8.7E[ 4
36S . . . . . . . . 4.6E[ 8 5.4E[ 8 4.2E[ 8 2.1E[ 8 3.2E[ 8 5.4E[ 9 5.7E[ 9
36Ar . . . . . . . 3.9E[ 5 5.8E[ 5 3.9E[ 5 1.9E[ 5 3.8E[ 5 3.9E[ 3 1.9E[ 4
37Cl . . . . . . . 4.8E[ 7 1.4E[ 6 6.2E[ 7 3.4E[ 7 1.2E[ 6 2.8E[ 4 7.2E[ 6
38Ar . . . . . . . 7.7E[ 6 1.1E[ 5 7.6E[ 6 3.8E[ 6 7.4E[ 6 5.1E[ 5 3.7E[ 6
39K . . . . . . . 1.8E[ 6 2.9E[ 6 1.8E[ 6 9.1E[ 7 2.0E[ 6 6.5E[ 6 1.8E[ 6

dynamic models of CO nova outbursts, but assuming an
initial envelope already in place (hence neglecting the accre-
tion phase and the building up of the envelope). In their
most recent hydrodynamic nova models et al.(StarrÐeld

FIG. 2.ÈSame as but for model ONe3 (1.15 ONe whiteFig. 1, M
_dwarf with 50% mixing).

they obtain lower overproduction factors of 7Li than1997)
the ones reported from our evolutionary sequences. This is
probably because of the di†erent choice of initial abun-
dances, and, to some extent, other di†erences in the input

FIG. 3.ÈSame as but for model ONe6 (1.35 ONe whiteFig. 1, M
_dwarf with 50% mixing).
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TABLE 3

YIELDS FROM ONe NOVA MODELS (MASS FRACTIONS)

MODEL

NUCLEUS ONe1 ONe2 ONe3 ONe4 ONe5 ONe6 ONe7

1H . . . . . . . . . 3.2E[ 1 4.7E[ 1 3.0E[ 1 1.2E[ 1 2.8E[ 1 2.4E[ 1 7.3E[ 2
3He . . . . . . . 7.1E[ 8 2.1E[ 9 4.3E[ 8 1.7E[ 7 2.8E[ 8 2.9E[ 8 9.7E[ 8
4He . . . . . . . 1.8E[ 1 2.8E[ 1 2.0E[ 1 1.3E[ 1 2.2E[ 1 2.4E[ 1 1.7E[ 1
7Be . . . . . . . . 2.3E[ 7 4.6E[ 8 6.0E[ 7 1.2E[ 6 6.9E[ 7 1.3E[ 6 2.4E[ 6
11B . . . . . . . . 8.8E[ 13 4.0E[ 13 4.4E[ 12 1.7E[ 11 1.2E[ 11 2.5E[ 10 1.9E[ 9
12C . . . . . . . . 1.3E[ 2 1.8E[ 2 2.3E[ 2 2.2E[ 2 2.8E[ 2 2.1E[ 2 2.6E[ 2
13C . . . . . . . . 1.7E[ 2 2.3E[ 2 2.8E[ 2 2.7E[ 2 3.2E[ 2 1.5E[ 2 2.5E[ 2
14N . . . . . . . 2.6E[ 2 3.0E[ 2 2.2E[ 2 2.7E[ 2 3.2E[ 2 4.6E[ 2 3.5E[ 2
15N . . . . . . . 7.7E[ 3 1.7E[ 2 2.3E[ 2 2.4E[ 2 4.2E[ 2 1.2E[ 1 1.4E[ 1
16O . . . . . . . 1.7E[ 1 2.4E[ 2 1.2E[ 1 2.3E[ 1 7.1E[ 2 2.2E[ 2 9.1E[ 2
17O . . . . . . . 1.8E[ 2 1.1E[ 2 2.8E[ 2 4.1E[ 2 3.9E[ 2 1.7E[ 2 5.1E[ 2
18O . . . . . . . 8.2E[ 3 2.4E[ 3 6.0E[ 3 7.3E[ 3 4.2E[ 3 9.8E[ 4 1.8E[ 3
19F . . . . . . . . 8.5E[ 6 4.7E[ 6 8.9E[ 6 1.2E[ 5 1.3E[ 5 2.2E[ 5 4.0E[ 5
20Ne . . . . . . 1.8E[ 1 9.0E[ 2 1.8E[ 1 2.6E[ 1 1.8E[ 1 1.5E[ 1 2.4E[ 1
21Ne . . . . . . 1.9E[ 5 1.3E[ 5 3.0E[ 5 4.0E[ 5 3.5E[ 5 5.1E[ 5 8.4E[ 5
22Ne . . . . . . 2.0E[ 3 5.9E[ 4 1.7E[ 3 2.5E[ 3 1.0E[ 3 1.5E[ 4 4.2E[ 4
22Na . . . . . . 4.8E[ 5 3.1E[ 5 5.3E[ 5 1.5E[ 4 9.6E[ 5 6.0E[ 4 6.5E[ 4
23Na . . . . . . 1.2E[ 3 3.6E[ 4 7.5E[ 4 3.6E[ 3 1.4E[ 3 6.6E[ 3 7.9E[ 3
24Mg . . . . . . 2.5E[ 4 1.6E[ 5 1.0E[ 4 1.5E[ 3 2.0E[ 4 3.6E[ 4 1.2E[ 3
25Mg . . . . . . 1.0E[ 2 7.8E[ 4 2.9E[ 3 7.4E[ 3 2.4E[ 3 4.2E[ 3 6.6E[ 3
26Mg . . . . . . 9.4E[ 4 7.8E[ 5 3.4E[ 4 1.0E[ 3 2.8E[ 4 5.9E[ 4 1.0E[ 3
26Al . . . . . . . 2.7E[ 3 1.8E[ 4 9.3E[ 4 2.0E[ 3 5.4E[ 4 7.2E[ 4 1.5E[ 3
27Al . . . . . . . 1.2E[ 2 7.6E[ 4 4.5E[ 3 9.2E[ 3 2.0E[ 3 1.8E[ 3 4.5E[ 3
28Si . . . . . . . 3.4E[ 2 3.0E[ 2 5.4E[ 2 7.3E[ 2 5.6E[ 2 3.5E[ 2 5.8E[ 2
29Si . . . . . . . 8.7E[ 5 3.1E[ 4 4.2E[ 4 7.8E[ 4 8.8E[ 4 1.7E[ 3 2.7E[ 3
30Si . . . . . . . 4.3E[ 5 1.4E[ 3 6.9E[ 4 1.7E[ 3 4.8E[ 3 1.1E[ 2 1.7E[ 2
31P . . . . . . . . 4.5E[ 6 2.6E[ 4 5.9E[ 5 1.9E[ 4 1.3E[ 3 7.6E[ 3 1.2E[ 2
32S . . . . . . . . 2.0E[ 4 3.6E[ 4 2.0E[ 4 1.2E[ 4 8.3E[ 4 2.3E[ 2 1.9E[ 2
33S . . . . . . . . 4.7E[ 6 4.3E[ 5 1.2E[ 5 7.0E[ 6 7.7E[ 5 9.1E[ 3 4.4E[ 3
34S . . . . . . . . 9.2E[ 6 1.8E[ 5 9.2E[ 6 4.7E[ 6 1.9E[ 5 6.4E[ 3 1.8E[ 3
35Cl . . . . . . . 1.5E[ 6 6.2E[ 6 2.2E[ 6 1.2E[ 6 6.1E[ 6 7.0E[ 3 8.7E[ 4
36S . . . . . . . . 4.6E[ 8 5.4E[ 8 4.2E[ 8 2.1E[ 8 3.2E[ 8 5.4E[ 9 5.7E[ 9
36Ar . . . . . . . 3.9E[ 5 5.8E[ 5 3.9E[ 5 1.9E[ 5 3.8E[ 5 3.9E[ 3 1.9E[ 4
37Cl . . . . . . . 4.8E[ 7 1.4E[ 6 6.2E[ 7 3.4E[ 7 1.2E[ 6 2.8E[ 4 7.2E[ 6
38Ar . . . . . . . 7.7E[ 6 1.1E[ 5 7.6E[ 6 3.8E[ 6 7.4E[ 6 5.1E[ 5 3.7E[ 6
39K . . . . . . . 1.8E[ 6 2.9E[ 6 1.8E[ 6 9.1E[ 7 2.0E[ 6 6.5E[ 6 1.8E[ 6

dynamic models of CO nova outbursts, but assuming an
initial envelope already in place (hence neglecting the accre-
tion phase and the building up of the envelope). In their
most recent hydrodynamic nova models et al.(StarrÐeld

FIG. 2.ÈSame as but for model ONe3 (1.15 ONe whiteFig. 1, M
_dwarf with 50% mixing).

they obtain lower overproduction factors of 7Li than1997)
the ones reported from our evolutionary sequences. This is
probably because of the di†erent choice of initial abun-
dances, and, to some extent, other di†erences in the input

FIG. 3.ÈSame as but for model ONe6 (1.35 ONe whiteFig. 1, M
_dwarf with 50% mixing).Figure 2.6: Overproduction factors relative to solar abundance as a function of mass number for

various nova models, each with 50% mixing of the core material and the outer envelopes. Top left
panel: 1.15 M� CO white dwarf. Top right panel: 1.15 M� ONe white dwarf. Bottom panel: 1.35
M� ONe white dwarf. Reproduced from Ref. [3].
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anisms to trigger thermonuclear runaway. Whereas the modeling of supernovae requires several

thousand nuclear reactions, novae can be fully simulated with only a few hundred. At this level, it

is possible for most of the input reaction rates to be based on experimental information [6], which

yields the advantage for novae to be more grounded in reality than the modeling of supernovae,

where many theoretical suppositions are needed. In addition, the types of reactions available to

novae typically only include proton captures (due to their lower Coulomb barrier, as compared to

alpha or heavy-ion captures) and beta decays, the lifetimes of which are generally quite well known.

This fairly simple nucleosynthetic system and the availability of experimentally determined reac-

tion rates indicates that there is a much higher probability of being able to understand novae through

various models.

As for the models themselves, a variety currently exist in an attempt to explain nova nucleosyn-

thesis [6]. Most break up the nucleosynthesis into shells or zones. The most simple version includes

parametrized one-zone models, wherein the modeling occurs in a single point of fluctuating tem-

perature and density. These models may or may not also use the temperature and density outputs

from hydrodynamic models, to be discussed below. This is a gross oversimplification but does allow

one to predict the relative abundance changes when uncertainties of a large variety of reactions are

varied on a short time scale. At the other end of the spectrum are full hydrodynamic models that

simulate many zones and include convective mixing from the white dwarf core to the outer envelope.

These models are also coupled to large reaction networks. At this time, mostly radially dependent

models are employed, but 2D and 3D models are also being explored, although the necessary com-

puting time precludes simulating a large range of white dwarf compositions and masses [6]. The

1D hydrodynamic models reproduce nucleosynthesis fairly well; however, the mixing between the

core and outer envelopes is not well understood. More details on various models are discussed in

Sec 7.2.

One question that has been addressed through modeling is the composition of the underlying

white dwarf. The overproduction of nuclei up to A = 40 for white dwarf cores composed of CO

and ONe was shown in Fig. 2.6. For a CO core (left panel), the overproduced ejecta remain roughly

below oxygen, due to lower peak temperatures and absence of ‘seed’ NeNa-MgAl nuclei. In order

to boost the abundance much beyond oxygen, a more massive ONe core is needed (middle and right

panels). Therefore, if elements in this higher mass region are observed, the composition of the white
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dwarf core will be disclosed. It is this type which allows the synthesis of 22Na nuclei.

Although the most common explosive events are X-ray bursts (which eject negligible amounts

of matter due to the extremely high escape velocities around their progenitor neutron star), classical

novae are the second most common with 15 to 60 events/yr in a our Galaxy [6]. Supernovae are

much more rare, with roughly two a century in a typical galaxy [30]. Novae increase in brightness by

factors of 104 − 106 (supernovae can reach up to factors of 1010) and radiate energy with luminosity

rates of 1037 − 1038 ergs/s. Roughly 10,000 years are necessary to trigger an explosion with an

accretion rate of ∼ 10−10 − 10−9 M�/yr, and approximately 10−5 − 10−4 M� of mass is ejected [6],

with velocities ranging from 300 to 3000 km/s [27]. The time scale for the increase in light output

can vary from a few days to up to 250 days; however, the peak temperatures of (1 − 4) × 108 K

are reached only for several hundred seconds [6]. Unlike supernovae, novae can be recurrent, as

only outer layers are ejected and the star is not entirely destroyed by the explosion. Although 15

to 60 novae are though to occur per year, only 3 to 5 are detected [6], usually by nonprofessional

astronomers who notice the large change in optical light output. Fig. 2.7 shows an actual nova

explosion as viewed with the Hubble Space Telescope three years after detonation.

Figure 2.7: Nova Cygni 1992 with Hubble Space Telescope, photographed three years after eruption
on December 27, 1995. The ring represents the ejected material moving away from the white dwarf
star.
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2.3 Nova Nucleosynthesis

A schematic of a nova is shown in Fig. 2.8. In this system, there is an asymmetric figure eight (a

dashed line in the figure) called a Roche surface, which defines a gravitational equipotential: matter

along this surface has an equal probability to fall to either star. During the course of its life cycle,

the main sequence companion star will expand into its red giant phase. Once the matter broaches

the Roche surface, it will begin to transfer through the inner Lagrange point (the point between the

stars where net force of gravity equals the centripetal force) and accrete on the surface of the white

dwarf star.

Figure 2.8: Scheme of nova explosion [37].

Due to the high density and small radius of the white dwarf (compared to its companion), the

gravitational field is very strong at the surface, thereby imparting an extremely high velocity to the

accreted gas. A classical star would simply expand to counteract this increase in temperature; how-

ever, white dwarfs are degenerate quantum objects. Because their densities are so high (on the order

of ∼ 105 − 106 g/cc, versus the sun which has ∼ 1 g/cc), the spacing between atoms is around 0.01

Å, and the nuclei are completely ionized with the electrons forming a Fermi gas [38]. Due to Fermi-

Dirac statistics, two fermions cannot occupy the same quantum state. In a degenerate electron gas at

0 K, this means that the electrons start to fill the energy levels from the ground state and are forced

to move upward in energy. This filling occurs until all energy levels are completely filled up to the

Fermi energy, EF . All levels above this energy are perfectly vacant. This incompressibility provides

the pressure to resist additional gravitational contraction. As the temperature increases from abso-
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lute zero, the sharp step function describing the occupancy as a function of energy becomes slightly

curved around EF . However, even at peak nova temperatures around (1 − 4) × 108 K, this is much

less than the corresponding Fermi temperature EF/kB of ∼ 3 × 109 K [38]. Because the star cannot

expand, the surface of the white dwarf is heated by the accreted gas. Once the temperature is high

enough (∼ 20× 106 K), nuclear reactions are ignited, and thermonuclear runaway ensues producing

elements much higher up the chart of nuclides, ending with 40Ca (Fig. 2.4) [6]. Although novae are

not hot enough to produce elements up to the iron peak, they are an essential system to understand

before venturing into the more complicated explosive nucleosynthesis of supernovae.

To determine at what point the thermonuclear runaway is triggered, one can define an accretion

timescale, τacc ∼ Macc/Ṁ, where Macc is the accreted mass and Ṁ is the accretion rate [6]. τacc is

typically ∼ 104 − 105 yr. This can be compared to the nuclear timescale, τnuc, given by CpT/εnuc,

where Cp is the specific heat, and εnuc is the nuclear energy generation rate. Accretion will continue

quiescently while τacc ≤ τnuc. However, at peak nova temperatures (∼ 108K), the thermonuclear

reaction rates increase dramatically, and τnuc can be on the order of seconds. When the threshold

between the two phases has passed, the thermonuclear runaway ensues. As previously mentioned,

the most important nuclear reactions in nova explosions are beta decays (timescale τβ+) and proton

captures (timescale τ(p,γ)). When ramping up to the runaway, nuclear reactions that occur will be

from the equilibrium CNO cycle, with τβ+ < τ(p,γ). Once 12C is produced by the triple alpha process,

the CNO cycle is used during nova outbursts to produce 13C, 15N, and 17O. The various processes

are shown in Fig. 2.9.

These are the main processes for nova nucleosynthesis in lower mass CO white dwarfs. 15N and
17O are overproduced with respect to solar abundances by factors of ∼ 1000 [6]. When the peak nova

temperature is reached, τβ+ & τ(p,γ), and proton captures proceed much more quickly, circumventing

beta decay, and further movement up the chart of nuclides (Fig. 2.4) is possible. Convection also

plays a critical role in carrying some fraction of nuclei to the outer envelopes before allowing them

to beta decay. The energy received by the cooler envelope from the decays raises the temperature

which removes the degeneracy. Then the envelope is allowed to expand as a normal gas, triggering

the ejection process. Convection also works in the opposite way, by supplying unburned fuel to the

inner core. It is the degree of mixing of the core with the envelopes that is the least understood in

nova modeling.
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Figure 2.9: Nova nucleosynthesis in the mass region of CNO. Shaded nuclei are stable. For decays,
the lifetime is given. Information and style from Ref. [6].

The cosmic gamma-ray emitters synthesized in these types of white dwarfs include 13N, 18F, and
7Be. 13N and 18F each produce a very strong emission line at 511 keV (and a continuum below) from

the annihilation of the positron from their beta decays with neighboring electrons. It was previously

thought that 14,15O and 17F also contributed [39], but it turns out this is not the case, as these nuclei

decay before the gamma rays can escape. Unfortunately, because the prompt emission occurs only

for several hours after the explosion, observational identification of the progenitor star is unlikely.
7Be is associated with a 478-keV line, but like the aforementioned nuclei, it most likely will decay

away (τ = 77 d) before detection.

To move further up the chart and to synthesize nuclei higher than 19F, a ONe white dwarf compo-

sition is needed, where the core is thought to mainly be composed of 16O and 20Ne [7] providing the

seed nuclei for the next nucleosynthetic cycle: the NeNa−MgAl cycle. Two of the most interesting

cosmic gamma-ray emitters are 26Al and 22Na. Indeed, 26Al has been observed in the Galaxy [40],

yielding proof of active nucleosynthesis, but its long half life precludes the identification of its

progenitor, and novae are only expected to make a secondary contribution to its Galactic abun-

dance [7, 41]. Other gamma-ray emitters can provide more direct constraints on nova models [39].

An example is 22Na (t1/2 = 2.603 years, Eγ = 1.275 MeV), which has not yet been observed in the
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Galaxy. Unlike 26Al, the relatively short half life of 22Na restricts it to be localized near its produc-

tion site. Novae also could be the principal Galactic sites for the production of 22Na, making 22Na

an excellent nova tracer. An observational upper limit of 3.7× 10−8 M� was set on the 22Na mass in

ONe nova ejecta with the COMPTEL telescope onboard the CGRO [42]. Currently, the maximum
22Na mass ejected using ONe nova models is an order of magnitude below this limit [7, 43] and

corresponds to a maximum detection distance of 500 parsecs using an observation time of 106 s

with the spectrometer SPI onboard the currently-deployed INTEGRAL mission [44]. This suggests

we are now on the verge of being able to detect this signal. In addition, there could also be a con-

tribution from Type II supernovae where 22Na is thought to be produced by neutrino spallation of
23Na in the Ne shell [45].

A sketch of the path of the nucleosynthesis cycle to produce and destroy 22Na is shown in

Fig. 2.10.

Figure 2.10: NeNa reaction cycle. Shaded nuclei are stable. For decays, the lifetime is given.
Information and style from Ref. [43].

The cycle begins with the seed nucleus, stable 20Ne, possibly donated from the white dwarf core.

Production can proceed in two ways: “cold” or “hot”, depending on the stellar temperature:

“cold” (T < 5 × 107K) : 20Ne(p, γ)21Na(e+νe)21Ne(p, γ)22Na (2.2)

“hot” (T > 5 × 107K) : 20Ne(p, γ)21Na(p, γ)22Mg(e+νe)22Na (2.3)
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Each cycle first captures a proton to produce 21Na. In the “cold” cycle, 21Na then beta decays to
21Ne before capturing a proton to produce 22Na. If the temperature in the burning shell is above

5 × 107 K [7], the hot cycle continues from 21Na to 22Mg with another proton capture, before

allowing time for the 21Na nucleus to beta decay. 22Mg then beta decays to 22Na. This dissertation,

however, focuses on the main destructive reaction for 22Na: the proton capture to the 23Mg nucleus.

An energy level diagram for this nucleus is shown in Fig. 2.11.
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Figure 2.11: The relevant part of the decay scheme of 23Mg. Energies are in keV. Not all 23Mg
levels are shown.

When a proton with an energy corresponding to a level in the 23Mg nucleus encounters a 22Na

nucleus, the cross section for the reaction increases drastically, and a resonance is formed. Shown

are resonances for laboratory proton energies of 198 to 610 keV, which are far below the Coulomb

barrier of ∼ 5 MeV. Therefore, tunneling is required to form these states, hence their strengths are

weak and on the order of meV.
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2.3.1 White Dwarf Mechanics

It is instructive to investigate the relation between the white dwarf density, ρ(r), and the mass (inde-

pendent of radius) and to explore the difference for non-relativistical and relativistic electrons. One

starts with the simple hydrostatic equilibrium of a non-relativistic star, where the change in pressure

as a function of radius is balanced by gravity [46, 47]:

dP(r)
dr

= −ρ(r)
GM(r)

r2 , (2.4)

where P(r) is the pressure inside the star, r is the radius, M(r) is the mass up to radius r, and G is the

gravitational constant. Assuming the gross approximation that the density is equal to M/R3, Eq. 2.4

integrates to,

P ∼
GM2

R4 . (2.5)

This central pressure is supplied by the degenerate electrons (with mass m). If one considers a non-

relativistic particle in a 1D box with a side length R and volume V (equal to R3), then the wave

function that solves the time-independent Schrödinger equation, ∇2
xΨ = −k2Ψ, is Ψ = A sin(kx) +

B cos(kx), where k = 2mE/~2, and A, B are constants. Applying the boundary condition that the

wave function must vanish at the edges of the box results in B = 0 and kR = nπ, for integers

n = 0, 1, 2, .... Rearranging the relation for k and substituting this boundary condition yields a

quantized energy E = ~2n2π2/(2mR2). Expanding this idea to three dimensions, the system would

then be characterized by three quantum numbers, nx, ny, nz. In a 3D coordinate system comprised

of these quantum numbers, one can define a radius that characterizes the density of the electrons,

n2
F = n2

x + n2
y + n2

z [38], and the Fermi energy is then equal to

EF =
~2

2m

(
πnF

R

)2
=
~2

2m

(3π2N
V

)2/3
, (2.6)

where nF has been redefined in terms of N, equivalent to the total number of available states and to

the total number of electrons, as this is a Fermi gas. In the coordinate system of nx, ny, nz, the volume

encompassed in a sphere of radius nF is equal to the total number of quantum states in the quadrant

where all ni are positive (including a factor of 2 for the possible spin states): N = 2 × 1
8 × 4πn3

F/3.

This relation has been used to eliminate nF in Eq. 2.6. The total energy is equal to the individual

Fermi energy integrated over all possible states multiplied by a factor of 2 to account for spin states
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and is equal to E = 3NEF/5. The pressure is then the derivative of the total energy with respect to

volume:

P = −

(
dE
dV

)
S

=
3
5

N
~2

2m
2
3

(3π2N)2/3

V5/3 =
~2

5m
(3π2)2/3

(
N
V

)5/3

∝ (M/R3)5/3 ∝ ρ5/3, (2.7)

where N = M/m was used, and constants such as m have been ignored for the proportionality.

Equating the pressures from Eqs. 2.5 and 2.7, one extracts,

R ∝ 1/M1/3. (2.8)

Using this relation to eliminate the radial dependence from M/R3, one obtains,

ρ ∝ M2, (2.9)

for the central density. This only holds for non-relativistic electrons where EF = p2/(2m). In the

ultra relativistic limit, this relation becomes EF = pFc, and the pressure is then proportional to ρ4/3,

and not ρ5/3, as was shown above for non-relativistic electrons. Equating the hydrostatic pressure

from Eq. 2.5 to this function of density yields

GM2

R4 ∝

( M
R3

)4/3
, (2.10)

where the dependence on radius cancels out. Therefore, as mass increases, the density is no longer

constrained. A more careful analysis derives from this a mass limit [47], denoted MCh such that,

MCh = 1.43M�. (2.11)

As the velocity of the electrons approaches the speed of light, there exists a maximum mass for

which a white dwarf is stable. Above this mass, the Chandrasekhar mass, electron pressure can no

longer support the star’s collapse [47]. Fig. 2.12 shows a rough estimate of the radius of the white

dwarf as a function of mass, illustrating this limit.

2.4 Nuclear Reactions

In order to discuss the details of a rate for a typical nuclear reaction, one must first introduce the

concept of a cross section, σ, which gives the probability that a specific reaction will occur [30]. For
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V. PUTTING IT ALL TOGETHER

Given the expression for dP /d" we can construct stellar
models. We use Eq. !22" in Eq. !8", and obtain

3#

16
&e

2Nh
2 1
r2

d

dr
(r2!1 + X−2"−1/2dX

dr
) + X3 = 0. !23"

Making a stellar model involves choosing a value Xc for X at
the center of the star and then integrating Eq. !23" outward
until the value of r at which X vanishes, which is the surface
of the star. To streamline this integration we define Y
=X /Xc so that Y =1 at the center of the star. We also intro-
duce a dimensionless spatial coordinate in place of r as fol-
lows. Define the length a by

a =
%3#

4Xc
Nh&e, !24"

and the dimensionless coordinate ' by

' =
r

a
. !25"

Then Eq. !23" becomes

1
'2

d

d'
('2!1 + Xc

−2Y−2"−1/2dY

d'
) + Y3 = 0. !26"

Though not quite as intuitive as the density "̃, the physical
meaning of the length scale a is clear. If we have white dwarf
matter at mass density mH /&e

3, then because gravity is so
weak, it must take a large amount of such matter for the
gravity to be able to balance the enormous pressure. Thus
there must be some large length scale such that the cube of
that length scale is the volume needed to contain that large
amount of matter at the given density. The expression for a
tells us that the relevant length scale is of the order of Nh&e.
Given a length scale and a density scale, we can combine
them to make a mass scale. This mass scale must be of the
order of !mH /&e

3"Nh
3&e

3=Nh
3mH. In other words, because the

main contribution to the mass of the star is nucleons of mass
mH, it follows that the relevant scale for the number of nucle-
ons is Nh

3.
What are these length and mass scales in more ordinary

units? From the values of G, !, c, me, and mH we find that

Nh = 1.300 ( 1019, !27"

&e = 3.863 ( 10−13 m, !28"

and therefore

Nh&e = 5.022 ( 106 m, !29"

Nh
3mH = 3.678 ( 1030 kg. !30"

The radius R! of Earth is R! =6.378(106 m, and the mass
M" of the Sun is

M" = 1.989 ( 1030 kg. !31"

Hence, the mass and length scales of a white dwarf are

Nh&e = 0.7874R! , !32"

Nh
3mH = 1.849M". !33"

That is, the mass scale is of the same order as the mass of the
Sun, and the length scale is of the same order as the radius of
the Earth.

We can make the notion of length and mass scales more
precise by asking how given a solution of Eq. !26" we would
use it to calculate the radius and mass of the star. The solu-
tion Y!'" vanishes at some '0, which allows us to immedi-
ately calculate the radius R of the star as

R = a'0. !34"

The mass of the star is given by integrating Eq. !6":

M = *
0

R

4#"r2dr , !35"

or

M = *
0

'0

4#"̃Xc
3Y3a3'2d' , !36"

which using Eqs. !20" and !24" becomes

M =
%3#

8
Nh

3mH*
0

'0

Y3'2d' . !37"

This discussion of length and mass scales does not actu-
ally give us the sizes and masses of any white dwarf star. To
do that we must solve Eq. !26" and use the results in Eqs.
!34" and !37". Equation !26" cannot be solved in closed form,
but it is easy to treat numerically using, for example, the
fourth-order Runge–Kutta method.4 For each value of Xc we
integrate Eq. !26" outward to find the value '0 at which Y
vanishes and then use Eqs. !34" and !37" to find the mass and
radius of the star. Thus each Xc yields a point on a plot of R
versus M for white dwarf stars. The result of such a calcula-
tion is shown in Fig. 1 !see also Ref. 5". Here R is measured
in units of R!, and M is measured in units of M". It is clear
from Fig. 1 that there is a limiting mass of about 1.43M".
What is not clear from the figure is why such a limiting mass
exists. An answer can be found by an examination of Eq.
!26". As the central density is increased without bound, Eq.
!26" has a limit given by

0
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Fig. 1. White dwarf radius !in units of Earth radii" versus white dwarf mass
!in solar masses".

685 685Am. J. Phys., Vol. 77, No. 8, August 2009 David Garfinkle

Figure 2.12: White dwarf radius as a function of mass for a simplified calculation with relativistic
electrons [47]. The radius is in units of R⊕, and the mass is in units of M�.

a simple nuclear reaction, if one were to assume a number of beam particles, Nb, spread out over

an area, A, are incident on a target with NT number of nuclei inside the area, A, then the number of

interactions or reactions, NR, would be directly proportional to σ, such that:

NR = σ
NbNT

A
. (2.12)

An increase in either the number of beam particles or target nuclei will increase the number of

reactions. The areal density also plays a role because if the colliding particles are too far apart, this

will decrease the number of reactions. This is a simple version of what was discussed in Sec. 1.2.1.

2.4.1 Structure of the Nucleus and Selection Rules

The energy levels of interest to this dissertation for the 23Mg nucleus are shown in Fig. 2.11. Mod-

els such as the liquid drop and Fermi gas model qualitatively describe overall nuclear properties

but do not capture the features of the excited states. The shell model more realistically quanti-

fies the existence of nuclear shells, analogous to the shells of atomic electrons. However, because

of the complexity of combining 12 protons with 11 neutrons, all of which are interacting via the

strong force, theoretical models have difficulty accurately describing the energy levels of interest to
22Na(p, γ) where the density of states is high, leaving knowledge to be driven by experiment.

Before any composite nuclear state can be formed in a standard reaction, it must follow the rules

of angular momentum and parity conservation (although parity non-conservation has been observed
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in select cases). Simply put, a final state, | JM〉, with total angular momentum, J, with projection,

M, can be written as

| JM〉 =
∑

m1,m2

| j1 j2; m1m2〉〈 j1 j2; m1m2 | JM〉, (2.13)

where j1 and j2 are the total angular momenta of the initial two nuclei, each with projections, m1

and m2, respectively [48]. For this relation to hold non-trivially, the Clebsch-Gordon coefficient,

〈 j1 j2; m1m2 | JM〉, must not be equal to zero. From the rules of addition of angular momentum,

this means that J may span | j1 − j2| ≤ J ≤ j1 + j2, but M = m1 + m2, where |mi| ≤ ji. It should

be noted that total angular momentum is equal to l � s1 � s2, where l is orbital angular momentum

of the interaction, and s1 and s2 are the spin of each nucleus. Although angular momentum is an

additive property, parity is multiplicative: the final parity, Π, is equal to (−1)lπ1π2, where π1 and π2

are the intrinsic parities of the initial nuclei.

As seen in Fig. 2.11, the spin/parity of 22Na and p are 3+ and 1/2+, respectively. This means that

the excited state in 23Mg can be 5/2+ or 7/2+ (s-wave, l = 0), 3/2−, 5/2−, 7/2−, or 9/2− (p-wave,

l = 1), and 1/2+ through 11/2+ in steps of 1 (d-wave, l = 2). Because probability of forming a state

decreases with increasing l, the value of l is likely not higher than 1, although higher values cannot

be completely ruled out. Fig. 2.11 shows the tentative assignments from Refs. [1, 49], estimating

that some levels are most likely 7/2+, with two definite assignments of 5/2+. The potential 9/2−

level corresponding to the 198-keV resonance can be reached with l = 1, although that spin/parity

assignment is not firm [50].

Once the excited state in 23Mg has been formed, it then de-excites through the emission of

a gamma ray. The electric and magnetic fields involved in this interaction can be expanded as

a linear combination of fields whose coefficients are multipole moments with well-defined values

for l and m [51]. Table 2.2 shows some properties of these multipole moments. Each gamma-ray

transition can be through either an electric (El, parity = (−1)l) or magnetic (Ml, parity = (−1)l+1)

channel, although the minimum value for l in a nuclear de-excitation is 1 because of the photon

spin. Qualitatively, electric transitions generally have a higher probability to occur than magnetic

ones for the same value of l, and the probability decreases by ∼ 10−5 when l is increased by one unit.

The probability for each is proportional to the gamma-ray energy to a power 2l + 1, so de-excitation

through a higher energy gamma ray is favorable. The general rule is a de-excitation will occur
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Table 2.2: Table of multipole moments up to l =

2 [31, 51].

Designation l m Angular dependence

Monopole 0 0 isotropic

Dipole 1 0 sin2 θ

±1 1 + cos2 θ

Quadrupole 2 0 sin2 θ cos2 θ

±1 1 − 3 cos2 θ + 4 cos4 θ

±2 1 − cos4 θ

through the channel with the lowest value of allowed l and will proceed through an El transition if

possible. These are the so-called Weisskopf estimates [31]. According to Ref. [52], the transition

rates (in natural units), wEl and wMl, are equal to:

wEl =
4π
137

k(kR)2l; wMl =
4π
137

k(kR)2l+2, (2.14)

where R is the nuclear radius, k is the wave number, which is proportional to the energy, and kR � 1.

Although as illustrated above, some of the spins and parities of the initial excited states in 23Mg

have a high degree of uncertainty, these quantities are well known for the first few excited states [49].

As an example for a transition where both initial and final spins and parities are known is the level

at Ex = 8164 keV with 5/2+, most likely formed by s-wave capture. This level de-excites through

the emission of gamma rays to the ground, first, and second excited states, which are designated as

3/2+, 5/2+, and 7/2+, respectively. The transition to the ground state is likely a mixed M1 and E2

transition because the total angular momentum changes by 1 unit but parity remains positive. M3

and E4 are also possible with a lower probability. The transition to the first excited state involve no

change in spin or parity, indicating M1 or E2 as well. Higher multipoles are possible (M3, E4,M5)

but would be greatly suppressed. One unit of angular momentum is added for the transition to

the second excited state, again with no change in parity. The same multipoles for the transition

to the first excited state also apply here, with the addition of the possibility for E6. A similar

methodology can be applied to the other de-excitations, although their spins and parities are less
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well-known. For the potential resonance at 198 keV, according to Ref. [1], the strongest branch

(58%) in the de-excitation has a final level with a spin/parity equal to either 9/2+ or 5/2+. The

transition from 9/2− to 9/2+ would most likely be of the E1 type (other possible transitions are

M2, E3,M4, E5,M6, E7,M8, E9), and the transition from 9/2− to 5/2+ could proceed through the

M2 type (possible: E3,M4, E5,M6, E7). The final level for the other branch in this de-excitation

(42%) has a completely unknown spin and parity. However, because this branch is comparatively

strong and its energy is almost half the value of the primary transition energy, it is most likely an

E1. The final state could then be 7/2+, 9/2+ or 11/2+.

2.4.2 Decays

Any decay can be characterized by the formula, dN/dt = −λN, which integrates to yield N(t) =

N(0)e−λt, where N is the number of atoms at a time t, and λ is the decay constant (also equal to

1/τ, the lifetime of the state) [53, 31]. Solving the time-dependent Schrödinger equation separately

in space and time for a time-independent potential produces a wave function, ψ(t) = ψ(0)e−iEt/~.

To ensure a decaying state, one can specify E = Eo − iΓ/2, which yields a probability |ψ(t)|2 =

|ψ(0)|2e−Γt/~ from the wave function,

ψ(t) = ψ(0)e−iEot/~e−Γt/2~. (2.15)

Consistency with the laws governing decay indicate that Γ must be equal to λ~ and is commonly

called the full width of the state. Eo is simply the real part of the complex energy that solves the time-

independent Schrödinger equation. Although squaring Eq. 2.15 (i.e. ψψ∗) produces the probability

of finding a state as a function of time, it is sometimes more convenient to have the probability as a

function of energy, P(E). This is accomplished simply by taking the Fourier transform of Eq. 2.15

and squaring it as well. This yields,

P(E) ∝
Γ

(E − Eo) + (Γ/2)2 . (2.16)

This is the basis for the Breit-Wigner formula for the energy dependence of narrow resonance cross

sections and is applicable to any non-steady state.
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2.4.3 A(x, γ)B Reactions

Two types of reactions producing only a gamma ray in the final state, in addition to the product

nucleus, will be discussed in this subsection: non-resonant (Fig. 2.13) and resonant (Fig. 2.14)

reactions, the latter of which is the focus of this dissertation. A is the target nucleus, B is the final

nucleus, and x is the projectile.

Figure 2.13: Direct capture reaction: physical
sketch (top) and energy diagrams (bottom). Re-
produced from Ref. [27].

Figure 2.14: Resonant reaction: physical sketch
(top) and energy diagrams (bottom). Reproduced
from Ref. [27].

Non-resonant Reactions

Before discussing resonant reactions, it is instructive to understand an alternative: non-resonant

direct capture. As illustrated in Ref. [27], direct capture is a one-step process characterized by a

solitary matrix element:

σγ ∝| 〈B | Hγ | A + x〉 |2, (2.17)

where Hγ is the Hamiltonian for an electromagnetic interaction. A sketch of this type of reaction is

shown in Fig. 2.13
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This reaction’s projectile interacts with the target nucleus and directly enters the final state, after

emitting a gamma ray with an energy corresponding to that particular level in the final nucleus. This

can occur at any projectile energy; therefore, the energy dependence of the cross section has no

significant, quickly-fluctuating features. Resonant reactions cross sections have nearly the opposite

energy dependence.

Resonant Reactions

Resonant reactions, in contract to direct capture, occur in a two-step process where the projectile’s

energy, Er, is within Γ of the energy of an excited state in the compound nucleus, Ex (minus the

Q value for the reaction). The first step is the capture of the projectile in an excited state, Ei, of a

so-called compound nucleus. Then the compound nucleus de-excites with the emission of a gamma

ray to a final state of energy E f . This reaction is described by [27]:

σγ ∝| 〈E f | Hγ | Ei〉 |
2| 〈Ei | H f | A + x〉 |2, (2.18)

where H f is the Hamiltonian for the formation of the compound nucleus. A sketch for this type of

reaction is shown in Fig. 2.14. Because of the energy restriction Er = Ex − Q, the cross section is

essentially zero when the projectile’s energy is far from the resonance energy and can be extremely

high when Ep is within Γ of Er (i.e. when the phase shift, δl, passes through π/2, as will be

seen below). Resonances are considered narrow when Γ/Er ≤ 10% [27] and isolated from other

resonances when Γi + Γi+1 . Eri − Eri+1 . The cross section for narrow, isolated resonances can

then be visualized as a forest of separately resolved delta functions, with each tree representing a

different resonance.

Next, one must determine the exact form of the cross section. Although the incoming particle

(with momentum p = ~k) can be approximated by a plane wave Ψi = eikz, it is more convenient

to characterize the plane wave as a linear combination of spherical waves, called the partial wave

expansion [31]:

Ψi = A
∞∑

l=0

il(2l + 1) jl(kr)Pl(cos θ), (2.19)

where jl(kr) are spherical Bessel functions (radial solutions to the Schrödinger equation), Pl(cos θ)

are Legendre polynomials, and A is a normalization constant. This deconvolution of a mathematical
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concept such as a wave function or electromagnetic field into separate elements, each denoted by

an angular momentum l, was also seen in Sec. 2.4.1. Because angular momentum is conserved, l

is a good quantum number (for spinless particles). To better visualize this expansion as the sum of

incoming and outgoing spherical waves, it is illustrative to see the explicit expression for l = 0:

Ψ =
A

2ik
(
eikr

r
−

e−ikr

r
), (2.20)

where eikr/r and e−ikr/r are the incoming and outgoing spherical waves, respectively.

To estimate a maximum value for the cross section, in an approximation the angular momentum

l~will be equal to pb, where b is the impact parameter, representing the perpendicular distance from

the projectile to the target. Reordering these quantities yields,

b = l
~

p
= lo. (2.21)

l is quantized, and πo2 is the maximum effective area of interaction for l between 0 and 1. Thus, the

area between subsequent “shells” of angular momentum is equal to π((l+1)o)2−π(lo)2 = (2l+1)πo2.

The total maximum area, or cross section, would then be the sum of all shells:

σ =

l=R/o∑
l=0

(2l + 1)πo2, (2.22)

where R is the sum of the radii of the projectile and target nucleus. This equation hints at what the

overall magnitude of the cross section will be.

A more rigorous approach to calculate the actual value for the cross section manipulates the form

of the wave function in Eq. 2.19 and then calculates the quantum mechanical current, j, defined as:

j =
~

2im

(
Ψ∗

∂Ψ

∂r
− Ψ

∂Ψ∗

∂r

)
. (2.23)

The differential cross section, dσ/dΩ, is then equal to:

dσ
dΩ

=
r2 jscattered

jincident
. (2.24)

Integrating over all angles produces the total cross section. Following this procedure, first for purely

elastic scattering and then generalized for multiple reaction channels, the incident wave function can

be rewritten by approximating the Bessel function by its form far away from the scattering center

(i.e. the position of the detector). Eq. 2.19 then becomes:

Ψi =
A

2kr

∞∑
l=0

il+1(2l + 1){e−i(kr−lπ/2) − ei(kr−lπ/2)}Pl(cos θ). (2.25)
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The structure of this equation can be compared to Eq. 2.20, which is a simple sum of incoming and

outgoing spherical waves. Scattering can take the form of a phase shift or change in amplitude for

the outgoing wave. This would modulate the second term in the curly brackets in Eq. 2.25 by a

complex factor, ηl such that the wave function of the system is:

Ψ =
A

2kr

∞∑
l=0

il+1(2l + 1){e−i(kr−lπ/2) − ηlei(kr−lπ/2)}Pl(cos θ). (2.26)

Because Eq. 2.26 is the sum of an incident spherical wave and a scattered outgoing spherical wave,

subtracting Eq. 2.25 yields the scattered outgoing wave only, Ψs:

Ψs =
Aeikr

2kr

∞∑
l=0

i(2l + 1)(1 − ηl)Pl(cos θ). (2.27)

Using the wave functions in Eqs. 2.25 and 2.27 to calculate the respective currents in Eq. 2.23 and

then substituting those forms into Eq. 2.24 to calculate the differential cross section yields:

dσ
dΩ

=
1

4k2

∣∣∣∣∣∣ ∞∑
l=0

i(2l + 1)(1 − ηl)Pl(cos θ)

∣∣∣∣∣∣2 (2.28)

Integrating then results in a cross section equal to:

σs =

∞∑
l=0

πo2(2l + 1)|1 − ηl|
2, (2.29)

where o2 has been substituted for 1/k2. For purely elastic scattering |ηl| = 1, therefore, convention

dictates redefining ηl = e2iδl , where δl is the phase shift. Algebra then leads to:

σs =

∞∑
l=0

4πo2(2l + 1) sin2 δl, (2.30)

This cross section increases rapidly when δl = π/2, and thus, is the quantitative definition of a

resonance. For resonant capture, we assume only one partial wave, l, contributes. Therefore, a more

relevant form of the cross section for purely elastic scattering through a resonance may be obtained

by expanding cot δl in energy around this phase shift (because the energy is approximately constant

across the cross section):

cot δl(E) = cot δl(E)

∣∣∣∣∣∣
E=Er

+ (E − Er)
∂ cot δl

∂E

∣∣∣∣∣∣
E=Er

+ O((E − Er)2). (2.31)
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The first term is zero and terms with higher powers of E − Er are neglected. Simple calculus yields,

∂ cot δl

∂E
= −

∂δl

∂E
, (2.32)

and if one identifies the total width, Γ, with 2(∂δl/∂E)−1|E=Er , then, Eq. 2.31 reduces to,

cot δl = −
E − Er

Γ/2
→ sin δl =

Γ/2
((E − Er)2 + Γ2/4)1/2 , (2.33)

where the second term is determined from simply geometry. Substituting this relation into Eq. 2.30

(and reminding ourselves we are only using one partial wave) produces,

σs = πo2(2l + 1)
Γ2

(E − Er)2 + Γ2/4
(2.34)

This reduces to Eq. 2.30 when on resonance (i.e. where E = Er and δl = π/2).

For the reaction relevant to this dissertation, there is not only one channel, as was described

above for purely elastic scattering. Taking into account spins of projectile, target, and compound

nucleus modifies the statistical factor (2l + 1) and also considering different entrance (proton, Γa)

and exit (γ ray, Γb) channels yields the final form of the cross section:

σBW = πo2 (2J + 1)
(2 j1 + 1)(2 j2 + 1)

ΓaΓb

(E − Er)2 + Γ2/4
. (2.35)

This is the Breit-Wigner form of the cross section for narrow resonances, and it displays the energy

dependence illustrated by simple decay in the previous section. The total width is equal to the sum

of all partial widths for each possible channel: Γ = Γa + Γb, for this reaction. It can be noted that on

resonance, the cross section is directly proportional to the product of Γa/Γ and Γb/Γ, which can be

interpreted as the relative branchings for each channel. A sketch of a relative cross section is shown

in Fig. 2.15.

For convenience, the statistical factor can be defined as,

ω ≡
(2J + 1)

(2 j1 + 1)(2 j2 + 1)
. (2.36)

By defining a parameter, γ = ΓaΓb/Γ, and substituting Eq. 2.36 into Eq. 2.35, the cross section can

be condensed into the form:

σBW(E) = πo2ωγ
Γ

(E − Er)2 + Γ2/4
, (2.37)

where the quantity ωγ is the resonance strength. ωγ and the resonance energy, Er, are the experi-

mentally determined quantities in this dissertation. Both are needed to compute the thermonuclear

reaction rate described in the following subsection.
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Figure 2.15: Sketch of a renormalized Breit-Wigner cross section as a function of energy, repro-
duced from Ref. [27].

2.5 Thermonuclear Reaction Rates

The basic nuclear relation of Eq. 2.12 can also be translated into a stellar context where sets of nuclei

collide with some relative velocity. However, in a stellar environment such as a nova, although the

quantity that is the most significant is the total nuclear energy released in the plasma per unit volume

per unit time, the quantity we are interested in is the number of nuclei produced. One can transform

Eq. 2.12 by dividing both sides by Vt,

R ≡
NR

Vt
= σ

Nb

At
NT

V
, (2.38)

where R is the reaction rate in reactions per unit volume, V , per unit time, t. This can be further

simplified by substituting V/v for At, where v is the relative velocity of the particles in the plasma,

and defining the beam and target densities, ρB and ρT , as the number of respective nuclei per unit

volume, V:

R = σvρBρT . (2.39)

One should keep in mind that σ is often highly dependent on the velocity of the particles. Inside

the stellar plasma, particles move with a distribution of relative velocities that are generally charac-

terized by a probability function, P(v). Therefore, Eq. 2.39 can be expanded to take into account a

distribution of velocities, as:

R = ρBρT

∫ ∞

0
vσ(v)P(v) dv = ρbρT 〈σv〉, (2.40)
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where the quantity P(v) dv is equal to the probability that the relative velocity is between v and

v + dv for the interacting nuclei, and 〈σv〉 is the reaction rate per particle pair. This is the quantity

calculated in Sec. 7.1 and contains all the nuclear physics of the reaction, which will be elucidated

in subsequent sections of this chapter.

For interactions in a stellar environment, reactions are referred to as “thermonuclear” reactions

because thermal motion supplies the kinetic energy to the nuclei, and their velocity distributions

can be characterized by a non-relativistic Maxwell-Boltzmann distribution. Because the interacting

nuclei’s absolute velocity distributions can be described by this distribution, the relative velocity

distributions can be represented by it as well, with the mass replaced by the reduced mass, µ [30]:

P(v) dv =

(
µ

2πkT

)3/2

e−µv2/(2kT )4πv2 dv, (2.41)

where k is Boltzmann’s constant, and T is the stellar temperature. A change of variables from

relative velocity to center-of-mass energy (with E = (1/2)µv2) transforms Eq. 2.41 into:

P(E) dE =
2
√

E
√
π(kT )3/2

e−E/kT dE. (2.42)

Using the definition of 〈σv〉 from Eq. 2.40 and substituting the probability distribution in terms of

energy, the reaction rate per particle pair becomes:

〈σv〉 =

(
8
πµ

)1/2 1
(kT )3/2

∫ ∞

0
Eσ(E)e−E/kT dE. (2.43)

At this point, the only assumptions that have been made are that there are particles interacting in

a plasma, such as a nova or other stellar objects, and that their velocity profile is non-relativistic,

purely thermal, and described by a Maxwell-Boltzmann distribution. In order to simplify this ex-

pression, further assumptions must be made about the cross section for the interaction, for example,

whether the reaction is non-resonant or resonant.

2.5.1 Narrow Resonance Reaction Rates

Due to the isolation of single resonances, the cross section can simply be defined by the Breit-

Wigner formula (for non-identical particles), given by Eq. 2.35. Using this for the cross section in

Eq. 2.43, the reaction rate per particle becomes:

〈σv〉 =

√
2π~2

(µkT )3/2ω

∫ ∞

0

ΓaΓb

(Er − E)2 + Γ2/4
e−E/kT dE (2.44)
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If the resonances are narrow, the factor e−E/kT and the partial widths may be moved through the

integral with E replaced with its value at the resonance, Er. This leaves an integral,
∫ ∞

0 dE/((Er −

E)2 + Γ2/4), that can be analytically calculated and has a value of 2π/Γ. Performing the integral

then yields:

〈σv〉 =

(
2π
µkT

)3/2

~2e−Er/kTωγ. (2.45)

For multiple resonances, the total reaction rate per particle pair is simply the sum of the individual

resonance contributions:

NA〈σv〉 = NA

(
2π
µkT

)3/2

~2
∑

i

ωγie−Ei/kT , (2.46)

where Ei is the resonance energy in the center-of-mass frame, i labels each resonance, and Avo-

gadro’s number, NA, has been multiplied on both sides for convention. This is the quantity cal-

culated, tabulated, and plotted in Sec. 7.1 for the thermonuclear reaction 22Na(p, γ)23Mg for tem-

peratures relevant to nova explosions. A reminder: ωγi and Ei are the experimentally determined

quantities in this dissertation.

2.6 Reaction Yield in the Laboratory

In order to calculate the reaction rate as a function of temperature in Eq. 2.46 for narrow resonances

in a laboratory, the quantities that need to be determined are the resonance strength, ωγ, and the

resonance energy, Er. First, one must return to Eq. 2.12. This is the simplest version of this equation,

where there are Nb number of incident beam particles onto NT number of target atoms in an infinitely

thin target of area, A.

The reaction yield, Y , is defined as the number of reactions per incident particle [27], as dis-

cussed in Sec. 1.2.1. By rearranging Eq. 2.12 for a target with a volume density, ρT , and a thickness

∆x, one obtains:

Y ≡
NR

Nb
= σρT ∆x. (2.47)

This thickness ∆x can be written as,

∆x =
∆

dE/dx
, (2.48)

where ∆ the energy loss of the incident beam particles in the target, and dE/dx is the energy loss per

unit length as a particle traverses a nuclear medium. Substituting this relation into Eq. 2.47 results
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in:

Y = σρT
∆

dE/dx
= σ

∆

ε
(2.49)

where ε is the stopping power equal to dE/dx
ρT

. This is the thin-target yield, which must be integrated

over energy for thick targets and assumes a constant cross section over ∆. The following methods

outline how to calculate the yield for a thick target for each limit of Eq. 1.1, discussed in Sec. 1.2.1.

The first outlined below is the conventional method, assuming a uniform target density and small-

diameter beam; the second is the method used in this dissertation for a uniform beam density swept

over the entire target area, where only the total number of target atoms needs to be known.

2.6.1 Thick-Target Yield: Peak Method

This is the conventional method of calculating the resonance yield, which assumes a uniform density

target. Integrating Eq. 2.47 or 2.49 produces:

Y =

∫
σ(E)ρT dx =

∫
σ(E)
ε(E)

dE. (2.50)

Substituting a cross section of the Breit-Wigner form in Eq. 2.35, and integrating from the energy

of the beam at a position x in the target, Eo − ∆E, to the initial beam energy, Eo, produces:

Y =
λ2

r

2π
M + m

M
ωγ

Γ

2εr

∫ Eo

Eo−∆E

dE
(Er − E)2 + Γ2/4

(2.51)

=
λ2

r

2π
M + m

M
ωγ

εr

[
tan−1

(
Eo − Er

Γ/2

)
− tan−1

(
Eo − Er − ∆

Γ/2

)]
, (2.52)

where εr (usually tabulated in the laboratory frame) and λr are evaluated at the resonance energy

and are assumed to be fairly constant over the resonance. With an infinitely thick target (∆ → ∞)

at a beam energy higher than the resonance energy (Eo > Er + Γ), the terms in the square brackets

each approach π/2 with opposite signs, and thus, the maximum yield is,

Ymax(∞) =
λ2

r

2
ωγ

M + m
M

1
εr
. (2.53)

2.6.2 Thick-Target Yield: Integrated Method

However, if one has a thick target wherein one cares about the axial structure of the target, the

longitudinal target density, ρt(z), must be taken into account. Eq. 2.12 can be rewritten as,

Y(Ep) ≡
NR

Nb
= σρbNT =

∫ ∞

0
σ(E(z))ρt(z)ρb dz, (2.54)
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where ρb =
dNb
dA /(Q/e) is a beam density normalized to the accumulated charge, Q, defined in

Sec. 1.2.1, E(z) is the laboratory energy of the beam as a function of depth in the target, and ρt(z) =

dNT (z)/dz. We can assume that the energy of the beam as it traverses the target is equal to its

original energy but adjusted for the energy loss. If we also assume that the energy loss per unit

length, dE/dz, is constant, then

E(z) = Ep −
dE
dz

z. (2.55)

A change of variables from axial depth to energy results in:

Y(Ep) = ρb

∫ 0

Ep

σ(E)ρt

(
Ep − E
dE/dz

)
dE

dE/dz
. (2.56)

Of course, this is at a single beam energy, Ep. In reality, with a thick target, a range of energies will

be needed to encompass the full resonance. Therefore, one must also integrate over beam energy:∫ ∞

0
Y(Ep) dEp = ρb

∫ ∞

0
dEp

∫ 0

Ep

σ(E)ρt

(
Ep − E
dE/dz

)
dE

dE/dz
, (2.57)

where the beam density, ρb, is assumed to be constant. The cross section is of the Breit-Wigner type

in Eq. 2.35, but for convenience, it can be replaced by a delta function that produces the same area

after integration:

σ = 2π2o2ωγ δ(Ecm −
M

M + m
Er) = 2π2o2ωγ

M + m
M

δ(E − Er), (2.58)

where M and m are the mass of the target nucleus and projectile, respectively, and o is defined in

Eq. 1.5. The delta function ensures the cross section is equal to zero everywhere, except when the

energy is equal to the resonance energy, and the factor M
M+m is to transform the resonance energy into

the center-of-mass frame. In translating between the two forms of the cross section, the delta func-

tion identity, δ(g(x)) = δ(x − xo)/|g′(x)| with g(xo) = 0, was used. Combining the latter expression

for the cross section with Eq. 2.57, one obtains:∫ ∞

0
Y(Ep) dEp =

2π2ρbωγ

dE/dz
M + m

M

∫ ∞

0
dEp

∫ Ep

0
dE ρt

(
Ep − E
dE/dz

)
o2δ(E − Er) (2.59)

=
π2~2ρbωγ

m dE/dz

(
M + m

M

)3 ∫ ∞

0
dEp

∫ Ep

0

dE
E
ρt

(
Ep − E
dE/dz

)
δ(E − Er) (2.60)

where the explicit expression for o has been used in the second step. Performing the integral over E

results in:

=
π2~2ρbωγ

m dE/dz

(
M + m

M

)3 ∫ ∞

0

dEp

Er
ρt

(
Ep − Er

dE/dz

)
(2.61)
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Rearranging terms yields:

= 2π2
[(

M + m
M

)2
~2

2mEr

]
M + m

M
ρbωγ

∫ ∞

0

dEp

dE/dz
ρt

(
Ep − Er

dE/dz

)
(2.62)

Changing variables from energy to back to the original variable of axial position, z, results in:

= 2π2o2 M + m
M

ρbωγ

∫ ∞

0
dz ρt(z) (2.63)

This integral is simply the total number of target atoms, NT :∫ ∞

0
Y(Ep) dEp = 2π2o2 M + m

M
ρb ωγ NT , (2.64)

which is Eq. 1.4 for one branch.
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Chapter 3

EXPERIMENTAL SETUP

We measured 22Na(p, γ) resonances directly by bombarding implanted 22Na targets with protons

from the University of Washington’s 9-MV tandem Van de Graaff accelerator, which is described

in detail in Ref. [54]. High currents (∼ 45 µA) at lab energies ranging from 150 to 1000 keV were

achieved with a terminal ion source. Of the six beamlines in the facility on which to run experiments,

ours was stationed at the 0◦ position and was completely rebuilt and refurbished for this experiment.

Fig. 3.1 is a panoramic photo of the 0◦ beamline, with the protons entering from the right hand side.

Figure 3.1: Panorama of 0◦ beamline. Only one Ge detector is shown on the detector platform.

Before beginning the experiment, the entire beamline was dismantled, and all reusable beam

pipes were thoroughly cleaned with soap, water, and finally alcohol. The previous support for the

beam pipe was removed and replaced with two 5 inch x 5 inch steel box beams, into which all

support components were affixed. The beamline’s two previous quadrupole magnets were reused

but repositioned for the new optics. The beamline itself had one cryopump, a liquid-nitrogen cold

trap, two sets of horizontal and vertical steerers, a beam scanner, and rastering coils. The chamber

had its own cryopump and cold trap, and details will be discussed in Sec. 3.1. All components were

aligned with a telescope.
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3.1 Chamber

A cross-sectional view of the chamber is shown in Fig. 3.2. It was housed in a stainless steel box

of 8 inch x 8 inch x 12 inch, with each face welded except one side panel which had handles bolted

on for ease of handling. It was mounted on the beamline supports with adjustable feet bolted to the

box.

30 cm

LN tank2

Upstream

cold shroud

Collimator 1 ladder

Collimator 2

Collimator 3

Target

Downstream

cold shroud

Beam

Target mounting

assembly

Figure 3.2: Side view of chamber cross section. Copper braids connecting the upstream and down-
stream cold shrouds have been omitted for clarity.

The main features of the chamber included its dual cold shroud system, three sets of collimators,

and water cooled target mount.

3.1.1 Cold Shroud

The cold shroud isolated the radioactive target to prevent the contamination of the upstream beam-

line and also helped maintain a clean environment near the target, suppressing carbon buildup.
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During data collection, the pressure in the chamber was in the range of (1-2)×10−7 torr.

The cold shroud was separated into a downstream and an upstream section, connected via four

copper braids (braids not shown in Fig. 3.2 for clarity). The upstream section was directly coupled

to a 2630 cm3 liquid nitrogen tank, and all elements were OFHC copper to guarantee good thermal

conductivity. The end of the downstream cold shroud surrounded the 1/8 inch target substrate;

however, because it was the farthest away from the tank, it only reached a temperature of 125 K,

whereas the upstream shroud reached 88 K, as shown in Fig. 3.3.

Figure 3.3: Cooling of the cold shroud as a function of time.

3.1.2 Apertures

The chamber had three sets of collimators. The first, collimator 1, was a water-cooled, sliding

ladder between the cold shrouds with 4-, 7-, and 8-mm diameter collimators. The 8-mm collimator

was used during 22Na(p, γ) data acquisition. Also on this ladder were electron-suppressed 1-mm

and 3-mm diameter collimators with downstream beam stops for tuning. An 8-mm collimator,

collimator 2, was 33 mm downstream of the ladder and was attached to the end of the downstream

cold shroud. It was followed by a 10-mm diameter cleanup collimator, collimator 3, located 122 mm
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farther downstream. Each collimator was electrically isolated from the chamber to permit current

monitoring.

3.1.3 Target Mount

Figure 3.4: Photo of target and target mount, beamside view.

A photo of our target mount is shown in Fig. 3.4. The 1/8 inch target substrate was bolted to a

copper backing flange and was directly cooled with deionized-water via a thin pipe coupled to the

flange. This pipe was welded to an aluminum disc, which bolted to the backing plate, along with

a return line. Air cooling was found to be insufficient. To minimize contact with the radioactive

targets, this assembly was then bolted to a stainless steel coupler with a Kwik-Flange connector on

the chamber side. Once mounted, the only target handling necessary involved snapping this Kwik-

Flange on and off the chamber. Directly upstream of this assembly was a 30-mm long electron

suppressor biased between −150 and −300 V. During data collection, the current on target was

monitored, and the charge was integrated and recorded.
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3.2 Detectors

Two sets of detector systems were positioned ± 55◦ to the beam axis. A a top view of the setup,

including chamber, shielding, and detectors with Dewars, is shown in Fig. 3.5. Photos are shown in

Fig. 3.6 and 3.7.

Beam

Chamber

PM
T

Pb
sh

iel
d

Target

Scintillator
LN 2
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ar

Pb

Ge

55
o

30 cm

Figure 3.5: Top view of detector setup. The PMT shown is for the annular scintillator only; the
planar scintillator PMT has been omitted for clarity.

This angle was chosen to minimize effects due to possible angular anisotropies, as the Legendre

polynomial P2(cos 55◦) = 0. Each system consisted of one high-purity germanium detector encased

in cosmic-ray anticoincidence shielding and and was separated from the target mount by 26 mm of
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Figure 3.6: Photo of detector setup. Figure 3.7: Photo of detector setup, close-up.

lead along the beam axis.

3.2.1 High-Purity Germanium Detectors

The high-purity germanium (HPGe) detectors were Canberra GR10024 with a relative efficiency of

100%, as compared with 3 in × 3 in NaI. A cross sectional view of the detector is shown in Fig. 3.8.

The resolutions for each detector at 1.275 MeV were 4.4 keV and 7.4 keV (FWHM) at high rates

(22Na target present), and 2.2 keV and 3.0 keV (FWHM) at low rates (using residual 22Na activity

with 22Na target removed).

A sample spectrum from one of these detectors is shown in Fig. 3.9. The strongest signal is the

1275-keV line from the radioactive source, and its double and triple signal pile-up can also be seen

at 2550 and 3825 keV, respectively. Also clear is a signal from the 511-keV gamma rays and its pile-

up with the 1275-keV gamma rays at 1786 keV. The two thresholds at low energies are discussed in

Sec. 3.3. Even with the strong 22Na source in place, the spectrum above ∼ 4 MeV was very clean,

which was the energy regime where this experiment focused. Here, the dominant contribution to the

background was not from the radioactive source but from cosmic rays, as discussed in Sec. 3.2.2.

Shielding

As was discussed in Sec. 1.2.2, the main challenge of this experiment was the highly radioactive

target, which produced signals that would have overloaded the detectors without taking preventative

steps. A simple way to reduce the event rate in the detectors to a few tens of kHz was to place some
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Figure 3.8: Cross section of germanium detector.

high-Z material between the radioactivity and the detectors. In order to determine what material to

choose as shielding, simulations were performed with Penelope , a Monte Carlo code which simu-

lates electron-photon transport in arbitrary materials [55, 56]. More simulation detail is discussed in

Sec. 4.1.2. The figure of merit used to compare materials was the ratio of the photopeak efficiency

for 5-MeV gamma rays to the total efficiency for 1275-keV gamma rays. Several configurations of

varying thickness of copper and lead (used together or separately) were considered; however, the

ratio remained relatively constant. For ease of fabrication, 26 mm of lead was chosen. According

to the simulations, the lead reduced the counting rate for the 511-keV gamma ray by a factor of 70,

whereas the photopeak from 1275-keV gamma rays was reduced by a factor of 5. The suppression

ranged from factors of ∼ 3.5 to 4.5 for gamma rays with energies above ∼ 5 MeV.

3.2.2 Cosmic-Ray Anticoincidence Shields

The bulk of the background at gamma-ray energies higher than ∼ 4 MeV was from cosmic rays.

In order to remove these unwanted signals, annular and planar plastic scintillators encased in lead

were used in anticoincidence with the germanium detectors. The reduction of the 22Na(p, γ) signal
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Figure 3.9: Sample background spectrum from one Ge detector, measured for ∼ 160 hours. Inset
shows the spectrum expanded around the 1275-keV gamma ray. Gamma rays from 22Na(p, γ) are
between ∼ 5 and 8 MeV, where the dominant background is from comic rays. A discriminator was
used to suppress the rate directly below the 1275-keV line, as discussed in Sec 3.3.
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by this veto was negligible. A photo of these shields separated from the germanium detectors is

shown in Fig. 3.10, and a sketch is shown in Fig. 3.11.

Figure 3.10: Photo of cosmic ray shields. The scintillator in
the foreground has had its top lead casing removed.

scintillator

Ge

ray

Annular

Cross sectional
view

Cosmic

Figure 3.11: Sketch of cosmic ray
entering both the annular scintilla-
tor and Ge detector.

When cosmic rays enter scintillators, they excite the material, which, upon de-excitation, pro-

duce photons, or scintillation light. The scintillators were wrapped first with reflective aluminum

foil and then with black plastic, and finally light leaks were halted with black tape along any seams.

It is this signal that was used in anticoincidence with the germanium signals in order to filter out

the cosmic-ray background. The details of the electronics and integration into the data acquisition

is discussed in Sec. 3.3.

Because funding for new scintillators could not be procured, an existing setup was modified to

fit the needs of this experiment; therefore, their geometry was not optimal, as each annulus had

a diameter 2.3x that of the germanium crystal. However, they still greatly aided in cosmic-ray

rejection. The setup included an annular plastic scintillator as well as a front planar scintillator, both

of which fit inside a large lead covering. Previously, the photomultiplier tubes on each annulus had

been directly coupled to the flat surface on the back, which was unacceptable for this experiment as

they collided with the large liquid-nitrogen Dewars for the germanium detectors. Thus, the PMTs

on each annulus had to be moved to the cylindrical side where they would no longer interfere. The

planar scintillators posed no problem.
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In contrast to their previous construction, the PMTs now required light guides to couple their flat

faces to the curved cylindrical surface. Small cylinders of polished lucite were machined to facilitate

this coupling and were glued with optical cement directly onto scintillator. The PMTs were then

glued onto the light guides, which were then covered in black tape to prevent light leaks. In order to

accommodate the new PMT positions, the lead covering also had to be modified, and to protect the

PMTs, cylindrical cages were machined and affixed to the lead. To test their ability to reject cosmic

rays, an experiment was performed with 50% germanium detectors, and the results are shown in

Fig. 3.12 as a function of energy and PMT threshold settings.

Figure 3.12: Panel (a) shows the raw amplitude spectrum from one of the 50% Ge detectors, and
panel (b) shows the fraction vetoed with the anticoincidence system. Each is a function of gamma-
ray energy. The sharp rise at ∼ 2.6 MeV illustrates the dominant background shifting from room
background at low energies to cosmic-ray background at higher energies.

As shown in Fig. 3.12 (a), the dominant background at low energies originates from the room
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(mostly 40K at 1460.8 keV and 208Th at 2614.5 keV) and not from cosmic rays; therefore, there

is a large jump in rejected fraction above the room background gamma-ray energies. Even with a

non-optimal geometry, the rejection at 5 MeV was 80%. Also, the lead encasing was kept because,

as the figure illustrates, the lead helps to convert a fraction of cosmic rays into particles detectable

by the plastic scintillators. Rejection data from the 22Na(p,γ) experiment will be discussed in the

next section.

3.3 Data Acquisition

In addition to the signals from the high-purity Ge detectors, the electronics also processed PMT sig-

nals from the scintillators. In order to reduce the rate seen by the detectors due to target radioactivity,

two techniques were used: 1) lead shielding was installed as described above, 2) a high threshold on

the Ge detectors was set just below the strong 1275-keV 22Na line, so that the target activity could

be monitored in-situ.

The Ge-signal amplifiers (ORTEC 672) were operated in a pile-up-rejection mode (causing a

dead time of ∼ 40%) to minimize signal distortion. After being triggered by an initial pulse, this

mode allowed the rejection of subsequent pulses (and the initial pulse) if they occurred within a fixed

time window of 27 µs (equal to fixed factor of 9 times the shaping time). If this condition was met,

a logic signal was triggered and used in anticoincidence with the main gate for the ADCs. When

performing high-rate experiments, one must also balance the desire for fast processing to minimize

pile-up with longer amplifier shaping times to maximize charge collection and resolution. Therefore,

a 3-µs shaping time was chosen. To note, two discriminators were used on the timing signal from

each Ge preamplifier. The Constant-Fraction-Discriminator (CFD) enabled a high timing resolution

to use as a start for the TAC (the first threshold slightly above 0 MeV in Fig. 3.9), whereas the

Timing-Signal-Channel-Analyzer (TSCA) allowed for a sharp energy cut directly below the 1275-

keV gamma ray (the second threshold around 1.2 MeV in Fig. 3.9).

Signals from the two sets of detectors were fed into analog NIM-standard modules and con-

verted into digital signals by two ORTEC AD413A CAMAC Quad 8k ADCs with fast FERAbus

readout. These multiplexed ADCs had four inputs each, a 6-µs conversion time per active input,

and a 100 ns/word FERAbus readout, which helped to reduce dead time. A buffer module was used
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to minimize the communication with the computer via a CAMAC interface. JAM, a JAVA-based

data acquisition and analysis package for nuclear physics [57], was used to process the data. All the

NIM and CAMAC electronics modules were located in a temperature-controlled rack to minimize

instabilities. The raw rate in each detector was below 30 kHz, and the ADC rate was ∼ 4 kHz.

The anticoincidence shields were an important feature of the data acquisition system. Signals

from the active anticoincidence shields and from the Ge detectors were used as a stop and start,

respectively, in a Time-to-Amplitude-Converter (TAC). If these two signals occurred within a set

timing window, the resulting Ge signal was discarded. The exact details of this are discussed in the

following subsection.

In order to determine the live-time fraction for our detectors, a signal from a pulser unit was fed

into the “test” port of each Ge preamplifier, creating an additional signal in the corresponding ampli-

tude spectra. This signal was sorted into its own spectrum by a logic signal to the data acquisition.

A window of comparable width to the energy window for the yield was placed on the prompt pulser

signal and compared to the scaled number of pulser pulses. This ratio gave the live time, which

ranged from 35 to 45% for the radioactive targets and was above ∼ 90% for all other targets. The

live-time correction was substantial, but it was not beam related; instead it resulted from a constant

rate due to the radioactivity. To test the accuracy of the live-time correction, a thick 27Al target

was irradiated with protons with and without a 22Na source nearby. Although the presence of the

radioactivity decreased the live time from 97% to 50%, the ratio of the live-time corrected yields

was 0.99 ± 0.02.

3.3.1 Signals: Amplitude, TAC/Veto, Scalers

A diagram of the electronics for one detector is shown in Fig. 3.13. Notes have been made where

the second detector system is folded into the acquisition; otherwise, its electronics are exactly the

same. For each of the two detector systems, there were two copies of the amplitude signals from the

germanium, one used strictly for the energy analysis and the other used for timing and for cosmic-

ray rejection. There were also two PMT signals, one from the annular scintillator and one from the

planar scintillator. Along with these, there was one pulser signal and one signal from the TAC used

for the anticoincidences.
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Figure 3.13: Electronics diagram. Detectors (germanium and scintillator) are shaded. Shown is
detector #1 only; detector #2 is a copy of all elements to the left of the dotted line. Notes have been
made where the second detector system is folded into the acquisition; otherwise, its electronics are
exactly the same.
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Each ADC had four inputs: energy amplitude from the Ge detector, TAC signal, pulser sig-

nal, and either horizontal or vertical raster signal. In the data acquisition program JAM, nine main

histograms were produced from the above signals for each detector system: raw energy spectrum,

vetoed energy spectrum, pulser spectrum (sorted from the energy spectrum), pulser spectrum (di-

rectly from its generator), TAC spectrum, 2D energy verses TAC spectrum, raw raster spectrum,

and gated raster spectrum. Counts were sorted into the vetoed energy spectrum if they were in an-

ticoincidence with the TAC signal, explained in detail in the next subsection. A pulser signal was

routed directly into the ADC and also into the “test” port as described above. The latter causes its

signal to appear in the energy spectra; thus, if its ADC channel fired, it was routed it to its own

histogram. The signals from the rastering device are explicitly discussed below in Sec. 3.3.2, but it

was possible to set a gate on an energy region of interest in the vetoed energy spectrum and sort out

the corresponding raster signal to its own histogram (“gated raster spectrum”). In addition to ADC

signals, there were a number of scaler signals that were used to monitor count rates at various stages

of signal processing, to record the total number of incident protons, and to aid in calculating the live

time with the direct pulser signal.

Two modes of data acquisition were possible and have different advantages. When a signal

triggered the ADC, all signals in each input channel were read as an “event”. In “event mode,”

these signals were recorded exactly and relationships among signals are retained, which allows a

subsequent full offline analysis, enabling the complete re-sorting of any event into any histogram.

Clearly, this is the most flexible for analysis; however, this mode requires a large amount of hard

drive space and should be used only when the necessity of re-sorting of data is likely. On the

other end of the spectrum, “singles” mode simply records the values of each ADC conversion into

histograms according to gates set up in JAM, previously fixed by a java sort code. These events

cannot be correlated with one another and cannot be resorted, but required computing space is

greatly reduced. Most of our 22Na(p, γ) data was taken in this mode.

TAC

In order to determine the bounds of the TAC spectrum for data processing, the TAC signal corre-

sponding to gamma rays only with energies between 4 and 6 MeV was extracted, a sample of which
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is shown in Fig. 3.14.

Figure 3.14: Sample TAC spectrum. Ge and scintillator signals were used as a start and stop,
respectively, and shown is the signal from cosmic rays with energies between 4 and 6 MeV with 82
ch/ns. The gate for the veto is indicated and is asymmetric to include the tail on the time spectrum.

The timing gate was set on the prompt peak, which had a long tail to its left. This occurs because

the Ge crystal is coaxial with a large radius (3.875 mm), and signals that occurred closer to the

outer radius have a longer collection time. Because the TAC was started with the Ge signals, this

corresponds to shorter time differences in the TAC spectrum. A 2D amplitude verses non-gated TAC

signal spectrum is shown in Fig. 3.15, and the intensity of the signals are indicated by color.

Figure 3.15: Sample energy verses TAC spectrum.

Most signals occurred at low energies with a random sampling of times (the bright yellow band).

The prompt TAC peak at ∼ 280 ch is clear and distinguishable from the tail which drops down to
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the left. The horizontal signals around an amplitude of ∼ 85 ch (corresponding to 8.3 MeV) are

accidentals from the pulser.

The TAC signal for most high-energy cosmic rays from ∼ 6 to 11 MeV also falls within the set

window shown in Fig. 3.14. The scintillators’ PMT thresholds were set well above 511 keV to avoid

vetoes by annihilation radiation and to decrease detector rate. One also would like to avoid vetoing

the 1275-keV gamma rays, as those are coincident with the 511-keV gamma rays. Because the veto

rate was a maximum of ∼ 50 Hz, accidental veto was quite low. Self veto was possible with cascade

gamma decays if one gamma ray was registered in the Ge and the other in the anticoincidence

shield; this was examined by comparing the yields from raw singles spectra with the those from the

vetoed spectra, which agreed to better than 99%. The effect of the anticoincidence shielding for the
22Na(p, γ) setup is shown in Fig. 3.16. In the energy region above ∼ 5 MeV, the anticoincidence

system rejected ∼ 80% of the cosmic-ray background signal.

Figure 3.16: Sample background gamma-ray energy spectrum, illustrating the effects of the veto.

3.3.2 Rastering

The beam was rastered using a magnetic steerer located 1 m upstream of the target. A rectangular

pattern with 19- and 43-Hz horizontal and vertical frequencies was used, and signals proportional

to the magnetic field were produced by integrating the voltage signals from a pickup coil located

in the raster magnet. These readout values represent the center of the beam spot, if the beam is

steered through the center of the beam pipe. For each data set collected, a 2D histogram of this



59

Figure 3.17: 2D raster plot on the “coin” target: a 5-mm diameter 27Al disc embedded in copper.
BX and BY are proportional to the magnetic field of the raster. Shown is a histogram of the raster
signal during a measurement of the 406-keV 27Al(p, γ) resonance, with a wide gate ranging from
above the 7358-keV gamma ray to below its first-escape peak.

signal in both horizontal and vertical directions was recorded. It was also possible to set a gate

on the energy spectrum of each detector and sort out the corresponding raster positions. For each

measured resonance, the amplitude for the raster was scaled as the square root of the proton energy,

so the rastered area of the beam on target would be constant.

Fig. 3.17 shows this 2D raster plot, obtained with a 5-mm diameter, 1.5-mm thick 27Al disc

embedded in the center of a copper backing. This “coin” target had the same OFHC copper substrate

and diameter as our 22Na targets. Shown are the counts detected for each value of the rastering field

in the two dimensions. During all data-taking, the raster signals were monitored in order to diagnose

problems with the target or other issues that may have arisen.
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3.4 Targets

Isotopic purity and stability are essential characteristics of targets involved in nuclear astrophysics

measurements. Ion-implantation into a substrate allows for both, while avoiding complications with

chemical fabrication. However, as was discussed in Sec. 1.2.2, target degradation after prolonged

bombardment remains a formidable challenge. Beam effects such as sputtering and heating must

be monitored and quantitatively known, and diffusion could also play a role. Two types of sodium

targets were fabricated for this experiment: radioactive 22Na and its stable isotope 23Na.

Figure 3.18: TRIM simulation of a 30-keV 22Na beam implanted into a copper substrate.

Two sets of radioactive targets were produced at TRIUMF-ISAC, and, in between sets, a multi-

tude of 23Na target tests were performed in order to further understand the behavior of the radioac-

tive targets and to discover if a better substrate and/or implantation energy for 22Na production ex-

isted [18]. A sample implantation profile simulated with TRIM [58] is shown in Fig. 3.18. Because

the widths of the resonances discussed in this dissertation are on the order of eV, the implantation

profile dominated the shape of the excitation functions.

As outlined in Sec. 1.2.1, the parameter needed from the targets in order to extract the resonance

strength is the total number of atoms. From all types of implanted targets, this quantity can be

inferred from the integrated charge, which can have non-negligible systematic errors if the electron
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suppression is not handled properly (see Sec. 3.4.2). In addition to integrated charge, for radioactive

targets the activity can also be used to extract the total number of atoms, if the efficiency of the

characteristic gamma ray is well known. For our experiment, only this method is used for 22Na(p, γ).

3.4.1 22Na Targets

Two sets of 22Na targets were implanted at TRIUMF using the Isotope Separator and Accelerator

facility (ISAC). Each target was made by implanting a 10-nA, 30-keV 22Na+ ion beam into a rect-

angular OFHC copper substrate with dimensions 3 mm × 19 mm × 25 mm. The beam was rastered

over a 5-mm diameter collimator such that at the raster extreme only 5% of the beam remained

on target, thereby creating a nearly uniform density. The setup included electron suppression with

−300 V and a liquid-nitrogen cooled cold trap with a vacuum pressure in the range of 6 × 10−8 to

2 × 10−7 torr. Charge integration was monitored throughout the implantation process, which took

roughly 24 hours per target with a 22Na current of ∼ 15 nA.

In 2005, 185 and 300 µCi targets were fabricated and left in air to wait until 22Na(p,γ) data

taking began in summer of 2008. As target degradation can be quite problematic, we carried out

a program [18] to determine the ideal combination of implantation energy, substrate, and possi-

ble protective layer by bombarding 23Na targets implanted under similar conditions. Using the

conclusions of Ref. [18], in December 2008, two additional ∼ 300 µCi 22Na targets, #3 and #4

(∼ 1.3 × 1015 atoms), were implanted with the same parameters but included a 20-nm protective

layer of chromium, deposited by vacuum evaporation after implantation. A small rise in tempera-

ture of the target was observed during the evaporation; however, a survey of the apparatus showed

no residual activity from diffusion of 22Na out of the target. All 22Na data presented were taken

on the chromium-covered targets, with the exception of the 232-keV resonance measurement which

employed bare target #1.

To explore the transverse location of the implanted 22Na, the beta activity was scanned with

a Geiger counter behind a 6-mm thick brass shield. A 3-mm diameter hole in the center allowed

transmission of the beta particles, and the gamma rays presented a nearly constant background.

The results for target #3 are shown in Fig. 3.19 (a), along with a corresponding geometric model,

panel (b). The beta count rate in the model is proportional to the areal overlap of the hole and the
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Figure 3.19: Plots representing the count rate recorded in a Geiger counter per data point from a
scan of target #3 with a 3-mm diameter collimator. The distance between the target and counter was
∼ 10 cm, and the baseline is greater than zero because the Geiger counter detected events caused by
gamma rays and beta particles. (a) shows the dead-time corrected (∼ 30%) experimental data. (b)
shows the results of a simple geometrical model normalized to, and centered on, the experimental
data, where the relative beta count rate is assumed to be proportional to the areal overlap of a uniform
5-mm diameter source of activity and the collimator.
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activity, under the assumption the activity is evenly distributed over a 5-mm diameter circle. This

measurement confirmed that the 22Na was confined within a 5-mm diameter circle and determined

the position of the activity relative to the center of the substrate. Although this method was not

very sensitive to radially-dependent non-uniformity, it did verify axial symmetry. Thanks to this

information and the extreme rastering of the 22Na beam, we believe the targets were quite uniform,

although our method does not require this.

3.4.2 23Na Targets

In order to fabricate the most ideal, durable targets, a multitude of tests were performed with 23Na,

the stable isotope of sodium [18]. Parameters that were varied included the implanting beam energy

(ranging from 10 to 30 keV), the substrate (copper, nickel, and tantalum), the covering material

(none, chromium, and gold), and cooling mechanism (air and water). We found targets implanted

at 30 keV into OFHC copper, water cooled, and covered with 200 Å of chromium to be the most

robust of our sample set, losing an amount consistent with zero loss after ∼ 20 C of proton beam

bombardment.

The 23Na targets were implanted using the low energy end of the tandem Van de Graaff accel-

erator at CENPA from a sputter ion source. In order to produce a source of 23Na, NaCl was mixed

with silver (used as a conductive material) and compressed into pellet form. This pellet was then

installed into the sputter ion source, which produced a beam of 23Na− ions. In order to ensure the

beam had a high purity of only the isotope desired, the beam exiting the ion source was bent through

a 90◦ dipole magnet (M/∆M = 100). The beam was then rastered in a square pattern with horizon-

tal and vertical frequencies of ∼ 0.1 - 0.3 Hz using a window-box steering magnet with discretely

changing currents. The beam then traveled through a cold trap 14 cm upstream of the target before

encountering the implantation setup. A sketch of a top view of the setup is shown in Fig. 3.20.

The setup consisted of a collimator (either 0.5 or 1 cm in diameter, biased to +300 V), a grounded

electron suppressor, and a target plate (also biased to +300 V). This configuration of biases pre-

vented electrons knocked out by 22Na ions from leaving the target or collimator and is supposed

to ensure a correct current reading off both the collimator and target. This is necessary to infer

total number of implanted atoms from integrated charge. This setup, however, does not suppress
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Figure 3.20: Sketch of 23Na implantation setup. Top view. All dimensions are in inches.

sputtering of positive ions, which can lead to an incorrect value for the ion current hitting the target.

During implantations relevant to this dissertation, the current on the suppressor was not moni-

tored. However, in subsequent implantations for other experiments, it was revealed that there was a

non-zero current on the suppressor, leading to an incorrect integration of the ion current incident on

the target. Therefore, an investigation of this current was necessary in order to ascertain from where

the current was originating and if the ratio of suppressor current to target current was constant, so

that a simple correction could be applied to the total number of atoms.

A battery of current measurements with a beam of 23Na− several months after the original im-

plantations were performed on the target, suppressor, and collimator. The bias on the collimator

was decreased to 0 V, which had significant effect on the collimator current but no effect on either

the target or the suppressor current. This means when electrons were knocked off, they traveled

upstream away from the target and suppressor, and thus, were not the source of the current on the

suppressor.

Then the ratio of currents on the suppressor to the target was measured with different raster po-

sitions. While keeping the field on the horizontal raster fixed and varying the vertical field (and vice



65

versa), this ratio of currents remained approximately constant, and the sum of the target, suppressor,

and collimator current was roughly equal to the total current measured upstream in the off-deck

Faraday cup. This indicated the ratio was independent of the beam position and could be used to

correct the number of implanted atoms.

We concluded that the atoms were positively charged and drawn to the grounded electron sup-

pressor; therefore, the integrated charge on the target was not equal to the total number of implanted
23Na atoms. Measurements of the ratio of current on the suppressor to current on the target indicated

that the total number of atoms deduced from integrated charge was 13.5 ± 2.0% higher than the true

number of implanted atoms. This correction was also applied to the 23Na(p, γ) resonance strength,

discussed in Sec. 5.7.
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Chapter 4

CHARACTERIZATION OF EXPERIMENTAL PROPERTIES

In order to extract the resonance strength using Eq. 1.4, knowledge of the absolute detector

efficiency, total number of 22Na atoms, and various beam properties including the beam density was

required and is discussed in this chapter. However, although this includes the determination of the

initial number of target atoms, our treatment of potential target degradation is explored in Sec. 5.4.

4.1 Detector Efficiency

Detector photopeak efficiencies were obtained by combining Penelope [55, 56] simulations, de-

scribed in detail below, with direct measurements of gamma rays from 60Co and 24Na sources and

from 27Al(p, γ) resonance measurements. This process hinged on one absolute measurement (from

the 60Co source) at a low gamma-ray energy (1332 keV) and then extended upward in energy with

the use of relative measurements, relying on branching ratios only (i.e. the method was indepen-

dent of source strength). Each relative measurement included a branch that was close in energy to

a branch where the simulation had been previously verified, starting with the 60Co measurement

at 1332 keV. Because the simulation geometry described below was slightly tuned to produce a

detector efficiency that matched the results from the absolute 60Co measurement, these low-energy

branches were set to the value given by Penelope in order to extract an efficiency at the higher energy

branches.

4.1.1 Direct measurements: 60Co, 24Na, 27Al

The efficiency at 1332 keV was measured using the gamma ray from a 31.51-nCi 60Co source fabri-

cated and calibrated in 2005 by Isotope Products [59] and corrected for decay. This calibration has

a precision of 1.7% (99% C.L.), and the Penelope simulations were adjusted to match the efficiency

of this source, as described in the following subsection. The ratio of efficiencies from 1369 to 2754

keV was measured using a 24Na source (t1/2 = 15 hrs) fabricated at the University of Washington.
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Since the simulated efficiency at 1332 keV equaled the measured 60Co efficiency and since 1369

keV is very close to 1332 keV, we equated the efficiency at 1369 keV to the Penelope value. Then

from this ratio we obtained the efficiency at 2754 keV.

To extend the efficiency determination to higher energies, we measured 27Al(p, γ) resonances us-

ing a thick, full aluminum target and used the relative intensities of well-known gamma ray branches

at Ep = 633 and 992 [60, 61]. For the latter resonance, our coin target was also used. We subtracted

the below-resonance yield from the above-resonance yield to extract the net yield. At Ep = 992 keV,

the gamma rays of interest are at 1779, 4742, and 10762 keV. Using the simulation to determine the

efficiency at 1779 keV, our measurements, combined with the known branches, gave the efficiencies

at the two higher energies. At Ep = 633 keV, we measured the gamma rays at 7575 keV and 10451

keV. As the simulation matched the value we had obtained at 10762 keV, we used the simulation for

the 10451 keV value and the known branch to determine the efficiency at 7575 keV. The agreement

between measurement and simulation is discussed in the following subsection.

4.1.2 PENELOPE Simulations

Scintillator
Pb

Water

Ge

Al

C window

Cu

Beam

7.5cm

Zn

Figure 4.1: Cross section of simulated detector geometry. Zinc was used as a substitute for brass.
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The geometry of our apparatus as modeled in Penelope is shown in Fig 4.1. The simulated

detector included the germanium crystal, cold finger, and carbon window. All germanium detector

dimensions were initially taken from the nominal specifications provided by Canberra [62]. In

addition, we included the 26-mm lead and 25-mm planar plastic scintillator in front of the detector.

Although the annular plastic scintillator was modeled, the annular lead was not, as it was not in the

line of sight of the target. The sodium source was a uniform, 5-mm diameter disk centered on the

copper substrate. The copper backing mount was included, as was the aluminum plate supporting

the water cooling system. The water and its copper pipes inside the target mount were modeled, but

the pipes that extended up and out from the mount were not, as they were thin and mostly out of the

line of sight. All components of the target mount were aligned with the beam, whereas the detector

was at an angle of 55◦.

The gamma rays were projected from their source uniformly in a 80◦ opening angle, which

covered all modeled components. Absolute efficiencies were corrected for the solid angle. Each

simulated energy included an initial number of gamma rays such that the photopeak precision was

less than 0.1%, and a sample spectrum is shown in Fig. 4.2.

Figure 4.2: Sample Penelope spectrum for Eγ = 5055 keV. Labels are in keV. SE and DE indicate
single- and double-escape peaks, respectively.

At Eγ =1332 keV, with the source spread out over an area equal to that of the 1-mm diameter
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60Co source, the simulation initially gave results 2.5% higher than the measurement. Therefore,

the front face of the crystal was moved back from the target by 1.7 mm, in order to make the

simulation reproduce the measurement exactly (back face location was unchanged). Results for the

simulated detector efficiency are shown in the upper panel of Fig. 4.3. For sources other than the
22Na, source distribution and substrate material were changed in the simulation to match those used

in the measurement. The bottom panel of Fig. 4.3 shows the ratio of the measured efficiencies to the

simulations, and all values are shown in Table 4.1.2.

Figure 4.3: Photopeak efficiency. Top panel is the efficiency from Monte Carlo simulations. Bot-
tom panel shows the ratio of efficiencies from measurement to simulation, and arrows indicate the
gamma-ray energy used in the relative efficiency analysis. Values are shown in Table 4.1.2.

For the 213- and 610-keV resonances in 22Na(p, γ), yields from first-escape peaks were added

to the photopeak yield in order to improve statistics for branches with Eγ = 7333 and 8162 keV,
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Table 4.1: Numerical efficiency comparison. All values should be multiplied by
× 10−4. Only statistical errors are shown, and an overall systematic error of 1.7%
applies to the measured values. Statistical uncertainties from the simulation (“sim”)
are less than 0.5%.

27Al(p, γ): Ep =

Eγ (keV) Substrate sima 60Co 24Nab 992 keVc 633 keVd

1332 Cu 5.36 5.36±0.03

1369 Cu 5.49 –

1779 Al 7.44 –

1779 Cu 6.37 –

2754 Cu 6.20 6.24±0.06

4742 Al 4.77 4.78±0.21

4742 Cu 4.23 4.34±0.20

7575 Al 2.62 2.45±0.13

10451 Al 1.47 –

10762 Al 1.37 1.36±0.07

10762 Cu 1.20 1.23±0.06

a Geometry adjusted to match 60Co measurement as described in text.
b 1369-keV value obtained from simulation in order to obtain 2754-keV value

from measured ratio.
c 1779-keV value obtained from simulation in order to obtain 4742- and 10762-

keV values from measured ratios.
d 10451-keV value obtained from simulation in order to obtain 7575-keV value

from measured ratio.
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respectively. Comparison of 27Al(p, γ) data to simulation at 7.5 MeV indicates agreement to within

2% and is covered by the systematic error detailed in the next section.

4.1.3 Systematic Errors for the Efficiency

In order to extract systematic errors for our efficiencies, we compared the quality of the fit of our

data from the 24Na source and the 992- and 633-keV resonances of 27Al(p, γ) to our simulations,

as shown in the bottom panel of Fig. 4.3. The precisely measured ratio for the two 24Na gamma

rays yields a value for the efficiency at 2754 keV which is 0.7 ± 1.1% higher than that given by the

simulation. The points obtained from 27Al(p, γ) resonances have statistical uncertainties between

4.7 and 5.2%, and they agree well with the simulation. Therefore, we ascribe a 5% systematic

uncertainty to the efficiency determination for isotropic emission of γ rays.

Because the detectors are centered at ±55◦ in the laboratory, zeros of P2(cos θ), the effect of a

P2(cos θ) term in the angular distribution can only arise from the angular dependence of the effi-

ciency across the detector and from center of mass to laboratory transformation. A P4(cos θ) term

has no such restriction. Assuming the angular distribution to be of the form Ω(θ) = 1+a2P2(cos θ)+

a4P4(cos θ), we used the Penelope simulation to determine the effect of non-zero values of a2 and

a4. A value of a2 as large as 1 only caused a 2.6 ± 0.4% change in the efficiency. Published data

for 23Na(p, γ) resonances [63] show typical a4 values of about 0.005 and a maximum value of 0.05.

An a4 of 0.05 would cause a 2.0 ± 0.4 % change in the efficiency. Therefore, we assigned an addi-

tional systematic error of 3%, to include the possible effects of the angular distribution. Our overall

systematic error in the efficiency is ± 6%.

4.2 Initial Total Number of Target Atoms

We determined the initial number of target atoms from the 1275-keV gamma rays emitted in the

decay of 22Na (t1/2 = 2.6027(10) yrs [49]) using the simulated detector efficiency and assigned a

2.6% uncertainty. This uncertainty combines the 1.7% uncertainty in the 60Co calibration source at

Eγ = 1332 keV with an additional 2% due to the accuracy of the ∼ 7% background subtraction in

this region of high detector rate. Potential degradation of the total number of atoms due to proton

bombardment is discussed in Sec. 5.4.
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4.3 Beam Properties

4.3.1 Normalized Beam Density

We conducted measurements on 27Al targets in order to extract the normalized beam density, ρb =

dNb
dA /(Q/e), averaged over the 5-mm diameter area. Systematic errors were then explored with simu-

lation and visual inspection of beam-related target coloration. Beam non-uniformity was then taken

into account, and its effect combined with the possibility of a non-uniform target was investigated.

We determined the normalized beam density, ρb, averaged over the target by comparing the

thick-target yield from our “coin” target, Yc, which had the same areal extent as the 22Na targets, to

the yield from a solid 27Al target, Ys. From the ratio of these yields, one can extract ρb via:

Yc

Ys
= ρbAc, (4.1)

where Ac is the area of the coin. The yields were measured at different times with different beam

tunes using the resonances at Ep = 406 and 992 keV, which yielded results for ρb of 2.60±0.09 cm−2

and 2.55 ± 0.10 cm−2, respectively, with statistical errors only. The weighted average of these two

measurements, 2.58 cm−2, was chosen for ρb.

To study the distribution of beam across the target in order to quantify systematic errors, we car-

ried out a number of measurements using a large raster with 1.8× the standard amplitude, in addition

to the standard amplitude of ∼ 6 mm × ∼ 7 mm, on the main 22Na targets and the solid 27Al and

coin targets. With the raster on and off, transmission measurements through various collimators,

shown in Fig. 3.2, were performed as well. We determined the ratio of normalized beam densities

with the two raster settings to be 0.70 ± 0.02 (statistical error only). Because of the restrictions of

the collimators on beam transmission, this ratio should be larger than the squared ratio of raster am-

plitudes, and if both raster conditions swept the beam far across the collimators, the ratio would be

1.0. As shown in Fig. 3.2, our collimator arrangement consisted of a sliding collimator (in position

#1) upstream of 8- and 10-mm fixed collimators. We monitored the transmission through the fixed

collimators while running with the standard 8-mm collimator in position #1, and made a number of

measurements through a 7-mm collimator in position #1 with the raster on, as well as measuring the

transmission of the non-rastered beam through the 1-mm and 3-mm tuning collimators in position

#1. These measurements, along with the relative yields of large to standard raster, were used to con-
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strain a Monte Carlo simulation that was used to investigate potential beam densities on the target.

It also was used to test the effects of possible beam drift, misalignment of the beam and target, and

target non-uniformities.

The simulation modeled transport of the beam through the final components of the beamline and

chamber, including the final quadrupole, the rastering unit, and the three sets of collimators. Variable

parameters included beam width and offset, possible collimator offset, raster amplitude, and beam

distribution at the quadrupole. A normalized beam density could not be uniquely determined by this

method alone, but the densities within an acceptable phase space, defined by reasonable agreement

for transmissions and large/standard rastering yield ratios, ranged from 2.33 to 2.83 cm−2. We

adopted ± 0.25 cm−2 as the systematic uncertainty in the normalized beam density.

For one set of parameters in this acceptable phase space that illustrates an extreme case, the

beam was assumed to fill the 5-cm diameter quadrupole aperture uniformly before focusing 19 cm

downstream to a ∼ 1.5-mm diameter spot at collimator 1, shown in Fig. 3.2. This caused beam

non-uniformity over the target. In this case, the normalized beam density averaged over a 5-mm

diameter uniform target area was 2.55 cm−2, whereas averaging over a 2.5-mm diameter the density

was 15% higher. This is only a problem if the target also had non-uniformities. Although we believe

the targets were quite uniform, as outlined in Sec. 3.4.1, we produced a calculation for an extreme

case where the target distribution was conical. This hypothetical target distortion was modeled along

with the beam distribution described above, and the product of the target and the beam deviated from

its nominal value by 12%, only slightly larger than the adopted systematic uncertainty in the beam

density. A less radical distribution is a cone added to a cylinder, where the height of the cone and

the height of the cylinder are equal. The deviation in this case was less than 3%. This distribution

was also shifted off-axis by 1.5 mm to test sensitivity to alignment, and the deviation was no more

than 6%. In summary, we experimented with variations larger than those expected for our system

and found yields well within our uncertainties.

We also visually inspected the pattern left on the target after irradiation, as a rudimentary check

of the beam area. Although the target was protected by a copper shroud cooled by liquid nitrogen,

a faint coloration on the target from beam exposure could be observed. Tests were also run without

using the cold trap, where, instead of a coloration, a dark and clear spot due to carbon cracking

could be observed. The area of the mark from the large raster was measured by superimposing a



74

Figure 4.4: 27Al(p, γ) excitation function from a thick aluminum target. EN is the nominal acceler-
ator energy.

millimeter spaced, gridded transparency over the target. If we take the inverse of this area to be the

normalized density for the large raster, we can obtain the normalized density for the standard raster

using our measured ratio of large to small raster yield. This scheme is expected to underestimate the

normalized beam density, because of probable non-uniformity at the edges of the mark. The value

for the normalized beam density was found by this method to be 2.28 and 2.38 cm−2 for two targets.

These values are not markedly smaller than our adopted value of 2.58 ± 0.25 cm−2.

4.3.2 Beam Energy Calibration with 27Al(p, γ)

The beam energy was determined using a 90◦ analyzing magnet with an NMR field monitor, where

the nominal accelerator energy, EN , is proportional to the square of the NMR frequency. If the

direction of an energy sweep of a resonance changed, the current of the analyzing magnet was

cycled at least two times in order to erase any hysteresis effects. In order to calibrate the energy

of our beam, we took multiple measurements of each 27Al(p, γ) reaction with a solid 27Al target at

well-known resonance energies [64]. A sample thick-target excitation function is shown in Fig. 4.4.

Energy steps of 200 eV were taken, two passes were performed across each resonance, and the

final curves were combined. The resonant beam energy was extracted from the excitation function



75

Figure 4.5: Beam-energy calibration. EN is the nominal accelerator energy, and EA is the accepted
resonance energy. The solid line is the fit, and the dashed lines indicate the overall calibration
uncertainty taken to be ± 0.5 keV.

where the yield was half of its maximum value. The results are shown in Fig. 4.5 for resonances

at Ep = 326.6, 405.5, 504.9, and 506.4 keV. The differences between the nominal beam energy and

the accepted resonance energies were fit to a linear equation with slope m = 3.3 × 10−3 and offset

b = 2.1 keV (Fig. 4.5), and the resulting coefficients were used to adjust the beam energy for all

data. Given the spread in the difference between nominal accelerator energy and accepted energy,

we assign a ± 0.5 keV uncertainty to our knowledge of the beam energy.
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Chapter 5

22Na(p,γ) MEASUREMENTS AND ANALYSIS

Measurements were taken on previously known 22Na(p, γ) resonances, which we find at Ep =

213, 288, 454, and 610 keV. We also explored the proposed resonances at 198, 209, and 232 keV.

A summary of the gamma rays from each resonance is shown in Table 5.1, and the relevant energy

level diagram for 23Mg was shown in Fig. 2.11.

Table 5.1: Summary of gamma rays for each explored resonance, labeled by Ep, and their corre-
sponding branches. All energies are in keV.

198 209 213 232 288 454 610

5055 (58%) 5067 (66%) 7333 (89%) 7801 (66%) 5141 (67%) 5300 (52%) 8162 (61%)

2317 (42%) 5729 (33%) 5732 (11%) 7350 (30%) 5803 (26%) 5963 (44%) 7711 (19%)

5749 (4%) 7404 (7%) 7565 (4%) 6112 (20%)

For all measurements, a scan was performed across a range of ∼ 25 keV around the resonance

energy. To subtract background, which was comprised mostly of cosmic rays and Compton events,

we assumed it to have a localized linear dependence on gamma-ray energy and fit the background

to windows in the spectrum above and below the line of interest. This method took the amplitude of

the spectrum on either side of the gamma ray of interest and analytically determined the parameters,

m and b, for a straight line under the peak, such that:∫ c2

c1

(mx + b) dx = Nc12 and
∫ c4

c3

(mx + b) dx = Nc34 , (5.1)

where Nc12 and Nc34 are the sums of the counts between windows bound by channels c1 to c2 and c3

to c4, respectively, on either side of the peak. Thus, the number of background subtracted counts is

the integral under the determined straight line with bounds equal to the main energy window. This

method was especially important for resonances with characteristic gamma rays below 6 MeV. Here

contributions from 6129-keV incident photons due to the contaminating 19F(p, αγ)16O reaction were
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significant. Affected resonances included Ep = 454, 288 keV, and one branch from Ep = 610 keV,

but the rate of the contaminating gamma ray decreased rapidly with proton energy. An example of

this method applied to a gamma ray peak is shown in the inset of Fig. 5.2 (a).

In order to extract the yield at each laboratory proton energy, Ep, an energy window was set on

the gamma ray of interest in the vetoed singles spectrum for each of the two germanium detectors.

This window was ∼ 25 keV for one detector and ∼ 40 keV for the other. For each detector, the sum

of the background subtracted counts in the window is Ni = NRηiLi, where NR is the total number of

gamma rays produced in the (p, γ) reaction, ηi is the efficiency, and Li is the live time fraction for

detector i. The yield is

Y =
NR

Q/e
=

N1/L1 + N2/L2

ηQ/e
, (5.2)

where η = η1 + η2. The effects of angular distributions have been addressed in Sec. 4.1.3.

In order to test the sensitivity of our results to the inputs for the gamma-ray background sub-

traction and its linearity, resonances at Ep = 610 keV (with Eγ = 8162 keV) and 454 keV (with

Eγ = 5300 keV) were inspected, and the choice of window for both the peak and the background on

each side was varied within reasonable limits, such as widening, shortening (no window smaller than

10 keV), and shifting. The resonance strengths changed by less than 1%, indicating that systematic

errors associated with background subtraction are negligible.

After the yields for each excitation function were determined, the areas under the excitation

curve were obtained by using the trapezoidal method. This value for
∫

Yi dE was then used in

Eq. 1.4, along with values determined for all other parameters, to extract the partial resonance

strength, ωγi, for each branch i. The total strength is simply equal to the sum of the partial strengths

for all branches.

5.1 Absolute yields: Ep = 610, 454, 288, 213 keV

Fig. 5.1 shows the data taken on the two strongest resonances at Ep = 454 and 610 keV. These

resonances were revisited after various amounts of accumulated charge to monitor possible target

degradation, discussed in detail in Sec. 5.4. Fig. 5.2 shows the corresponding gamma-ray spectra

summed over all runs, including an inset illustrating the background subtraction method. All data

for resonances at Ep = 213, 288, and 610 keV were taken on target #4, and the 454-keV resonance
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was measured on both targets #3 and #4. Fig. 5.3 illustrates the summed raster plots for target #3

with Ep = 454 keV. The concentration of counts around the center of the plot come from 22Na(p, γ)

while a few counts spread through the plot are consistent with yield from 19F contamination.

Fig. 5.4 shows the data taken for 288- and 213-keV resonances, and Fig. 5.5 illustrates the

summed gamma-ray spectra for each resonance respectively. Characteristic gamma rays for each are

clearly distinguishable above background. For Ep = 213 keV, the integrated yield was determined

with the same trapezoidal method as above, plus a small correction because the highest energy point

did not reach zero yield. The details of determining this contribution are discussed in Sec. 5.3, after

a prerequisite analysis method is outlined in the following subsection.

5.2 Upper limits for yield: ER = 232, 198, 209 keV

Data in the region of the proposed resonances at Ep = 198 and 232 keV are shown in Fig. 5.6. In

the summed gamma-ray spectra shown in Fig. 5.7, no discernible gamma-ray yields can be detected

above background. All data for Ep = 198 keV were taken on the chromium-covered target #3. Data

for Ep = 232 keV were taken on one of the bare test targets, which had previously been exposed to

an integrated charge of 13 C.

For these resonances, the shape of the excitation function used to determine the area was adopted

from either the resonance at Ep = 454 or 610 keV, depending on the target. Because the reso-

nance shape was dominated by the implantation distribution, this shape was normalized, shifted,

and stretched so that it could be fit to the data of the resonance in question. The stretch factor was

fixed and set equal to the ratio of stopping powers in copper for the two energies, whereas the energy

shift and the normalization factor were allowed to vary. The central value of the shift was given by

the differences in resonance energies, and the range of the shift was given to fully span the data

points. If a data point for the low-energy resonance fell between points of the normalized curve, the

corresponding reference point was determined by a linear interpolation. For each pair of shift and

normalization, the value of the χ2(ωγi, Ei) between each low-energy resonance and the normalized

reference resonance was calculated, and plots for each resonance are shown in Fig. 5.8 and 5.9 (left

sides). The modified reference excitation function corresponding to the minimum value of χ2 is

shown for each resonance in Fig. 5.6 (open circles).
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Figure 5.1: Excitation functions for (a) Ep = 454 keV and (b) Ep = 610 keV. Ep is the lab proton
energy. Each plot shows the excitation function at the beginning of target bombardment and at the
end, after ∼ 20 C had been deposited. An intermediate curve after 10.5 C is also shown in (b). (a)
is gated on Eγ = 5300 and 5963 keV, and (b) is gated on the photopeak and single-escape peak of
Eγ = 8162 keV.
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Figure 5.2: Summed gamma-ray spectra for (a) Ep = 454 keV and (b) Ep = 610 keV. The inset
illustrates the beam-background subtraction method for Eγ = 5300 keV, including gamma-ray gate
(dashed), analytically calculated background line (solid), and subtracted region (hatched). SE and
DE indicate single- and double-escape peaks, respectively.
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Figure 5.3: Raster plot for the sum of 22Na(p, γ) for Ep = 454 keV, target #3, with raster amplitudes
1.8× larger than our standard amplitudes. The plot is gated on Eγ = 5300 keV. Outside the target area
there are a few bins with only 1 count, which is consistent with the known level of 19F contamination
from the Compton continuum from Eγ = 6129 keV.
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Figure 5.4: Excitation functions for (a) Ep = 288 keV and (b) Ep = 213 keV. Ep is the lab proton
energy. (a) is gated on Eγ = 5141 keV, and (b) is gated on the photopeak and single-escape peak of
Eγ = 7333 keV.
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Figure 5.5: Summed gamma-ray spectra for (a) Ep = 288 keV and (b) Ep = 213 keV. SE and DE
indicate single- and double-escape peaks, respectively.
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Figure 5.6: Solid circles are excitation functions for (a) Ep = 232 keV and (b) Ep = 198 keV (total
χ2 above zero is 3.1). Ep is the lab proton energy. (a) is gated on Eγ = 5055 keV, and (b) is gated
on the sum of Eγ = 7801 and 7350 keV. Open circles are the normalized, stretched, and shifted
Ep = 454 keV excitation function fit, described in the text. This reference excitation function is not
as smooth in (a) as in (b) due to degradation of the bare target.
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Figure 5.7: Summed gamma-ray spectra for (a) Ep = 232 keV and (b) Ep = 198 keV. The target
activity was 2.3× higher in (b) than in (a) and is responsible for the increased background at low
energies. Arrows indicate the energy where one would expect to see gamma rays from the relevant
transition.
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Figure 5.8: The left side is the contour plot of total χ2(ωγi, Ei) for Ep = 198 keV. E454 is the
reference resonance energy, Eshift is the amount the reference resonance was shifted, and ∆E is the
difference in energy loss at Ep = 454 and 198 keV due to the chromium layer (∼ 1.5 keV). The
minimum value of total χ2(ωγi, Ei) is 0.2 with 2 degrees of freedom, which has a probability of
0.91. The value of χ2 above zero for the data is 3.1 in Fig. 5.6 (b). The right side is the projection
of exp(−χ2(ωγi, Ei)/2) onto the ωγ-axis and represents the probability density function used in
Sec. 7.1.



87

Figure 5.9: The left side is the contour plot of total χ2(ωγi, Ei) for Ep = 232 keV. E454 is the refer-
ence resonance energy, Eshift is the value the reference resonance was shifted, and ∆E is zero because
this target had no chromium layer. The minimum value of total χ2(ωγi, Ei) is 2.1 with 2 degrees of
freedom, which has a probability of 0.36. The right side is the projection of exp(−χ2(ωγi, Ei)/2)
onto the ωγ-axis and represents the probability density function used in Sec. 7.1.



88

The array of probabilities, P(ωγi, Ei), was taken to be proportional to exp(−χ2(ωγi, Ei)/2),

where χ2(ωγi, Ei) is the χ2 between the model, assuming particular values of ωγi and Ei, and the

data. Because we are mainly interested in constraining the value of ωγ, we projected the two-

dimensional arrays onto the ωγ-axis (i.e. P(ωγi) =
∑

Ei P(ωγi, Ei)), shown in Fig. 5.8 and 5.9 (right

sides). The upper limits on ωγ were extracted with a particular confidence level, C.L., using the

likelihoods:

C.L. =

ωγ∑
ωγi=0

P(ωγi)

∞∑
ωγi=0

P(ωγi)

. (5.3)

The sum in the denominator was cut off at a maximum value of ωγ such that the sum changed by

less than 1%. Results are given in Chapter 6.

For the possible resonance at 198 keV, a finite value for the strength was also calculated. Instead

of summing from zero and extending upward in the numerator of Eq. 5.3, the pair of ωγi values

with equal values of P(ωγi) were determined such that the sum between them, properly normalized,

gave the desired confidence level.

For the possible resonance at 232 keV, data for the third possible gamma-ray for Ep = 232 keV

at Eγ = 5749 keV was not added to our yield because of its small branch; however, branches from

the two other gamma rays (96.4%) were used to adjust the total resonance strength.

For the proposed resonance at Ep = 209 keV, we also applied this method to a hybrid data set

comprised of data points from Ep = 198 and Ep = 213 keV for the gamma ray at 5067 keV, assuming

the branch given by Jenkins et al. [1] and using the excitation function from the dominant branch

of Ep = 213 keV and its first-escape peak as the reference curve, shown in Fig. 5.10. Because the

data from the resonance at 198 keV was from a different target, its yields were scaled by the ratio

of measured target activities. The shift in energy was allowed to vary from zero to 25 keV, and the

fit yielding the minimum χ2(ωγi, Ei) was found at the position of the 198-keV data points, possibly

due to the fact that the gamma rays have overlapping energy windows. In other words, we did not

observe a separate resonance at Ep = 209 keV. An upper limit for this resonance, which is presented

in Chapter 6, was extracted by restricting the energy shift to be equal to the difference in resonance
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Figure 5.10: Solid circles represent the excitation function for Ep = 209 keV, gated on Eγ = 5067
keV. Ep is the lab proton energy. Open circles are the normalized, stretched, and shifted Ep = 213
keV excitation function fit, described in the text. The first four data points on the left were taken
from the 198-keV resonance measurement on target #3, and the rest are taken from the 213-keV
resonance measurement on target #4.

Figure 5.11: Contour plot of total χ2(ωγi, Ei) for Ep = 209 keV. E213 is the reference resonance
energy, and Eshift is the value the reference resonance was shifted. The minimum value of total
χ2(ωγi, Ei) is 29 with 13 degrees of freedom, which has a probability of 0.002.
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energies, spanning the range of ±2σ around the value claimed by Jenkins et al [1]. The χ2(ωγi, Ei)

contour plot is shown in Fig. 5.11.

This analysis technique of normalizing and shifting a reference resonance to obtain strengths of

others was validated by applying it to the 288-keV resonance, for which the ratio of the strength

calculated from this method to the direct method was 0.95 ± 0.12.

5.3 Corrected area for ER = 213 keV

In order to estimate the full area of the Ep = 213 keV excitation function, a reference resonance at

Ep = 454 and three at 610 keV were utilized in the same manner outlined above. Each of the four

curves were fit to the data, and each yielded a data point beyond the fixed Ep = 213 keV excitation

function that did reach zero. The last trapezoid area was calculated for each, and the average was

added to the area from the direct data, equaling 10 ± 5% of the total area. The uncertainty in the

additional area was set to be the standard deviation among the four fits.

5.4 Degradation in the Total Number of Target Atoms

Measuring the activity in-situ was not sufficient to determine the total number of target atoms

throughout the measurement. During target bombardment, some fraction of 22Na was sputtered

out of the illuminated area of the substrate, yet it remained nearby, maintaining an approximately

constant activity throughout the duration of the resonance measurements. Thus, in addition to de-

termining the total number of initial atoms, monitoring possible target degradation throughout bom-

bardment was particularly important. In order to deduce the amount of degradation, two comple-

mentary methods were utilized. One method was to revisit a strong reference resonance periodically

throughout the bombardment cycle. We define A(Q) as the integral of the reference excitation func-

tion,
∫

YdE, after an amount of charge, Q has been deposited. A(Q) is directly proportional to the

number of target atoms, NT (Q), as shown in Eq. 1.4. The ratio of the integrals of the excitation

function before and after bombardment, A(Q)/A(Q ∼ 0), is therefore equal to NT (Q)/NT (Q ∼ 0).

The second method, which will be described in detail later in this section, was to measure the resid-

ual 22Na in the chamber before and after target bombardment and use this information to infer the

number of sputtered target atoms. The results of each method are illustrated in Fig. 5.12, along with
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Figure 5.12: Target degradation as a function of implanted charge for main targets #3 and #4. NT (Q)
is the total number of atoms present in the substrate after an irradiation of charge, Q. The data points
illustrate the ratio of the area of each reference excitation function to its initial area at the start of
target bombardment. The lines represent a possible linear decrease of the number of atoms deduced
from two residual activity measurements at the beginning and end of bombardment. Also shown is
the timeline for each resonance measurement. The two sections marked “454T” indicate variable
raster amplitude tests, and although these data are included in the branching ratio determination,
they are not included in determining resonance strengths.

a timeline for each resonance measurement as a function of accumulated charge.

Target #3 accumulated 20.7 C in 186.0 hours, and target #4 accumulated 20.1 C of charge in

138.3 hours. Because we covered these targets with 20 nm of chromium, they remained fairly

stable. Shown in Fig. 5.1 (a) are the first and last resonance scans at Ep = 454 keV for target #3.

Throughout the 20.7 C of bombardment, the resonance at Ep = 454 keV was revisited four times.

A(Q ∼ 20 C)/A(Q ∼ 0), shown in Fig. 5.12, is 1.07 ± 0.12, consistent with no target loss. For target

#4 on which all other non-zero strength resonances were measured, the monitoring resonance was

Ep = 610 keV, and multiple scans of its excitation function are shown in Fig. 5.1 (b). No appreciable

sodium was lost up to at least 10.5 C. At the end of bombardment, A(Q ∼ 20 C)/A(C ∼ 0) = 0.94±

0.09 and is also consistent with no target loss.

To use the residual activity method, measurements of the 1275-keV rate were taken before target
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installation (Ri
0), after target installation and before bombardment (Ri

T ), after bombardment (R f
T ),

and after target removal (R f
0). The quantity (Ri

T −Ri
0)− (R f

T −R f
0) then is proportional to the amount

sputtered from the target. This final value was used to estimate target degradation throughout the

bombardment, assuming linear loss, and is also shown in Fig. 5.12 for each target. As we learned

with our 23Na tests [18], this loss is in fact not linear but usually begins to occur after a significant

amount of charge has been deposited, removing the protective layer and sputtering away some of

the substrate. We nevertheless used a hypothesis of linear degradation of the target for one extreme

and an amount consistent with no loss for the other for most uncertainties.

The 198- and 213-keV resonance measurements were taken over an extended period of time and

charge, whereas all others were measured with a few Coulombs of integrated beam current and did

not experience possible prolonged degradation. The 198- and 213-keV data were taken over ∼ 15

and 10 C, respectively, with short interruptions to measure a reference resonance excitation func-

tion. At the halfway point for each, the linear-decrease hypothesis indicated a 4-5% loss, although

excitation function areas were consistent with no loss at that point. Therefore, we choose no loss

with errors that span the values from each method, NT (Q)/NT (Q ∼ 0) = 1.00+0.00
−0.05. Combining this

with the systematic uncertainty in the initial number of atoms, we have an overall systematic error

of +2.6% and −5.6% in the total number of atoms for the 198- and 213-keV resonance strengths.

For the 454- and 610-keV resonances, which were each measured at the beginning of target bom-

bardment, only an overall systematic error of ±2.6% was needed (see Sec. 4.2).

The 288-keV resonance was a special case, as its data were not from an extended measurement

but were taken after 18 C of irradiation. Directly following the measurement of this resonance,

we performed the final scan of the 610-keV reference resonance, which allowed insight into how

many atoms remained. Therefore, the total number of atoms present for the 288-keV measurement

was taken to be the average between linear target loss and loss indicated from the depleted area of

the 610-keV resonance curve, NT (Q)/NT (Q ∼ 0) = 0.88+0.12
−0.06. Because target loss is not actually

linear and could have happened after the 288-keV resonance measurement, the uncertainties span

the range between no loss and the value given by linear loss.

The 232-keV resonance data were taken with a test target with no protective layer after 13 C

had already been bombarded, and target loss was appreciable. At the end of the ∼ 20 C irradiation,

measurements of the residual activity indicated a 68% loss. As explained above, loss is not linear
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and occurs quite rapidly at the end of the cycle. Because of this fact, we have chosen to take the

loss only from the difference in monitoring the resonance areas, which were taken directly before

and after the measurement and gave A(Q)/A(Q ∼ 0) = 0.59. This value was used to adjust the

upper limit on the strength, and we assigned a systematic uncertainty of ± 40% to span a wide

range approximately down to the value of linear loss. Regardless, the upper limit on this resonance

strength is still dominated by the statistical uncertainty and contributes negligibly to the reaction

rate, as will be seen in Chapter 7.

5.5 Resonance Energies

We were able to obtain resonance energies with two separate techniques. First, we found the reso-

nance energy from the excitation function. The energy at which the yield reached half its maximum

was determined, and the losses in the 20-nm chromium layer and 4 nm of copper were subtracted.

This copper depth is the depth at which the 22Na distribution reached half of its maximum value.

According to simulations using TRIM [58], the total subtracted losses were ∼ 3 to 5 keV, and a

20% uncertainty in the stopping power was assumed. For the 213- and 288-keV resonances, an

additional adjustment to the resonance energy was added to account for the slight transformation

of the excitation functions due to sputtering, as shown in Fig. 5.1 (b). From repeated scans of the

610-keV resonance, the energy at half of the maximum yield changed by 1.2 ± 0.9 keV after 11 C,

in the middle of the 213-keV resonance measurement, and that shift remained constant after 19 C,

directly after the 288-keV measurement. Those resonance energies were adjusted by that amount.

Second, we extracted the resonance energy from the observed gamma-ray energy, along with

the excitation energy of the daughter level [49] and Q value (7580.53 ± 0.79 keV, using the newly

measured masses of 23Mg [65] and 22Na [66]). From a thick-target 27Al(p, γ) measurement at Ep

= 406 keV, the spectrum was calibrated using gamma rays that correspond to transition energies of

Etrans = 5088.05 and 7357.84 keV and each first-escape peak [61, 49]. The centroid, c, of each peak

was determined via:

c =

∑
i

iNi∑
i

Ni
, (5.4)

where i is the channel number, Ni is the background subtracted number of counts in channel i,

and the sum is over the number of channels encompassing the peak. To minimize uncertainties
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associated with gain shifts over time, the 27Al(p, γ) data used for the calibration was taken between

measurements on 22Na targets #3 and #4.

Similarly, excitation energies, Ex, and gamma-ray energies, Eγ, each were found independently

by using the weighted average of the respective value extracted from the excitation function and the

respective value extracted from the gamma-ray spectra.

5.5.1 Doppler, Recoil, and Rate-Dependent Corrections

When one converts a histogram from an ADC in units of arbitrary channels to units of energy, several

corrections must be applied, as the true energy of the observed gamma ray, Eγ, is not equal to the

energy measured in the laboratory, Eγmeas , nor is it exactly equal to the nuclear transition energy,

Etrans [31]. When a gamma ray is emitted in a nuclear transition, a recoil correction must be applied

because the nucleus must recoil in order to conserve linear momentum (Eγ = Etrans − Erecoil). A

Doppler shift must also be applied because the nucleus emitting the gamma ray is not initially at rest

(with respect to the detector), due to momentum conservation in the reaction (Eγmeas = Eγ ∗EDoppler).

Calculating the energies of the gamma rays from the reaction 22Na(p, γ) is a two-step process. First,

the transition energies from the 27Al(p, γ) reaction given in the previous section must have the

Doppler and recoil corrections applied. Second, after the measured energy has been determined for
22Na(p, γ) gamma rays from the calibration, they must be have the corrections removed.

Starting with the reaction 27Al(p, γ) and the transition energy, Etrans, the gamma-ray energy after

the recoil correction was applied is equal to:

Eγ = Etrans −
E2
γ

2M
� Etrans −

E2
trans

2M
, (5.5)

where M is the mass of the compound nucleus (28Si in this case), and the recoil correction has

been approximated as E2
trans/(2M), which is correct to first order. Next, the gamma-ray energy is

corrected for Doppler shift (non-relativistically):

Emeas = Eγ(1 + β cos θ), (5.6)

where θ is the angle of the detector with respect to the beam axis, 55◦, and

β =
vM

c
=

pMc
Mc2 =

√
2mE2

p

Mc2 , (5.7)
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where m is the mass of the projectile, and vM and pM are the velocity and momentum of the emitting

nucleus, respectively. The values for Emeas were then used to calibrate the energy spectrum, along

with their first-escape energies equal to Emeas−511 keV. This calibration was then used to extract the

measured gamma-ray energies from the 22Na(p, γ) reaction. Reversing the corrections for Doppler

first, and then recoil, yield:

Eγ =
Emeas

1 + β cos θ
, (5.8)

Etrans = Eγ +
E2
γ

2M
, (5.9)

where M is the 23Mg mass. The resonance energy (in the lab frame) can then be calculated simply

as ER = (Etrans −Q − E f ) ∗ (m + Mt)/Mt, where E f is the final energy level in the transition, and Mt

is the 22Na mass. The corrections ranged in magnitude from ∼ 4 to 7 keV for Doppler shift and ∼

0.6 to 1.5 keV for recoil, respectively.

Unfortunately, the detector gain depended slightly on rate, which was discovered after all 22Na(p, γ)

and calibration data had been taken. However, at a later date, data was taken on an aluminum target

with and without 22Na sources nearby on the same resonance used for calibration. Therefore, for

each of the calibration gamma rays, the rate-dependent shift was measured. This shift was then used

to directly adjust the measured gamma-ray energy shown in Eq. 5.6. This shifted the energy of the
22Na(p, γ) gamma rays by 2.4 ± 0.7 to 3.8 ± 1.1 keV in magnitude, where we have applied a 30%

systematic uncertainty to the shift. Results for final gamma-ray energies and resonance energies are

given in Sec. 6.1, whereas results for excitation energies are given in Sec. 6.2.

5.6 Branches

Strong branches were determined from the spectra summed over all runs within a particular res-

onance. For resonances at Ep = 454 and 610 keV, which were used as reference resonances to

monitor degradation and for other target tests, the total amount of data was significantly larger than

for a single resonance scan, and thus, their uncertainties are appreciably smaller.

Due to the very low statistics for weaker possible branches, an additional restriction was placed

on the analysis. Similar to our analysis for weak resonances where a reference resonance excitation

function was shifted and normalized to fit the data (see Sec. 5.2), the excitation function for the

strongest branch (and its first-escape peak for branches from Ep = 610 keV) was normalized to
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match the weaker branches’ excitation functions, such that the χ2 was minimized. Then the branches

were extracted using Eq. 5.3.

Only an upper limit for the branch at Eγ = 6112 keV in the Ep = 610 keV resonance could be

obtained due to the obscuring peak at Eγ = 6129 keV from 19F contamination. In order to estimate

the contribution from the 22Na(p, γ) resonance, the spectral line shape was deconvolved into the

contribution from 19F and from 22Na. This was done by comparing the on-resonance line shape

with the sum of the off-resonance line shape and a shape representing the 6112-keV gamma ray.

The latter shape was estimated from a normalized and shifted peak at Eγ = 8162 keV, the largest

branch in the de-excitation. The value of this normalization was equal to the ratio of the magnitude

of the branches, adjusted for efficiency differences, and was extracted by minimizing the χ2 of the

hybrid curve and the on-resonance curve. Because of the changing shape of the off-resonance curve

above and below the resonance, only an upper limit could be extracted.

5.7 Verification of Experimental Method: 23Na(p, γ) Measurement

In order to verify our technique, targets of 23Na were implanted using the ion source on the injector

deck at the low-energy end of the University of Washington accelerator, and known 23Na(p, γ)

resonances were measured under the same conditions as the 22Na(p, γ) measurements. A 20-Å

layer of chromium was also evaporated on the surface, similar to the main two 22Na targets.

Figure 5.13: Excitation function for 23Na(p, γ) resonance at Ep = 512 keV, gated on Eγ = 10810
keV. Ep is the lab proton energy.
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The 23Na(p, γ) resonance at Ep = 512 keV has a reported strength of 91.3 ± 12.5 meV and

is the recommended reference resonance for this reaction [67]. We measured this with a target

containing (5.8 ± 0.9) ×1015 atoms, which includes the integrated charge correction described in

Sec. 3.4.2. The excitation function is shown in Fig. 5.13. Using the 10810-keV gamma ray with a

branch of 71% [68], we determined its total resonance strength to be 79 ± 17 meV, after applying

the correction described in the following subsection.

5.7.1 Area Correction

Inspection of the raster plot indicated a small part of the target was missed when using our standard

raster. To determine the missing fraction, the target was illuminated with larger raster amplitudes

that fully encompassed the target atoms, shown in Fig. 5.14.

Figure 5.14: Large amplitude raster plot for the sum of
23Na(p, γ), gated on Eγ = 10810 keV.

Bx

By

-a a

b

-b

-xo

-yo

Figure 5.15: Model of the target to
estimate missing area.

The target shape on the raster plots was assumed to be elliptical (although the physical target

area was circular, Bx and By have different gains). Fig. 5.15 is a sketch of this ideal target to aid the

following discussion. By using the larger raster amplitude, the target was estimated to span 18 ch to

106 ch in Bx and 27 ch to 73 ch in By with a center at (62,50), the midpoint of each range. The total

area is then simply abπ, where a is the semi-major axis, and b is the semi-minor axis of the ellipse.
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Possibly due to one of the steering magnets drifting and a slightly non-centered target, instead of

spanning from less than 18 ch in Bx and 27 ch in By, the standard raster started at 23 ch in Bx and 34

ch in By. This shears off a small section at the bottom of the ellipse and a small section at the left of

the ellipse, without the missing areas overlapping (shown schematically in Fig. 5.15). Each missing

area, Am, was calculated as the integral of the equation for an ellipse from a value of x1 to value x2,

re-centered at (0,0):

Am(a, b, x1, x2) =

∫ x2

x1

2b

√
1 −

x2

a2 dx. (5.10)

Therefore, the ratio of the area illuminated with the standard raster, As, to the large raster, A is:

As

A
= 1 −

Am(a, b,−a,−xo) + Am(b, a,−b,−yo)
Am(a, b,−a, a)

, (5.11)

where xo (yo) is the beginning edge of the standard raster in Bx (By). It is possible to add the two

areas missing in each direction because they do not overlap. For the case of the 23Na target, this

ratio was equal to 0.88 ± 0.11, and the resonance strength was corrected by this value. This was

not necessary with our 22Na targets, as their respective raster plots indicated the beam covered the

entire active area.

Using raster plots to estimate the area is not exact because the beam has an extent, and the raster

values are simply its supposed central value. Therefore, it is necessary to estimate a systematic

uncertainty associated with this offset. The above area analysis also implicitly assumes that the

target and beam are both completely uniform and that there are no effects due to convoluting the

offset target area with the beam area. However, during implantation of this target, the 23Na beam

was not rastered to the extreme extents that our 22Na targets were (in order to decrease fabrication

time), so it is likely that the distribution was not as uniform. Simulations were performed to estimate

the effect of a non-uniform target with an offset, as described in Sec. 4.3.1. The center of the raster

was offset by (9.5,15) channels. In order to convert this into a length, a thick-target measurement of

the 27Al(p, γ) resonance with the “coin” target, which had well-defined extents, was performed at

the same proton energy as the 23Na(p, γ) resonance, Ep = 512 keV. Using this conversion, the offset

was estimated to be equal to 1.8 mm. The simulated target distribution was assumed to be the half

cone, half cylinder described in Sec. 4.3.1, and the target offset range was set to be 1.5 to 2.0 mm.

The uncertainties associated with these calculations dominate the overall uncertainty quoted above.
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Chapter 6

RESULTS AND DISCUSSION

Results are shown in Tables 6.1, 6.2, and 6.4. The resonance and gamma-ray energies are sum-

marized in Table 6.1, the excitation energies, gamma-ray branches, and partial strengths for each

resonance are summarized in Table 6.2, and the final resonance strengths are summarized in Ta-

ble 6.4. Systematic errors for the resonance strengths are shown in Table 6.3.

6.1 Resonance Energies

The resonance energies determined from each method are shown in Table 6.1, and agreement be-

tween both methods is quite good. The adopted energy is the weighted average of the two results.

We find energies that agree with previously reported values [16, 17, 1], and we have improved the

uncertainties on the energies.

6.2 Branches

Table 6.2 shows our excitation energies, gamma-ray energies, branches, and partial strengths. Also

included is a comparison with previous branches. Our branches are in agreement with the previous

direct measurements [16, 17] for Ep = 288 and 610 keV. For the 6112-keV branch of the 610-keV

resonance that could not be resolved from the 19F contamination, we found the upper limit to be

28%, which is consistent with the value of 20.0 ± 1.8% measured directly by Stegmuller et al. [17].

We have adopted the branch of Ref [17] to extract its partial strength because it is consistent with

ours and is more precise. For the previously established branches of the 454-keV resonance, our

branches agree with Jenkins et al. [1], and we have improved upon their uncertainties. A new branch

has also been identified with Eγ = 7566 keV. Although branches for the 213-keV resonance are in

agreement with the earlier measurement [17] at the 2σ level, an additional branch of ∼ 11% has

since been identified, and we agree with its currently established value [14].

For the observed resonances at Ep = 213, 288, 454, and 610 keV, contributions to the total
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strength have been investigated for primary transitions to all levels up to the 6th excited state, also

shown in Table 6.2. For unobserved branches, limits were obtained via the method described in

Sec. 5.6. The branches with a final spin of 1/2 are highly unlikely to be detectable based on angular

momentum considerations, so we attribute our non-zero result for Eγ = 5497 keV from the 288-keV

resonance to statistical fluctuations. Upper limits on partial strengths from spin 1/2 levels have not

been included in the strength uncertainties or in the branches. Other branches where only an upper

limit could be determined were used to directly increase the upper uncertainty on the total strength

but do not affect the central value of the total resonance strength.

6.3 Resonance Strengths

The systematic error budget for resonance strengths is shown in Table 6.3. In summary, we find an

overall systematic error of −11.7% and +12.7% for the extended measurements at Ep = 198 and 213

keV, resulting from combining uncertainties of ±6% in the efficiency, ±10% in the normalized beam

density, and −2.6% and +5.6% from the number of target atoms. For the resonances at Ep = 454

and 610 keV, the overall systematic uncertainty is ±11.7%, and for the resonance at Ep = 288 keV

it is −18.1% and +13.4%. The differences in the uncertainties in the strength all result from the

opposite sign error in the number of target atoms. The 232-keV resonance has the largest overall

uncertainty, ± 42%.

All finite total strengths are significantly larger than those previously reported [16, 17], as shown

in Table 6.4. The 213-keV resonance is stronger by a factor of 3.2, which includes a factor of 2.8

that we observe with respect to the same decay channel observed in Ref. [17].

Iacob et al. [14] attempted to extract a resonance strength for Ep = 213 keV by compiling data

from several different sources. Using the beta-delayed proton branch from Tighe et al. [12], the

proton-to-gamma-ray branching of Peräjärvi et al. [13], and the lifetime of Jenkins et al. [1], Iacob

et al. claimed a total strength of 2.6 ± 0.9 meV, in contrast to our value of 5.7+1.6
−0.9 meV. We consider

the value of Iacob et al. to be unreliable. It is based on the observation of a β-delayed proton peak

very close to detection threshold that would have been difficult to disentangle from noise. Indeed,

Saastamoinen et al. [69] have shown that the β-delayed proton intensity deduced by Tighe et al. [12]

was too large by a significant amount. In addition, Iacob et al.’s value is based on the lifetime of the
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state, for which further documentation has not been published.

We have set upper limits on the 198- and 232-keV potential resonances. For Ep = 198 keV,

based on a search for the 5055-keV branch, we observe a possible presence in our fits with a non-

zero strength at slightly over 1σ. Jenkins et al. [1] suggested that this resonance could have a

strength as high as 4 meV, whereas our 68% C.L. upper limit is a factor of 8 smaller. The resonance

at Ep = 232 keV also was not observed, based on our search for the two main branches reported

by Ref. [1]. This resonance has been demonstrated to be the isospin analogue of the T = 3/2 23Al

ground state [69, 14] so its width for proton decay to T = 0 22Na is significantly suppressed by

isospin conservation, and thus it is expected to have a relatively small (p, γ) resonance strength. Our

direct measurement is consistent with this expectation.

Jenkins et al. [1] proposed a new level that corresponds to Ep = 209.4(17) keV, which produces

gamma rays with energies of 5729.1(11) and 5067.1(11) keV and branches of 33(6)% and 66(8)%,

respectively. The gamma ray at 5067 keV is very close in energy to the gamma ray from the possible

resonance at 198 keV at 5055 keV, as they produce the same final state. We have investigated this

resonance, but due to the size of the energy windows necessary on each peak (∼ 20 to 45 keV), it is

unclear from which potential resonance these possible gamma rays originate. Contrary to Jenkins

et al., Iacob et al. [14] attributed the gamma ray at 5729 keV to the resonance at 213 keV. Our

branching ratios in Table 6.2 are consistent with Iacob et al. and not with Jenkins et al. An upper

limit of 0.40 meV can be placed on the strength of the 209-keV resonance at the 68% confidence

level, and it is possible that part of the contribution originates from the potential resonance at 198

keV.

Seuthe et al. [16] also measured resonances at Ep = 503, 740, and 796 keV that we did not

investigate. These resonances do not play an important role in the nova scenarios we consider

here, but we nevertheless included our estimate for their contributions in our calculation of the

thermonuclear reaction rate. We assumed that the relative strength of the resonances to the 454-

and 610-keV resonances is correctly given by the result of Seuthe et al. Because we observe an

average factor of 2.5 ± 0.5 larger for the strengths of resonances observed here with respect to those

in Ref. [16], we scaled the ωγ values in Ref. [16] by this factor.

It is surprising that our strengths are several times higher than those from the previously reported

direct 22Na(p, γ) measurements [16, 17]. However, those strengths were determined relative to res-
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onance strengths from one experiment performed in 1990 [16], discussed previously in Sec. 1.3.1,

also with implanted targets but with 2× the implantation energy and into a different substrate ma-

terial. We rastered the beam over the entire target, whereas the measurement of Ref. [16] used a

centered beam, which can degrade the target locally in ways that are difficult to characterize. The

gamma-ray energy window in that experiment was several MeV for most of the data, although two

resonances were measured at peak yield with a high resolution detector. Our energy windows were

always narrow, with a maximum of a few tens of keV to incorporate only the relevant peak. Along

with a cosmic-ray anticoincidence system, our method employed full excitation functions integrated

over proton energy and was independent of absolute stopping-power estimations. Our method re-

quired knowledge of only the total number of target atoms, determined from the target activity, and

the requirement that the beam covered all target atoms, which we could monitor with the informa-

tion from the raster. The price paid for eliminating the dependence on the target distribution was

the difficulty of determining the beam density. This was accomplished experimentally using a 27Al

coin target, and systematic effects were carefully considered. In addition, our detector efficiency

was determined with two radioactive sources and two resonances in the 27Al(p, γ) reaction on two

different substrates, spanning a gamma-ray energy scale of 1.3 to 11 MeV, in addition to calculation

with detailed simulations. Furthermore, the validity of our method has been confirmed with the
23Na(p, γ) measurement. A target was implanted, and result for the resonance strength are within

89 ± 24% of the currently accepted value. Although the error on this quantity is not negligible, it is

not a factor of ∼ 3 we observe in the 22Na(p, γ) resonance strengths. Thus we are confident in the

absolute values we have obtained for the strengths.
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Table 6.2: Branches and partial strengths of 22Na(p, γ). Ex and Et are the excitation
and transition energies, respectively. The value given for the branch was determined
from the sum of all data for a particular resonance. Systematic errors are not included
in the partial strengths. 68% confidence levels are given for all data, and both an upper
limit and measurement have been given for Ep = 198 keV. Total strengths are shown in
Table 6.4. All upper limits for partial strengths were derived assuming their excitation
function was the same shape as for the strongest branch.

Branches (%)a

Ex
b Ep Et

b E f Previousc Present ωγpartial

(keV) (keV) (keV) (keV) Iπf Ref. [16] Ref. [17]d Ref. [1] Ref. [14]d (meV)

7770.2±1.4 198 5055 2715 9/2+ , 5/2+ - - 58±8 - - ≤ 0.30 (0.20+0.15
−0.13)

2317 5453 - - - 42±7 - - -e

7782.2±1.2 209 5730 2052 7/2+ - 33±6 - - -f

5067 2715 9/2+ , 5/2+ - - 66±8 - - ≤ 0.26

7784.7±1.2 213 7785 0 3/2+ - ≤ 29 - 3.1±2.0 - ≤ 0.09

7334 451 5/2+ - 100 100 80.8±3.6 89.4±5.3 5.1 ± 0.5

5732 2052 7/2+ - ≤ 29 - 16.2±3.4 10.6±5.3g 0.6±0.3g

5426 2359 1/2+ - ≤ 29 - - - ≤ 0.24

5070 2715 9/2+ , 5/2+ - ≤ 29 - - - ≤ 0.33

5014 2771 1/2− - - - - - ≤ 0.17

4877 2908 (3/2, 5/2)+ - - - - - ≤ 0.24

7802.2±1.4 232 7802 0 3/2+ - - - 66.4±2.4 - ≤ 0.44

7351 451 5/2+ - - - 29.9±2.4 - ≤ 1.04

5750 2052 7/2+ - - - 3.7±1.3 - -

7856.1±1.0 288 7856 0 3/2+ - ≤ 4.3 - - - ≤ 0.69

7405 451 5/2+ - 10.8±2.9 - - 6.7±2.9 2.6±1.5

5804 2052 7/2+ 36±12 27.2±2.7 - - 26.2±4.1 10.4±1.9

5497 2359 1/2+ - ≤ 4.3 - - - 2.2±1.6h

5141 2715 9/2+ ,5/2+ 64±12 62.0±3.1 100 - 67.1±4.4 26.2±2.9

5085 2771 1/2− - - - - - ≤ 0.52

4948 2908 (3/2, 5/2)+ - - - - - ≤ 0.81

8015.3±0.8 454 8015 0 3/2+ - - - - - -i

7565 451 5/2+ - - - - 4.5±0.8 5.3±1.7

5963 2052 7/2+ - - 29±12 - 43.6±1.2 74.7±5.2

5656 2359 1/2+ - - - - - ≤ 1.1

5301 2715 9/2+ , 5/2+ 100 - 71±16 - 51.9±1.2 85.9±5.5

5244 2771 1/2− - - - - - ≤ 0.8

5107 2908 (3/2, 5/2)+ - - - - - -j

8163.9±0.8 610 8164 0 3/2+ 65±5 65.0±2.3 - - 61.3±1.8 376±16

7713 451 5/2+ 19±2 15.0±1.8 - - 18.6 ±1.3 97±16

6112 2052 7/2+ 16±2 20.0±1.8 100 - (20.0±1.8)k (118±13)l

5805 2359 1/2+ - ≤ 1.4 - - - ≤ 24

5449 2715 9/2+ ,5/2+ - ≤ 1.4 - - - ≤ 11

5393 2771 1/2− - - - - - ≤ 18

5256 2908 (3/2, 5/2)+ - - - - - ≤ 18

a We assume the sum of all observed branches adds up to 100%.
b Derived from our results in Table 6.1. Otherwise from NNDC [49].
c Branches from upper limits are calculated as the partial strength relative to the total observed strength.
d Converted finite values into percents.
e Partial strengths cannot be determined. See Table 6.4 for upper limits on total strengths.
f Any contribution from this branch has been attributed to Ep = 213 keV.
g Imposed the restriction that the shape of the excitation function must be the same as for the strongest branch.
h Because I f = 1/2, this state is highly unlikely to have a detectable value so we attribute this value to statistical fluctuations and do not include it in ωγtotal .
i Could not be determined due to a small percentage of pulser counts sorted into this energy window.
j Could not be determined due to 19F background.
k The value from Ref. [17] is used, as this gamma ray was obscured by 19F background in our measurements.
l Estimated from branch.
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Table 6.3: Summary of systematic errors for each resonance strength. Note, the total error for the
resonances at Ep = 198 and 232 keV is dominated by statistical errors.

Source of Ep (keV)

Systematic Error 454/610 213/198 288 232

Efficiency 6% 6% 6% 6%

Normalized beam density 10% 10% 10% 10%

Total number of atoms 2.6% +5.6
−2.6% +7

−14% 40%

Total 11.7% +12.7
−11.7% +13.4

−18.1% 42%
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Table 6.4: 22Na(p, γ) resonance strengths. Upper limits are at
the 68% confidence level. Both an upper limit and measure-
ment have been given for Ep = 198 keV. The total strength was
equal to the sum of partial strengths given in Table 6.2 for all
resonances, with the exception of Ep = 198, 209, and 232 keV
where branches from Refs. [1, 14] must be used. If only an up-
per limit has been given to a particular branch in Table 6.2, then
its value directly increased our upper uncertainty only, not the
central value. This significantly affects the upper limit on the
213-, 288-, and 610-keV resonances.

Present Previous Present

Elab
p Ecm

p (keV) ωγtotal (meV)a ωγtotal (meV)

45 43.1 ± 1.7b (7.1 ± 2.9)×10−14b (7.1 ± 2.9)×10−14b

70 66.6 ± 3.0b (5.1 ± 2.1)×10−10b (5.1 ± 2.1)×10−10b

198 189.5 ± 1.8c ≤ 4c ≤ 0.51 (0.34+0.25
−0.22 )

209 200.2 ± 1.6c (5 × 10−2)c ≤ 0.40d

213 204.1 ± 1.4 1.8 ± 0.7e 5.7+1.6
−0.9

232 221.4 ± 2.3c 2.2 ± 1.0c ≤ 0.67

288 275.4 ± 1.1 15.8 ± 3.4 39 ± 8

454 434.3 ± 0.8 68 ± 20 166 ± 22

503 481 ± 2a 37 ± 12 93 ± 36f

610 583.1 ± 0.8 235 ± 33 591+103
−74

g

740 708 ± 2a 364 ± 60 913 ± 174f

796 761 ± 2a 95 ± 30 238 ± 79f

a From Ref. [16, 17].
b From or derived from Ref. [19].
c From Ref. [1].
d Not included in the present reaction rate.
e Actual value measured was 1.4 meV, inflated to 1.8 meV to

account for possible unknown branches.
f Scaled from Ref [16]. Not measured in this work.
g Includes estimated partial branch from Eγ = 6112 keV.
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Chapter 7

ASTROPHYSICAL IMPLICATIONS

7.1 Re-evaulating the Thermonuclear Reaction Rate of 22Na(p, γ) 23Mg

Using the resonance energies and total strengths shown in Table 6.4, we calculated the contributions

to the 22Na(p, γ)23Mg thermonuclear reaction rate under the narrow-resonance formalism discussed

in detail in Sec. 2.5.1. Monte Carlo methods were employed, assuming symmetric (asymmetric)

gaussian distributions for all measured resonances with symmetric (asymmetric) uncertainties. For

the proposed resonances at Ep = 198 and 232 keV, their distributions were taken to be the curves

shown on the right sides of Figs. 5.8 and 5.9. Rcentral is defined as the 50% quantile of the distribution

of rates at a given temperature, and Rupper and Rlower are the 16% and 84% quantiles, respectively.

The proposed resonance at Ep = 209 keV has not been included in the reaction rate, as its pre-

viously estimated strength [1] is so weak that its contribution should be negligible. In addition, the

upper limit this work sets is conservative because of potential contributions from nearby resonances

to the excitation function. The strengths of the resonances at Ep = 45 and 70 keV are too low to

be measured directly due to the Coulomb barrier but have been included in the calculation of the

reaction rate derived from Ref. [19], based on the (3He,d) spectroscopic factors of Ref [11].

In Fig. 7.1, we show the individual contributions to the thermonuclear rate for 22Na(p, γ) as well

as relative contributions of selected resonances. As one can see, the possible contribution from the

resonance at Ep = 198 keV is less than that from the resonance at Ep = 213 keV for all temperatures

of interest to novae. Therefore, the resonance at Ep = 198 keV does not dominate the reaction rate

in this region, as Jenkins et al. [1] proposed it might. Rather, the resonance at Ep = 213 keV makes

the most important contribution. Also, at the higher temperatures around 0.4 GK, the contribution

of the 288-keV resonance becomes significant. The other resonance contributions are effectively

negligible at nova temperatures.

Fig. 7.2 illustrates the total reaction rate relative to previous direct measurements [16, 17], show-

ing that our rate is inconsistent with previous work at all temperatures. The dashed line and hatched
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Figure 7.1: Thermonuclear 22Na(p, γ)23Mg reaction rate as a function of temperature. Panel (a)
shows contributions to the reaction rate from individual resonances labeled by Ep in keV, based on
present measurements. Hatched regions represent 68% confidence levels (although the uncertainties
are so small they may appear as solid lines), and dashed lines with arrows are 68% confidence level
upper limits. Panel (b) shows the fraction contributions of selected resonances to the total rate, as
calculated using the resonances illustrated in panel (a).
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Figure 7.2: Ratio of present (slanted hatches) and previous (vertical hatches) [16, 17] to previous
thermonuclear 22Na(p, γ)23Mg reaction rate as a function of temperature. Hatched areas represent
68% C.L. error bands and dashed lines represent the central value, each relative to the previous
central value. Both previous and present resonance strengths are listed in Table 6.4. Including the
distributions for the resonances at Ep = 198 and 232 keV increases the present upper limit to the
dot-dashed line.
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region in this figure do not include the distributions for proposed resonances at Ep = 198 and 232

keV. The 232-keV resonance makes an insignificant contribution at all temperatures of interest to no-

vae; however, although the 198-keV resonance was unobserved and an upper limit has been placed

on its strength, including its potential contributions to the reaction rate has a non-negligible effect at

low temperatures. Including the proposed resonances increases the upper limit of the reaction rate

to the dot-dashed line shown in Fig. 7.2. Because of this difference, we have calculated the reaction

rate for each of these two separate cases, and the values are shown in Table 7.1.

7.2 Consequences for Nucleosynthesis of 22Na

We can anticipate the general ramifications of the new rate on expected nucleosynthesis of 22Na in

ONe novae using post-processing network calculations because the total energy generation is not

affected appreciably by the 22Na(p, γ) reaction. Based on the one-zone calculations of Ref. [8], a

specific model indicates that the production of 22Na is related inversely to the 22Na(p, γ) reaction

rate, as shown in Fig. 7.3.
WR. Hix et al. /Nuclear Physics A718 (2003) 62Oc-622~ 622c 

800 

200 

4 . 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 .ld 

22Na Abundance 
22Na(p,y)23Mg Reaction Variation 

Figure 1. (A). Distribution of the predicted 22Na abundances in the Monte Carlo simu- 
lation. The curve is a fit to a log-normal distribution, and the mean abundance and 90 
% confidence levels from the are shown by the horizontal bar. (B). Distribution of the 
predicted 22Na abundance with the multiplicative factor in the 22Na(p,y)23Mg reaction 
rate are shown with a linear fit. 

these reactions, and our calculations can be used to set priorities for these measurements. 
In summary, we have utilized a Monte Carlo approach to nova nucleosynthesis calcu- 

lations where - for the first time - uncertainties in all input nuclear reaction rates are 
considered simultaneously. This enables us to determine robust uncertainties in nova 
model predictions as well as the most important reaction rates for future measurements. 
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The authors of Ref. [67] also varied the rate by a factor of two using various one-zone models

of novae to extract the effect. Using the information given in these references and our change in the
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Table 7.1: Table of the thermonuclear 22Na(p, γ)23Mg reaction rate, R, as a function of
temperature, T , determined using the energies and strengths given in Table 6.4. Two
distributions of rates were calculated, one of which includes the probability density func-
tions from resonances at Ep = 198 and 232 keV and one which does not. Rcentral is the
50% quantile of the distribution of rates at a given temperature, and Rupper and Rlower are
the 16% and 84% quantiles, respectively. The units of the rate are cm3mol−1s−1.

R (not including “198, 232”a) R (including “198, 232”a)

T (GK) Rcentral Rlower Rupper Rcentral Rlower Rupper

0.01 2.0×10−30 2.7×10−31 1.5×10−29 2.0×10−28 2.7×10−29 1.5×10−29

0.02 5.5×10−20 1.9×10−20 1.6×10−19 5.5×10−20 1.9×10−20 1.6×10−19

0.03 2.6×10−16 1.3×10−16 5.6×10−16 2.6×10−16 1.3×10−16 5.6×10−16

0.04 4.6×10−14 2.0×10−14 1.1×10−13 4.6×10−14 2.1×10−14 1.1×10−13

0.05 1.4×10−12 6.4×10−13 3.1×10−12 1.4×10−12 6.4×10−13 3.1×10−12

0.06 1.4×10−11 7.1×10−10 2.8×10−11 1.5×10−11 7.7×10−12 2.9×10−11

0.07 1.8×10−10 1.3×10−10 2.5×10−10 2.7×10−10 2.0×10−10 3.6×10−10

0.08 6.2×10−09 4.7×10−09 8.2×10−09 9.7×10−09 7.2×10−09 1.3×10−08

0.09 1.3×10−07 1.0×10−07 1.8×10−07 2.0×10−07 1.5×10−07 2.6×10−07

0.10 1.6×10−06 1.2×10−06 2.1×10−06 2.2×10−06 1.7×10−06 2.8×10−06

0.15 2.3×10−03 1.9×10−03 3.0×10−03 2.9×10−03 2.4×10−03 3.6×10−03

0.2 8.5×10−02 7.1×10−02 1.1×10−01 1.0×10−01 8.4×10−02 1.2×10−01

0.3 3.1×10+00 2.7×10+00 3.7×10+00 3.5×10+00 3.0×10+00 4.1×10+00

0.4 1.9×10+01 1.7×10+01 2.2×10+01 2.1×10+01 1.8×10+01 2.4×10+01

0.5 5.9×10+01 5.1×10+01 6.7×10+01 6.3×10+01 5.4×10+01 7.1×10+01

0.6 1.3×10+02 1.1×10+02 1.4×10+02 1.3×10+02 1.2×10+02 1.5×10+02

0.7 2.3×10+02 2.0×10+02 2.5×10+02 2.4×10+02 2.1×10+02 2.6×10+02

0.8 3.6×10+02 3.2×10+02 4.0×10+02 3.7×10+02 3.3×10+02 4.1×10+02

0.9 5.4×10+02 4.8×10+02 5.9×10+02 5.5×10+02 5.0×10+02 6.0×10+02

1.0 7.5×10+02 6.8×10+02 8.1×10+02 7.6×10+02 6.9×10+02 8.3×10+02

1.5 2.2×10+03 2.1×10+03 2.4×10+03 2.2×10+03 2.1×10+03 2.4×10+03

2.0 3.9×10+03 3.6×10+03 4.2×10+03 3.9×10+03 3.6×10+03 4.2×10+03

a “198, 232” denotes resonances at Ep = 198 and 232 keV.
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reaction rate, the estimated abundance of 22Na in novae is expected to be reduced by factors of 2

to 3 of what was previously expected, depending on white dwarf mass and composition. This will

directly affect the expected flux of 22Na gamma rays observed using orbiting gamma-ray telescopes.

In addition, the impact of our 22Na(p, γ) reaction rate on the amount of 22Na ejected during

nova outbursts has been tested through a series of hydrodynamic simulations performed by Jordi

José [21]: three evolutionary sequences of nova outbursts hosting ONe white dwarfs of 1.15, 1.25

and 1.35M� have been computed with the spherically symmetric, Lagrangian, hydrodynamic code

SHIVA, extensively used in the modeling of such explosions (see Ref. [3], for details). Results have

been compared with those obtained in three additional hydrodynamic simulations, for the same

white dwarf masses described above and same input physics except for the 22Na(p, γ) rate, which

was derived from Refs. [16, 17]. The network used for additional reaction rates is the relevant subset

of that used in Ref. [70]. The estimated 22Na yields (mass-averaged mass fractions in the overall

ejected shells) are listed in Table 7.2, which clearly shows that the impact of the central value of new

rate roughly translates into lower 22Na abundances by a factor up to ∼ 2 with respect to previous

estimates. This, in turn, directly affects the chances to potentially detect the 1275-keV gamma-

ray line from 22Na decay, decreasing the maximum detectability distances by a factor ∼ 1.4. The

inclusion of the 198- and 232-keV distributions in the rate does not appreciably alter this factor.

The results from one-zone post-processing network calculations and full hydrodynamic simu-

lations using SHIVA are complementary. The post-processing approach mimics the processes that

occur in the deepest envelope layers, whereas the hydrodynamic simulations average the yields over

all ejected shells. Convection also plays a critical role, supplying fresh, unburned material from

external shells into the innermost one (and vice versa), and these effects cannot be simulated in a

post-processing framework. As a result of the more realistic physics in the hydrodynamic model,

the composition of the innermost shell is diluted by the compositions of the outermost ones. On

the other hand, the post-processing calculations cover various nova models, a wider range of nova

masses and compositions, and show that the correlation between the 22Na(p, γ) rate and 22Na pro-

duction is robust even when other reaction rates are simultaneously varied. It seems reasonable to

assume that the magnitude of the dilution from the hydrodynamic models (≈ 25%) applies generally

to all of the post-processing results.
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Table 7.2: 22Na yields from novae on ONe
white dwarfs of various masses computed with
SHIVA [3]. The total mass ejected is given for
each case, along with the mass fractions of 22Na
obtained using the central value of the previ-
ous [16, 17] and both present 22Na(p, γ)23Mg re-
action rates compiled in Table 7.1. The factor
given is the ratio of previous to respective present
amounts of 22Na ejected.

1.15M� 1.25M� 1.35M�a

Meject (g) 4.9×1028 3.8×1028 9.0×1027

Previousb 1.6×10−4 1.9×10−4 5.9×10−4

Presentc 8.8×10−5 1.1×10−4 4.1×10−4

Factor 1.8 1.8 1.4

Presentd 7.8×10−5 1.0×10−4 3.8×10−4

Factor 2.0 1.9 1.5

a Statistically, there should be more novae

of 1.15M� and 1.25M� than those hosting

1.35M�, due to the stellar mass function of

the progenitors.
b From Ref. [16, 17].
c Not including “198, 232” from Table 7.1.
d Including “198, 232” from Table 7.1.
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Chapter 8

CONCLUSIONS, IMPROVEMENTS, AND FUTURE PROSPECTS

We have measured the resonance strengths, energies, and branches of the 22Na(p, γ)23Mg reac-

tion directly and absolutely. Our method improved upon past measurements in several ways. The

use of integrated yields makes the results independent of absolute stopping power calculations and

is far more robust than using peak yields. We also utilized isotopically-pure, implanted targets that

demonstrated nearly zero loss during bombardment, and relied on robust integrated yields instead

of peak yields. HPGe detectors exhibit excellent energy resolution, providing the ability to use

narrow energy windows, and anticoincidence shields enabled suppression of the cosmic-ray back-

ground. Absolute detector efficiency was also vital, which we determined by fusing measurement

and simulation. Finally, the rastering of the beam across the target not only aided in maintaining

target integrity, but also removed the requirement of detailed knowledge of the target distribution.

A determination of the beam density was mandatory and was ascertained by both measurement and

modeling. As a consequence of the aforementioned points, our results should be substantially more

reliable than previous measurements.

By exploiting these advantages, our measurement has shown that four previously measured res-

onance strengths are 2.4 to 3.2 times higher than previously reported [16, 17]. Jenkins et al. also

proposed that a new 22Na(p, γ) resonance with Ep = 198 keV could dominate the reaction rate in

novae [1]. We have demonstrated that this is not the case, and that the main contributions arise from

the resonance at Ep = 213 keV. As a result of the higher resonance strengths, the estimated flux of
22Na gamma rays from novae is expected to be about a factor of 2 less than what was previously

expected, determined by using both post-processing network calculations and hydrodynamic sim-

ulations. The lack of observational evidence of 22Na in the cosmos is consistent with the previous

reaction rate; however, the present rate makes detection ∼ 1.4 times more difficult.

Improvements to the present measurement could include a more rigorous determination of the

beam density and its uncertainties. Our central value for this parameter was extracted from mea-
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surements on our “coin” 27Al target at only two separate times. It is possible that in the interim

measurements that the beam density had a different value. Measuring this quantity more often

would increase our confidence and decrease its uncertainty. However, this method requires a change

of target and possible change in beam tune. A more accurate method would be to construct a device

to measure the density in-situ, such as in the experiment by Ref. [26]. A simple alternative would

have been to sweep the beam over a much larger area such that the beam density would be entirely

uniform over the 8-mm collimator and would be equal to the charge on the target divided by the

collimator area. Although this is straightforward, it would have led to a prohibitive amount of time

for our experiment to collect data for comparable statistics. Of course, an intermediate raster smaller

than previously suggested but larger than our standard raster might be a better compromise.

Smaller improvements would be taking all non-22Na(p, γ) data in the presence of the 22Na

sources to minimize any rate-dependent effects, such as detector gain shifts. Although the back-

ground rate for 22Na(p, γ) gamma rays was dominated by beam-related Compton gamma rays, the

cosmic ray shielding geometry could also have been optimized for the experimental setup, instead of

borrowing shielding from a previous experiment. This was not done because costs were exorbitant

for a slight enhancement of the rejection probability.

The main source of dead time was using the Ge amplifiers in pile-up-rejection mode. Many

signals were rejected because the amplifier had not finished processing one signal before another

began, due to the long integration time to maintain a high resolution in a large detector. If there were

some method to improve the detector technology to collect the deposited charge faster, this would

be a very beneficial way to improve the statistics of a measurement.

Although we have determined that the 198-keV resonance does not dominate the 22Na(p, γ) re-

action rate, the upper limit we have set indicates that its contribution could be up to 50% of the

213-keV resonance contribution at 0.1 GK. Further measurements could be performed to decrease

this limit or more precisely measure the resonance strength, if it is indeed this strong. Direct mea-

surements could also be performed in inverse kinematics to further confirm the absolute value of the

resonance strengths, at least at the higher proton energies where the strengths are hundreds of meV.
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[6] J. José, M. Hernanz, and C. Iliadis. Nucl. Phys. A, 777:550, 2006.
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