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University of Washington

Abstract

The Electron-Capture Branch of 100Tc and Implications for Neutrino Physics

Sky Sjue

Chair of the Supervisory Committee:

Professor Alejandro Garcı́a

Physics

This study presents a measurement of the electron-capture (EC) branch of the de-

cay of 100Tc, with the result B(EC) = (2.6 ± 0.4) × 10−5. The EC branch measurement,

in conjunction with measurements of single-beta and two-neutrino double-beta decay

rates in the A = 100 system, provides an important test for nuclear many-body theo-

ries used to calculate the neutrinoless double-beta decay rate of 100Mo. A discussion of

the implications of our branch measurement for double-beta decay calculations follows

for both the single-state dominance hypothesis and the proton-neutron quasiparticle

random phase approximation. The matrix element that determines the EC branch also

determines the cross section for neutrino capture on 100Mo, which has the potential to

measure pp neutrinos spectroscopically at relatively low energies because of its small

neutrino-capture threshold, QEC = 168 keV. Our branch measurement determines the

efficiency of a proposed solar-neutrino detector using 100Mo to be ≈ 80% greater than

previous estimates.
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Chapter 1

PHYSICS MOTIVATION

1.1 In Brief

If a positive signal were observed from experiments searching for neutrinoless double-

beta (0νββ) decay, the neutrino would be identified as its own anti-particle. In order to

extract useful information beyond this important identification, a reliable description

of the nuclear wave functions will be essential. For this reason, much work has gone

into improving the accuracy of nuclear matrix element calculations for double-beta de-

cay [44, 16, 82, 21, 71]. It is important to test theoretical models by requiring them

to reproduce multiple observables that could be sensitive to similar operators. A few

double-beta decay candidates, including 100Mo, have the ground state of the intermedi-

ate nucleus with spin-parity Jπ = 1+. These nuclei allow measurements of single-beta

decay rates in addition to the two neutrino double-beta (2νββ) decay rates to check

calculations.

100Mo offers a test system with up to seven constraints (see Figure 1.1), including

measurements of the 2νββ decay rates to both the ground state and two excited states

of 100Ru, single-beta decay rates from the intermediate 100Tc ground state to both the

ground state and two excited states of 100Ru, and the electron-capture (EC) rate from

100Tc to 100Mo. Excluding the highly suppressed 2νββ decay to the Jπ = 2+ excited

state of 100Ru, the EC rate is the most uncertain. A more accurate measurement of the

EC rate provides an improved test for theoretical models.

Ejiri et al. [20] proposed to use 100Mo as a detector for both 0νββ decay and solar

neutrinos. For the latter, the efficiency for low-energy neutrino captures is determined

by the same matrix element that drives the rate for the EC transition from 100Tc to

100Mo. The basic features of the detector can be found in Reference [20], which esti-

mated that the amount of 100Mo needed to perform a significant measurement would
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Figure 1.1: The A = 100 system and its seven observables: three β− decays from 100Tc

to 100Ru, three 2νββ decays from 100Mo to 100Ru, and the EC decay from 100Tc to 100Mo.
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be 3.0 × 103 kg of 100Mo (31 × 103 kg of natural Mo). Their calculation was based on an

indirect determination of the strength for the transition:

B(GT;100 Mo →100 Tc) = 3g2
A|〈100Tc||στ ||100Mo〉|2 (1.1)

deduced from a 3He +100 Mo →3 H +100 Tc measurement [2] which yielded:

B(GT)indirect = 0.52 ± 0.06. (1.2)

But it is also possible to determine the EC branch directly. A previous experiment mea-

sured the 100Tc EC branch to be (1.8±0.9)×10−5 , from which one obtainsB(GT;100 Mo →100

Tc) = 0.66 ± 0.33, barely inconsistent with zero.

This document presents a more precise measurement of the EC branch and dis-

cusses its implications. The following sections of this chapter place these motivations

in a broader context, then examine them in greater detail.

1.2 The Standard Model

It is human nature to seek explanations. An explanation generally leads to more ques-

tions. The ultimate goal of particle physics is to explain all observed phenomena with

the simplest possible theory. The so-called “Standard Model,” plus recent modifications

due to discoveries about neutrinos, is the most complete theory we have to explain the

universe. But the Standard Model requires many ad hoc constants and fails to incor-

porate gravity. Experiments that test the Standard Model offer clues toward a more

complete theory.

The Standard Model of particle physics describes all known interactions besides

gravity. The Standard Model includes twelve fermions which interact via both mas-

sive and massless mediating bosons, plus the Higgs boson, which gives all the other

particles their masses. The twelve fermions include six quarks and six leptons. Lep-

tons include the electron (e), the muon (µ), and the tau (τ ), plus three corresponding

neutrinos (νe, νµ, and ντ ). The Higgs boson is the only particle in the Standard Model

that has not been experimentally observed.
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Fermions all have spin s = 1
2 and interact by exchanging bosons with spin s = 1.

Fermions interact via the electroweak interaction by exchanging photons andW−, W+,

and Z bosons; only the quarks interact via the strong interaction by exchanging gluons.

Although it is the strongest known interaction, the strong interaction is not so read-

ily apparent in our daily lives, because it is confined to atomic nuclei. Only the six

quarks interact strongly by exchanging gluons. The strong interaction is responsible

for the formation of protons, neutrons and nuclei. First u and d quarks, true particles

in the Standard Model, are bound into protons and neutrons (both three quarks, uud

and udd, respectively); then the residual strong force keeps the protons and neutrons

bound as a nucleus via forces generated by meson (two-quark particle) exchange. The

existence of stable, multiply-charged nuclei is sufficient to demonstrate the strength

of the strong interaction: if the residual strong interaction were not strong enough to

overcome the repulsion between the like charges of protons, no multiply-charged nuclei

would exist and hydrogen would be the only element.

The electroweak interaction is broken into the weak interaction and the electro-

magnetic interaction at the energy scales that currently pervade the bulk of the ob-

served universe and our daily lives. The weak interaction’s apparent weakness is due

to the fact that the interaction proceeds via the exchange of massive particles; at en-

ergies that are small compared the masses of these particles, its strength is propor-

tional to 1/M4, where M is the mass of the W−, W+, or Z boson that mediates the

interaction. Using units in which mass and energy are equal, then assuming an en-

ergy scale of 1 MeV (representative of Q values common in nuclear beta decay) and a

mass M ≈ 100 GeV (in the ballpark for the weak interaction’s intermediate bosons)

for simplicity, this results in a weak coupling that is smaller than the analogous elec-

tromagnetic coupling by a factor of (Q/M)4 = (1/105)4 = 10−20. The electromagnetic

interaction, the portion of the electroweak interaction that is stronger at ambient en-

ergies, is responsible for all of chemistry and the five human senses. For example, it

is a combination of the sensitivity of the human eye and Rayleigh scattering, the law

that describes how light scatters in the atmosphere, that makes the sky appear blue

to us.
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The charge-carryingW− andW+ allow the weak interaction to convert one strongly-

bound nucleus into another. As a practical example, Carbon-14 (14C) is created when

cosmic-ray protons collide with nuclei in the earth’s atmosphere and create secondary

neutrons, which then collide with one of the nuclei in the nitrogen gas that composes

78% of the atmosphere. The subsequent reaction, 14N(n, p)14C, creates small amounts

of 14C in the atmosphere. 14C is unstable to the weak process of beta decay, with a half-

life of 5700 years. Living plants absorb carbon dioxide from the atmosphere, which

includes a small fraction (before the industrial revolution, between 180 and 300 ppm

for hundreds of millenia) of carbon dioxide with 14C. Only living plants absorb the 14C

from the atmosphere; thus the amount of 14C decreases monotonically after the plant’s

death. The amount of 14C present in fossils gives good estimates of their ages.

The Standard Model includes dozens of unexplained constants including, but not

limited to, the masses and charges of the twelve fermions. Further observations and

improved theories may explain the origins of these enigmatic numbers. The Standard

Model is well documented. For brevity, this chapter will focus on the weak interaction

and its relation to nuclear, particle, and astrophysics, in order to explain the relevance

of the EC decay of 100Tc to our understanding of the universe.

1.3 Neutrinos

The weak interaction and neutrinos have played an important role in the development

of particle physics for the past century. Three types of decay radiation were discov-

ered around the turn of the 20th century. In a paper published in 1899, Rutherford

first discovered two types of radiation from uranium which he called alpha and beta,

based on different attenuation lengths observed when he covered a uranium source

with thin aluminum sheets of varying thicknesses. Villard dubbed a third type of

radiation gamma rays, which were observed to penetrate several feet of concrete. Fur-

ther experiments by Rutherford, Pierre and Marie Curie, and others showed that the

alpha particles were helium nuclei and the beta particles were electrons. Rutherford

later showed that the gamma rays were electromagnetic radiation with a much shorter
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wavelength than x rays.

The problem was that the beta radiation seemed to defy the cherished conserva-

tion laws of energy and momentum. If a nucleus at rest decays into two particles, for

instance a daughter nucleus with mass Mf and a beta particle with mass me, then

conservation of momentum implies that the two decay particles have the same mo-

mentum. The fixed amount of energy available to the decay uniquely determines this

momentum,

pe =

√

(Q+Mf +me)2 −M2
f −m2

e

2
, (1.3)

in which Q is the difference between the atomic masses of the parent and daughter nu-

clei. But experiments found that beta particles had continuous distributions of energy

ranging from Ee = me to Ee = Q+me. Either one of the conservation laws would need

to be scrapped, or something was missing from the picture.

In 1930, in a letter to a conference which he was not able to attend, Pauli proposed

that there could be a third particle emitted in the beta decays, carrying the missing

energy and momentum. This particle had to be neutral to have evaded observation.

Data indicated that its mass should be approximately equal to or less than the elec-

tron mass. Fermi published a theory of beta decay [29] in 1934, which included these

light, neutral particles. Neutrons had already been discovered, so when asked whether

his neutral particles were the same, Fermi added the Italian diminutive suffix to the

neutron to dub the little mystery particles “neutrinos.”

The first-order formula from perturbation theory that describes beta-decay rates is

still referred to as Fermi’s Golden Rule:

Γi→f =
2π

~

∫

dEf
dN

dEf
|Mfi|2δ(Ef − Ei). (1.4)

Γi→f is the rate of transition from the initial state i to the final state f . Mfi is the

matrix element of the perturbative interaction between the intial and final state. The

integral
∫

dEf
dN

dEf
δ(Ef − Ei), known as the “phase space integral,” takes into account

the number of final state configurations available. Appendix A includes background on

perturbation theory and Appendix B gives results of phase space integrals for some of

the decay processes that will be discussed in this text.
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Assuming the existence of the neutrino and treating both its mass and the daughter

nucleus’s recoil energy as negligible compared to nuclear beta-decay Q values, Equa-

tion 1.4 yields qualitative agreement with experimental data, without any knowledge

of the microscopic form of the weak interaction. Neglecting the microscopic form of

the interaction in the matrix element Mfi and approximating the nucleus as a point

charge makes matters simpler. Under these assumptions, the energy spectrum of an

electron from beta decay should have the form

dΓ

dEf
∝ F (Z,Ee)Eepe(E0 − Ee)

2, (1.5)

where the electron’s momentum, energy, and maximum energy are pe, Ee, and E0, and

F (Z,Ee) is a correction for the Coulomb potential of a point charge with charge Z, the

charge of the daughter nucleus.

This approximation is quite accurate for many beta-decay energy spectra. For ex-

ample, Figure 1.2 shows a simulation of the beta-energy spectrum from 100Tc for the

93% beta-decay branch to the ground state of 100Ru. F (Z,Ee) shifts the energy spec-

trum toward Ee = me (zero kinetic energy), because the positively-charged nucleus

creates a potential well for the outgoing electron. For β+ decay, the correction is given

by the same function but with the opposite charge, F (−Z,Ee), which shifts the spec-

trum to higher energies.

Direct observation of the neutrino came twenty years later. In 1956, Cowan and

Reines published the results of an experiment [70] that detected the neutrinos radiated

from a nuclear reactor at Savannah River Plant in Georgia. Their detector was based

on CdCl2 dissolved in water. The high flux of anti-electron neutrinos from the reactor

produced positrons and neutrons,

ν̄e + p→ n+ e+, (1.6)

then the positrons annihilated and produced two 511-keV photons. The neutrons were

absorbed by the cadmium, which then emitted a γ ray:

n+108 Cd →109 Cd∗ →109 Cd + γ. (1.7)
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Figure 1.2: Simulated Q = 3202 keV beta-decay energy spectrum from 100Tc to the

ground state of 100Ru.
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Cadmium has a large neutron-absorption cross section and the three photons were

all emitted within ≈ 5 µs. Direct observation of the coincidences between the two

annihilation photons and the 109Cd γ ray verified the neutrino hypothesis.

1.4 Parity Violation

Should the laws of nature change when viewed with a mirror? Until the latter half

of the 1950s, the answer was thought to be no, based on guidance from the theory of

electrodynamics. A change of parity, or spatial reflection, is mathematically equivalent

to the transformation of a reflected image in the direction perpendicular to the plane

of a mirror (see Figure 1.3). We denote a change of parity by the symbol Π, which is

defined to invert coordinates:

Π : ~r ⇒ −~r. (1.8)

It follows that Π2 = 1, which implies that there are only two possible eigenvalues for

parity, ±1. The fields of electrodynamics provide examples of these two possibilities:

the electric field is a vector (Π : ~E ⇒ − ~E) and the magnetic field is a pseudovector, or

axial vector (Π : ~B ⇒ ~B). Maxwell’s Equations are invariant under a change of parity

if we also transform the electric field and magnetic field accordingly. This invariance of

the equations of motion means that all electromagnetic processes remain unchanged

by inversion of the coordinates in the equation. Parity is conserved by electrodynamics.

In 1957, Wu et al [86] observed a correlation between the momenta of the beta

particles from the decay of 60Co and the polarization of the nucleus’s spin. Expressing

this mathematically, they found

dΓ

d(cos(θ))
∝ 1 − cP~s · ~pe

Ee
, (1.9)

in which c is a constant (for the nonce), ~s is spin of 60Co, P is its polarization, and θ is

the angle between ~s and ~pe. The beta particles were emitted preferentially opposed to

the nuclear spin. This correlation is due to the weak interaction itself; that is, it comes

from the modulus squared of the matrix element, |Mfi|2, in Equation 1.4. Consider
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Figure 1.3: ~p and ~s (or ~E and ~B) under parity: the momentum ( ~E) perpendicular to the

plane of the mirror changes direction, but the spin ~B does not. By the right-hand rule,

the spin is intitially opposed to the momentum, but in the same direction in the mirror

image.

the effect of spatial reflection upon the angular correlation:

Π :

(

1 − cP~s · ~pe

Ee

)

⇒
(

1 + cP~s · ~pe

Ee

)

. (1.10)

The sign has changed on the dot product because ~pe is a vector (like ~E) and ~s is an

axial vector (like ~B). Spatial reflection reverses the correlation, so the beta particles

would be emitted preferentially parallel to the nuclear spin. Figure 1.3 illustrates this

reversal. Equation 1.9 would no longer be true: the spatial reflection of the left-hand

side is achieved by substituting θ ⇒ π − θ, from which one would find

dΓ

d(cos(θ))
⇒ − dΓ

d(cos(θ))
∝ −1 + cP~s · ~pe

Ee
, (1.11)

which is not the same as the spatially reflected correlation in Equation 1.10. Thus we

say that the weak interaction violates parity.

A more mathematical description is necessary to adequately describe the form of

parity violation in the weak interaction and elucidate its consequences. First we con-

sider quantum electrodynamics (QED). All conventions used for the γ matrices are
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presented in Appendix C. In QED, the interactions between charged particles follow

from a Lagrangian density,

LQED = ψ̄(γµpµ −m)ψ − qψ̄(γµAµ)ψ − 1

4
FµνFµν , (1.12)

in which Fµν is given by

Fµν = pµAν − pνAµ, (1.13)

andAµ is the vector field that represents photons. The first term on the right-hand side

of Equation 1.12 is just the energy associated with a free particle of mass m. The third

term describes the propagation of photons. Interactions are described by the second

term, which can be suggestively written

Lint = −JµAµ, (1.14)

in which Jµ = qψ̄γµψ is the conserved vector current associated with the interacting

charged particle. Noether’s Theorem theorem states that the local gauge invariance

of Equation 1.12 leads to conservation of charge. That is, because the Equation 1.12

remains unchanged when one substitutes

ψ ⇒ eiqα(x)ψ, (1.15)

Aµ ⇒ Aµ − iq∂µα(x), (1.16)

it follows that

∂µqψ̄γ
µψ = 0, (1.17)

which states mathematically that charge is neither created nor destroyed. ~E and ~B

can be expressed in terms of the components (A0, ~A) of Aµ,

~E = −~∇A0 − ∂ ~A

∂t
, (1.18)

~B = ~∇× ~A, (1.19)

then Maxwell’s Equations follow from the Euler-Lagrange Equations applied to Equa-

tion 1.12 for the vector field,
∂LQED

∂Aµ
= ∂ν

∂LQED

∂νAµ
. (1.20)
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Expressing the matrices in terms of their components, γµ = (γ0, ~γ), the components of

Lint are also invariant under a change of parity:

Π : γ0A0 ⇒ γ0A0

Π : ~γ · ~A⇒ (−~γ) · (− ~A) = ~γ · ~A. (1.21)

So Lint ∝ (γ0A0 − ~γ · ~A) is identical to its reflection. QED conserves parity.

The parity-violating correlation between the beta particles and the polarization of

the 60Co nuclei shows a preference for the vector, ~pe, based on the (pseudovector) spin

angular momentum associated with the decaying nucleus, ~s. The direction of a parti-

cle’s spin with respect to its own momentum is referred to as its helicity,

H =
~p · ~σ
|~p| , (1.22)

and any wave function can be decomposed into two components that are eigenstates of

helicity,

ψ = ψ+ + ψ− =
1 + H

2
ψ +

1 −H
2

ψ. (1.23)

Because H2 = 1, we have the two identities

Hψ± = ±ψ±. (1.24)

P± ≡ (1 ±H)/2 are projection operators, because they project a general wave function

into components that are eigenstates of helicity. The functional form of the projection

operator P− is reminiscent of the functional form of the spin-momentum correlation

expressed in Equation 1.9. However, it it not possible to write a Lorentz-invariant

interaction in terms of helicity states; for any massive particle, it is possible to perform

a boost such that the momentum is reversed and ψ± → ψ∓.

The Lorentz-invariant projection operators with the same transformation proper-

ties under parity are referred to as the chiral projection operators:

Π :
1 ± γ5

2
⇒ 1 ∓ γ5

2
. (1.25)

The weak interaction can be represented by a current-current interaction between
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fields, similar to the interaction term from the QED Lagrangian density in Equa-

tion 1.14,

Lweak =
GF√

2
(Ji)

µ(Jj)µ, (1.26)

in which i and j can refer to any two weak-interaction doublets. But now the parity-

violating current projects only one chiral component from the fields; for example, the

form of the lepton current for the (e, νe) doublet of beta decay is

Jµ = e(pe)
(1 + γ5)

2
γµ (1 − γ5)

2
ν(pν), (1.27)

in which e(pe) represents the field creation operator for the beta particle, ν(pν) repre-

sents the anti-neutrino field creation operator, and the projection operators (1 ± γ5)/2

pick the components of the fields preferred by the weak interaction. The projection op-

erator next to e(pe) has a different sign because the gamma matrices anticommute. To

avoid confusion, all references to helicity will be made in terms of negative and positive

helicity,

1 −H
2

ψ = ψ− and
1 + H

2
ψ = ψ+, (1.28)

and all references to chirality will be made in terms of left- and right-handedness,

1 − γ5

2
ψ = ψL and

1 + γ5

2
ψ = ψR. (1.29)

The projection operator PL = (1 − γ5)/2 actually picks left-handed particles and right-

handed antiparticles (see Equation C.17). If we rearrange the matrices in Equa-

tion 1.27, leave the flavor of the current unspecified, and ignore a factor of 2, we can

write a simplified form of the weak interaction current:

Jµ = ψ̄γµ(1 − γ5)ψ. (1.30)

The form of the weak current is referred to as V −A, because the first term transforms

like a vector and the second term transforms like an axial vector. We call the weak

current left-handed, because all observed weak processes (to date) involve only left-

handed particles and right-handed antiparticles.
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The 60Co experiment that gave the first indication of parity violation had been

performed based on suggestions from Lee and Yang, who posited scalar and tensor

currents [59] for the weak interaction. Marshak and Sudarshan suggested a V − A

interaction current [80], based on mounting experimental evidence. In addition to the

assumption of a universal V − A current, Feynman and Gell-Mann proposed that the

vector portion of the weak current could be conserved [30], in analogy with the vector

current of QED. This hypothesis is known as Conservation of Vector Current (CVC).

The CVC hypothesis explained why the value of GF extracted from the Fermi (super-

allowed, Jπ = 0+ → 0+, strictly vector current) β+ decay of 14O should agree so closely

with the value extracted from the muon lifetime, τµ, based on a V −A current. The two

independent determinations of GF agreed to within the experimental uncertainties at

the time, which they explained by suggesting that the vector portion of the weak in-

teraction current was not renormalized within the nuclear medium, just like that of

QED.

The V − A form of the weak interaction specifies that high-energy electrons from

the pion decay sequence π → µ→ e,

π− → µ− + ν̄µ

→ e− + ν̄e + νµ + ν̄µ, (1.31)

must be emitted opposed to the muons. The pion has no spin. In the rest frame of the

pion, conservation of angular momentum and momentum require that the muon and

its antineutrino have equal and opposite momenta and spins. The muon antineutrino

is highly relativistic and has positive helicity. Conservation of momentum then re-

quires the muon to have positive helicity; given the chirality of the weak current, this

is only possible because the muon mass mixes positive helicity in with the state of left-

handed chirality. Now the muon decays and we consider only high-energy electrons,

for which Ee ≫ me. The high-energy, left-handed electron has negative helicity. If the

electron has the largest momentum of the decay products, then the two neutrinos must

both go in the same direction, opposite to that of the electron, to conserve momentum.

But the neutrino and antineutrino are both highly relativistic and have opposite he-
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licities. Because of this, the only way to conserve angular momentum from the muon’s

decay is for the electron to have its spin in the same direction as the muon’s spin. But

for the reasons explained above, the muon has positive helicity and the electron has

negative helicity. Therefore the two must go in opposite directions.

Neglecting radiative corrections, the V − A form of the weak interaction predicts

the branching ratio for the two modes of pion decay:

Γ(π− → e− + ν̄e)

Γ(π− → µ− + ν̄µ)
=
m2

e

m2
µ

(1 −m2
e/m

2
π)

(1 −m2
µ/m

2
π)

= 1.30 × 10−4, (1.32)

which disagreed with the experimental results available in the late 1950s, but has

since been verified. Note that the phase space is larger for the smaller mass of the

electron, but the muon decay channel dominates because of enhancement proportional

to the muon mass squared. This enhancement occurs because, as described for π →
µ above, combined conservation of angular momentum and momentum require the

lepton and neutrino to have the same helicities. The amount of positive helicity in

a left-handed lepton wave function is proportional to the lepton’s mass. Appendix D

presents a calculation of this branching ratio and explains the proportionality to the

lepton mass.

Parity violation raises interesting questions. Why should the weak interaction ex-

clusively create particles of one chirality? This could be compared to an imaginary

world where all people are born left-handed. This preference is just a feature of the

theory for the moment. It is worth noting that chirality is present elsewhere in na-

ture. All the nucleotides that compose DNA are right-handed optical isomers and it

is this right-handedness that leads to the double-helix structure of DNA. We are all

genetically “right-handed”; there could just as well be another world full of genetically

“left-handed” people.

1.5 Hadronic Complications

The hadrons in semileptonic beta decay provide a source of complication due to mis-

alignment between quark eigenstates, the intrinsic structure of protons and neutrons,

and the many-body system of the nucleus. It can be viewed as a lucky coincidence
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that the CVC hypothesis initially worked so well to explain the agreement between

the value of GF determined from the superallowed β+ decay of 14O and the value ex-

tracted from the muon lifetime, since the quark eigenstates that participate in the

weak interaction are not perfectly aligned with the quark mass eigenstates. Nuclear

beta-decay rates are suppressed by this misalignment.

Nuclear beta decay involves the (u, d) quark doublet, so the coefficient that ac-

counts for the misalignment between the mass eigenstates and the weak eigenstates

for quarks in nuclear beta decay is called Vud. The misalignment between the mass

eigenstates and weak eigenstates across all three generations of quarks is described

by a matrix, known as the CKM matrix:











Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





















|d〉
|s〉
|b〉











=











|d′〉
|s′〉
|b′〉











. (1.33)

This matrix operates on the mass eigenstates (|d〉, |s〉, |b〉)T to give the weak eigenstates

(|d′〉, |s′〉, |b′〉)T . The agreement between GF from superallowed nuclear beta decays

and muon decay would have been rather poor if Vud were farther from unity. Because

Vud ≈ 0.974, there was apparent agreement, but there is no a priori reason why Vud

should be so close to unity.

The CKM matrix should be unitary if there are only three generations of quarks

and the weak interaction features only left-handed currents. Departures from unitar-

ity could signal right-handed weak currents or the existence of more quarks. The mea-

surement of Vud is important because it can be used in conjunction with measurements

of Vus and Vub (obtained from K and B meson branch measurements, respectively) to

test whether the first row satisfies unitarity, that is, to see if |Vud|2 + |Vus|2 + |Vub|2 = 1.

The set of all precisely measured superallowed nuclear beta decays currently yields the

most precise value of Vud, which is only possible because the nuclear beta-decay vector

coupling, GV , is constant to a few parts in 104. To emphasize the complications asso-

ciated with the hadronic processes, we note that such a precise determination of GV

and subsequently Vud [42] is only possible with carefully-calculated isospin-symmetry-
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breaking corrections and nuclear-structure dependent radiative corrections.

Another example of nuclear complications comes from the CVC hypothesis, which

predicts a shift in beta-decay energy spectra for transitions that are analogous to M1

electromagnetic transitions in nuclei. The electromagnetic interaction of an M1 tran-

sition has the form

−i µe
2M

σµνAµqνTz, (1.34)

in which σµν = (i/2)[γµγν − γνγµ], µ is the magnetic moment of the transition, qν is

the four-momentum of the photon, and Tz =
∑

i τz(i) is the total z component of the

isospin. By the CVC hypothesis, the analogous weak interaction matrix elements are

determined by substituting Tz → T± and Aµ → Jµ(qν), such that the electromagnetic

vector field becomes the weak lepton current. The isospin-rotated analog of the M1

transition is observable for certain Gamow-Teller tansitions. Since the isospin rotation

is equal and opposite for β+ versus β− decays, the form of the correction is equal and

opposite for β+ versus β− decays. Gell-Mann predicted the magnitude of the effect

based on a measured M1 γ-ray intensity in 12C and suggested a measurement [38]

of two mirror beta decays to the ground state of 12C, the β− decay of 12B and the β+

decay of 12N, so that additional corrections and systematic errors could be avoided.

This effect, known as the weak magnetism, was subsequently observed.

Whereas gA = gV = GF for the leptonic portion of the weak current, leading to the

relative simplicity of the V − A current as expressed in Equation 1.30, the hadronic

portion of the weak current takes a more complicated form. The weak magnetism is

just one of several possible recoil-order currents. Writing the most general Lorentz-

invariant, V − A form of the hadronic current for the simplest beta-decay process,

neutron beta decay, we find

〈p(p′)|Jµ|n(p)〉 = p(p′)
[

f1γ
µ − i

f2

mn
σµνqν +

f3

mn
qµ − g1γ

µγ5 + i
g2
mn

σµνγ5qν −
g3
mn

γ5q
µ
]

n(p).

(1.35)

CVC implies f1 = 1, f2 = (µp − µn)/2, and f3 = 0. µp and µn are anomalously large

because of the strong interaction. Complications due to the strong interaction also re-

sult in a change from g1 = 1 to g ≈ 1.25 in light nuclei. g2 and g3 are generally small,
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but not necessarily zero. The point is that compared to the simplicity of Equation 1.30,

even the simplest weak process involving hadrons includes the added complication of

the renormalization of g1. The interaction current becomes more complicated because

the (u, d) quark doublet that participates in the weak interaction is bound inside the

hadron. Nuclei are more complex, with multiple neutrons and protons, and all the com-

plications associated with the many-body problem. Calculations of matrix elements for

large nuclei can be very difficult. Studies of the weak interaction using neutrons offer

some advantages due to the fact that the neutron is the simplest hadron. Chapter 6

includes a calculation of the contributions of all the recoil-order hadron currents to the

correlation between the decay proton’s momentum and the decaying neutron’s spin.

1.6 Massive Neutrinos

Neutrinos were originally assumed to be massless. It is now widely accepted that there

are at least two non-zero neutrino masses. The mass eigenstates, by which free neutri-

nos propagate, are not exactly the same as the weak eigenstates by which they interact.

This situation is analogous to that of the quarks and the CKM matrix discussed in the

previous section.

What began as efforts to study solar processes using neutrinos evolved into studies

of neutrinos using the sun. Non-zero neutrino masses answered a great puzzle that

emerged from efforts to study solar neutrinos. Beginning with measurements [68]

pioneered by Ray Davis at the Homestake Mine in Lead, South Dakota, several exper-

iments over the course of decades observed a large deficit in the neutrino flux from the

sun, when compared with the flux expected from calculations. The Homestake Experi-

ment detected solar neutrinos using a 100,000 gallon tank of perchloroethylene (C2Cl4)

in the Homestake mine, nearly a mile underground. Neutrinos produced by fusion in

the sun, with energies greater than the threshold of Eν = 814 keV, would cause the

reaction

νe +37 Cl → e− +37 Ar. (1.36)

The argon produced by this reaction was captured by periodically bubbling helium gas
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through the tank. The experiment measured approximately one third of the flux ex-

pected from solar models. The results from both experiment and theory were rechecked

and the disagreement persisted. The recurring puzzle of the missing flux, known as

the “solar neutrino problem,” was solved by the physics of massive neutrinos.

The explanation for the missing electron neutrinos was that they had oscillated

into other types of neutrinos. Consider the matrix in Equation 1.33 again, but imagine

that it applies to neutrinos instead. We refer to the elements of the neutrino-mass-

mixing (MNS) matrix as Uαi; the mass eigenstates are denoted by i = 1, 2, 3, with νi

having mass mi, while the flavor eigenstates are denoted by the subscript α = e, µ, τ ,

corresponding to the three weak lepton doublets. This section uses notation in which

~ = c = 1 for simplicity. An electron neutrino created by fusion is a superposition of

the three mass eigenstates,

|νe〉 = Ue1|ν1〉 + Ue2|ν2〉 + Ue3|ν3〉. (1.37)

After creation, each mass component of the neutrino propagates according to

|νi(t)〉 = e−imiτ |νi〉, (1.38)

in which mi is the mass of νi and τ is its proper time. In the lab frame, the phase for

each mass eigenstate is given by

φi = miτ = Et− px, (1.39)

and to determine the observable oscillation probabilities it is necessary to evaluate the

relative phases,

δφij = φi − φj = (Ei − Ej)t− (pi − pj)x. (1.40)

If the neutrino interacts at distance L, we can assume that the time is given by the dis-

tance divided by the average velocity of the two mass components T = i(Ei+Ej)L/(pi+

pj). Corrections to this approximation only enter at O([(m2
i − m2

j)
2/E2]2) [61]. Then

one finds

δφij =

(

E2
i − E2

j

pi + pj
−
p2

i − p2
j

pi + pj

)

L ≈
(

m2
i −m2

j

2E

)

L, (1.41)
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where the approximation p̄ = E has been used in the last step. So for each mass

eigenstate, we multiply by a relative phase at distance L,

|νi(L)〉 = e−i(m2

i /2E)L|νi〉, (1.42)

and substitute these relative phases into Equation 1.37 for two flavors, α and β. The

probability for a neutrino created with flavor α to interact with flavor β depends on the

distance from its source:

P (να → νβ) = |〈νβ(L)|να(L)〉|2

= δαβ − 4
∑

i>j Re(U∗
αiUβiUαjU

∗
βj) sin2[1.27∆m2

ij(L/E)]

+2
∑

i>j Im(U∗
αiUβiUαjU

∗
βj) sin[2.54∆m2

ij(L/E)].

(1.43)

The coefficients 1.27 and 2.54 are derived from reinsertion of ~ and c, with ∆m2
ij ≡

m2
i −m2

j in units of eV2, L in km, and E in GeV. The important feature of this equation

is that a mass difference ∆m2
ij and an energy Eν determine the length scale L over

which neutrino oscillations are observable.

Matter effects are also important for the description of neutrino oscillations. Dubbed

the MSW effect for Mikheyev, Smirnov, and Wolfenstein, charged-current interactions

within matter affect only electron neutrinos and alter the components of the MNS ma-

trix that couple to electron neutrinos. Because of high densities of electrons in the

interior of the Sun (or Earth), electron neutrinos gain an effective mass, similar to

light in a medium with a high index of refraction. The effective mass of the electron

neutrinos is proportional to the density of electrons in the medium. Assuming that the

electron neutrino in vacuum involves two components, a large amplitude of a light com-

ponent |νL〉 and a smaller amplitude of a heavy component |νH〉, for high values of the

electron density it is possible for the electron neutrino’s effective mass to correspond

to the mass of the heavy neutrino, such that mνe(ρe) ∼ mH and |νH(ρe → ∞)〉 ∼ |νe〉.
If the electron neutrino is created in a high-density medium, like the interior of the

sun, and it propagates through the medium to lower electron densities adiabatically,

then it can emerge as a heavy neutrino at the low-density exterior. The heavy neutrino

results in flavor change if, for oscillation into muon neutrinos, |νH(ρe → 0)〉 ∼ |νµ〉.
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Adiabaticity of the level crossing requires that the density of the Sun be smooth on the

scale of the neutrino oscillation length. These matter-enhanced neutrino oscillations

offer an explanation of the missing solar neutrinos, even if the mixing angles in the

MNS matrix are too small for vacuum oscillations to explain the missing neutrino flux.

Apparently, the missing neutrinos changed flavor. Recently, measurements [18]

from the Sudbury Neutrino Observatory (SNO) experiment confirmed this answer, by

measuring the total neutrino flux of all flavors using neutral current detectors (NCDs).

The SNO experiment measured the neutrons generated when solar neutrinos (of any

flavor) inelastically scattered from deuterons by exchange of neutral Z bosons, break-

ing the deuterons into their constituent neutrons and protons. The neutrons were then

detected in the 3He-filled NCDs, which detected the 764 keV released to the p and 3He

from the reaction 3He(n, p)3H. The NCD measurements agreed with the predicted 8B

neutrino flux, confirming that approximately 2/3 of the 8B neutrinos created in the sun

reach the Earth with a different flavor.

Another piece of information about (and in fact, the first signal for) massive neu-

trinos came from atmospheric neutrinos created by cosmic rays. For cosmic rays with

energies ≤ 1 GeV, pions and kaons created by cosmic rays subsequently decay into

muons then electrons before reaching the surface of the earth. For the decay chain

π± → µ± → e±, one expects two muon neutrinos and one electron neutrino (see Equa-

tion 1.31). Detection of the ratio of atmospheric neutrinos, differing from the expected

ratio of muon to electron neutrinos of Nνµ/Nνe ≈ 2, has provided a probe for another

set of neutrino mass parameters. In this case, the oscillation is observed for distances

between zero and the diameter of the Earth, with different oscillation parameters as

a function of the neutrino’s zenith angle and energy. Incoming neutrinos can inelasti-

cally interact to produce muons or electrons, depending on the neutrino’s flavor. The

muons and electrons produce Cerenkov radiation, which leaves a signal for the incom-

ing neutrino’s flavor and direction. A direction-dependent deficit in muon neutinos is

observed. Once again, the deficit can be explained by flavor change, but this time the

neutrinos are posited to have changed into tau neutrinos, which lack enough energy

to produce the much heavier τ particle. Whereas the solar-neutrino mixing described
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yielded information about neutrinos at energies Eν ≈ 5− 15 MeV for a mass difference

∆m2
12 ∼ 8 × 10−5 eV2 from the Sun, observations of atmospheric neutrinos at energies

≤ 1 GeV indicate ∆m2
23 ∼ 2 × 10−3 eV2. The two mass differences allow two possible

arrangements of neutrino masses for three generations of neutrinos.

Neutrino oscillations have yielded information about neutrino mass differences and

mixing angles. It is also possible to directly measure the mass expectation value of the

electron neutrino by careful measurements of low-energy beta decays. The Karlsruhe

Tritium Neutrino (KATRIN) experiment aims to probe the electron neutrino mass by

carefully analyzing the beta-energy spectrum near the endpoint of tritium beta decay,

with projected sensitivity to a neutrino mass as low as 0.2 eV. Such a measurement

would fix the absolute scale of the neutrino masses.

The MNS matrix is of great interest, but determining its properties presents chal-

lenges. In addition to being characterized by mixing angles, there could also be CP -

violating phases. These CP -violating phases could help explain the matter-antimatter

asymmetry of the universe. Double-beta decay, which is described in the next sec-

tion, could lead to observations of two possible CP -violating phases in addition to

the one that could be observed by the conjugate neutrino oscillations νe → νµ and

ν̄µ → ν̄e. Should the MNS matrix fail to be unitary, it might indicate a fourth gener-

ation of neutrinos. The prospect of unknown neutrinos is interesting because of the

roles they would play in the missing mass of the universe and a host of astrophysical

processes [45]. We now turn to double-beta decay, which holds the potential to probe

neutrino mass, lepton number conservation, CP violation, and right-handed weak cur-

rents all at once.

1.7 Double-Beta Decay

While the existence of non-zero neutrino masses is now established, the fundamental

nature of the neutrino is still an open question. It cannot be excluded at present that

the neutrino could be its own anti-particle. This is a conspiracy between the chirality of

the weak interaction and the fact that the neutrino carries no charge. If the neutrino
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carried charge, then its antiparticle would have to carry the opposite charge. Fur-

thermore, were the weak interaction parity-conserving, the rarity of 0νββ decay would

already exclude the neutrino being its own antiparticle. But the parity-violating struc-

ture of the weak interaction allows the nature of the neutrino to remain ambiguous for

the moment. We now explore how double-beta decay might resolve this issue.

The process of 0νββ decay is only possible if the neutrino is its own antiparticle.

For instance, 0ν2β− decay can be considered in terms of two virtual interactions,

n→ p+ e− + ν̄e, (1.44)

followed by νe + n→ p+ e−. (1.45)

in which the neutrino produced as an antiparticle in the first virtual interaction must

act as a neutrino for the second virtual interaction. This process violates conservation

of lepton number. Even if we assume that the neutrino and antineutrino are identical,

the chirality of the weak interaction forbids 0νββ if the neutrino is massless. The

first virtual reaction produces a right-handed antineutrino. There will be zero overlap

between the left-handed neutrino required for the second virtual transition and the

right-handed neutrino produced in the first if the neutrino is massless.

Before discussing 0νββ decay in more detail, it is worth reviewing its well-established

relative, 2νββ decay. Experiments searching for 0νββ decay naturally measure 2νββ

decay in the process. 2νββ decays are among the rarest phenomena that have been

observed in nature. We can attribute the rarity of these decays to the fact that they

are described by a second-order perturbation in the weak interaction. Given the value

of GF ,

GF ≈ 10−5

m2
p

, (1.46)

in which mp is the proton mass, and the neutron lifetime,

τn ≈ 900 s, (1.47)

which will serve as the canonical beta-decay lifetime, we make a rough estimate of

double-beta decay lifetimes. Consider the 2νββ decay diagram shown on the left side
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Table 1.1: Selected 2νββ decay half-life measurements from Reference [25]

Isotope T 2ν
1/2 (years)

76Ge (1.7 ± 0.2) × 1021

82Se (10.3 ± 0.8) × 1019

100Mo (7.3 ± 0.4) × 1018

116Cd (2.9 ± 0.4) × 1019

150Nd (6.8 ± 0.7) × 1018

of Figure 1.4. It contains two vertices which each yield a factor ofG2
F , so overall there is

an extra factor of G2
F compared to single-beta decay. To make this constant dimension-

less, a factor of Q4 is necessary. Assuming Q = 1 MeV, the rate should be suppressed

compared to single-beta decay by a factor of |GF |2Q4 ≈ 10−22, from which one would

guess a lifetime

τ2νββ ≈ 1022τn ≈ 1018 years. (1.48)

Actual lifetimes tend to be longer, primarily because the four free final-state particles

of 2νββ put it at a disadvantage in terms of phase space. Nuclear matrix elements

must be less than unity, so they will tend to increase lifetimes too. Table 1.1 shows

some 2νββ half-lives that have been experimentally measured.

These lifetimes are large compared to the estimated age of the universe since the

big bang, t0 ≈ 14 × 109 years [47]. How can such a rare process be observed? Nu-

clear physics provides several possibilities. For a given mass number A, neighboring

nuclei with even numbers of both neutrons (N = A − Z) and protons (Z), known as

“even-even” nuclei, often both have lower ground-state energies than the intermediate

odd-odd nucleus. This recurring arrangement can be explained by the nuclear pair-

ing phenomenon. Even-even nuclei always have ground state spin zero; like nucleons

form pairs with net angular momentum zero, minimizing the magnetic moment of the

nucleus and resulting in a lower ground-state energy. Because the intermediate nu-
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Figure 1.4: Diagram for 2νββ decay (left) and 0νββ decay (right). Calculations for the

0νββ process are much more complicated because of the loop created by the Majorana

neutrino, νm
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cleus has a higher energy, the even-even parent nucleus is not susceptible to first-order

beta decay. Double-beta decay is the mechanism which connects the higher energy, or

mother, even-even nucleus with the lower energy, or daughter, even-even nucleus. See

Figure 1.1 for the A = 100 example of this scenario.

Without the stability of the parent isotope with respect to single-beta decay in these

double-beta decay scenarios, the detection of double-beta decay would be more difficult.

Even with the relative stability of the parent isotopes, double-beta decay experiments

seeking to place limits on or detect 0νββ decay must employ sophisticated background-

reduction techniques, including the placement of experiments deep underground to

shield them from cosmic radiation, high-purity fabrication techniques for detector com-

ponents, and techniques to refine discriminating power such as segmented detectors

and pulse-shape analysis (for example, see Reference [1]). There is much ongoing ex-

perimental effort toward measurements of double-beta decays, aiming to eventually

exclude or observe the neutrinoless mode.

For 2νββ decay, the decay rate can be obtained from Equation 1.4 with Mfi given

by

Mfi =
∑

m

〈100Ru|V |100Tcm〉〈100Tcm|V |100Mo〉
MMo − Eβ1 − Eν̄e1 − ETcm

, (1.49)

where the sum is over all states of the intermediate nucleus, in our case 100Tc. We

have written the decay rate in terms of the A = 100 system, but an analogous for-

mula applies very generally to systems that exhibit double-beta decay. The only al-

lowed transitions to first order in the weak current are Gamow-Teller decays, in which

V ∝ τ+σ+, so that transitions to states in the intermediate nucleus other than the 1+

states are suppressed by selection rules for isospin and spin. Additionally, the contri-

butions from the excited states of the intermediate nucleus will be suppressed by the

growing denominator in Equation 1.49. For these reasons, the single-state dominance

(SSD) hypothesis [24] suggests that for 2νββ decays in which the intermediate nucleus

has a ground state with spin-parity Jπ = 1+, the single-beta transitions involving the

ground state of the intermediate nucleus dominate the total 2νββ decay rates. There is

no special reason to expect the SSD hypothesis to be exactly true, but any destructive
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interference between the 1+ excited states of the intermediate nucleus would enhance

the dominance of the intermediate nucleus’s ground state in addition to the enhance-

ment due its smaller energy denominator. In the context of the SSD hypothesis, the EC

branch of the intermediate nucleus is very important, because it also determines the

matrix element for the first virtual transition in Equation 1.49. To the extent that SSD

is satisfied, it can be used to predict 2νββ decay rates to excited states of the daughter

nucleus that have not been measured.

Now we discuss the mechanisms that would give rise to 0νββ decay at a more tech-

nical level. Consider the diagram for 0νββ decay on the right-hand side of Figure 1.4.

The first vertex in the 0νββ decay corresponds to the standard weak electron current,

like the one given in Equation 1.27 during the discussion of parity violation. The sec-

ond vertex, however, requires the neutrino to interact as an antineutrino. Such a neu-

trino is called a Majorana neutrino, because Ettore Majorana first explored the possi-

bility that neutrinos could be their own antiparticles. These neutrinos arise in various

grand-unification theories and supersymmetric extensions to the Standard Model. In

terms of the Lagrangian density, such an interaction would require mass terms that

look like

LM ∝ML[ψ̄c
LψL + ψ̄Lψ

c
L] +MR[ψ̄c

RψR + ψ̄Rψ
c
R], (1.50)

compared to Dirac mass terms of the form

LM ∝MD[ψ̄RψL + ψ̄c
Lψ

c
R]. (1.51)

The mass terms of Equation 1.50 are forbidden for all other known fermions because

they violate conservation of charge.

The amplitude for the lepton portion of the 0νββ decay matrix element for a Majo-

rana neutrino of mass mν is

lρσ ∝
∫

d4pνe
−i~pν ·(~x−~y)ē(~x)γρ(1 − γ5)

/pν
+mν

p2
ν −m2

ν

(1 − γ5)γ
σe(~y), (1.52)

where the integral is over the virtual neutrino’s four-momentum pν and e(~y) and ē(~x)

represent the first and second electron-creation operators. Only the neutrino mass

can contribute to this decay amplitude, which follows from the anticommutation of the
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gamma matrices. If we move the projection operator on the left through the neutrino

propagator, the /pν
term changes the sign in front of γ5 and the product of the projection

operators on the right becomes (1 + γ5)(1 − γ5) = 0. The mass term involving mν , on

the other hand, does not change the projection operator and the product on the right

is (1 − γ5)(1 − γ5) = 2(1 − γ5); thus the decay amplitude is directly proportional to the

neutrino mass.

The denominator in Equation 1.52 can be rewritten and factored:

p2
ν −m2

ν = E2
ν − |~pν |2 −m2

ν = (Eν −
√

|~pν |2 +m2
ν)(Eν +

√

|~pν |2 +mν). (1.53)

The integral over Eν leaves only the residue 1/
√

|~pν |2 +m2
ν , ignoring multiplicative

constants, so the amplitude takes the form

lρσ ∝
∫

d3~pνe
−i~pν ·(~x−~y)ē(~x)γρ mν

√

|~pν |2 +m2
ν

(1 − γ5)γ
σe(~y). (1.54)

This form shows explicitly that 0νββ decay amplitudes are proportional to mν/Eν . An

average nucleon-nucleon separation of 2 fm implies, via the uncertainty principle, an

average neutrino momentum of 〈|~pν |〉 ∼ 100 MeV. For light neutrinos (corresponding to

the scale of the ∆m2
ijs observed from neutrino oscillations as described in Section 1.6),

this implies m2
ν ≪ |~pν |2, and decay amplitudes for this mechanism are heavily sup-

pressed because mν/Eν ∼ O(0.1 eV/100 MeV) ∼ 10−9. This heavy suppression of the

decay amplitude is why 0νββ decay is not yet excluded (or alternatively better ob-

served, except for one claim [54]). The total decay amplitude includes the sum over

all massive neutrinos. If they are all light relative to the virtual neutrino momentum,

the denominator for each mass is approximately equal, and the mass in the numerator

can be factored from the integral. The integral over the angular variables results in a

potential due to the virtual neutrino,

Vν(|~x− ~y|) ∝ 〈mν〉
|~x− ~y|

∫ ∞

0
d|~pν |

|~pν | sin(|~pν ||~x− ~y|)
√

|~pν |2 +m2
ν

. (1.55)

This potential must be included in the calculation of the nuclear matrix element, since

~x and ~y are vertex coordinates that involve the nucleons. The 0νββ nuclear matrix
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element involves the same energy denominator as Equation 1.49. If one completely ne-

glects the other terms (MMo−Eβ1−ETc ≪ 〈Eν〉) and substitutesMMo−Eβ1−Eν−ETc →
−
√

|~pν |2 +m2
ν , a first approximation to the neutrino potential with this denominator

from the matrix element included gives

Vν(|~x− ~y|) ∝ 〈mν〉
|~x− ~y|

∫ ∞

0
d|~pν |

| ~pν | sin(|~pν ||~x− ~y|)
|~pν |2 +m2

ν

∝ 〈mν〉
e−mν |~x−~y|

|~x− ~y| , (1.56)

which is the famous Yukawa potential for the exchange of mesons, but now in terms

of a neutrino! Heavy neutrinos are also possible and not yet excluded, but will not be

discussed here.

Because of the non-Standard Model physics it requires, 0νββ decay holds great

interest as a probe of fundamental symmetries for guidance toward new physics, but

its complicated structure introduces interpretive difficulties. Firstly, it is suppressed

by the chirality of the weak interaction. Based on the argument given above, the

simplest approximation to the decay rate can be written

Γ(0νββ) =
2π

~

dN

dEf
|M(0νββ)|2〈mν〉2, (1.57)

in which 〈mν〉2 is based on the light neutrino approximation. The proportionality to

〈mν〉 reflects the fact that only a Majorana mass term for the neutrino will contribute

to the decay if the interacting current is purely left-handed. Based on the sum over

neutrino masses performed to write the potential in Eequation 1.55, 〈mν〉 is the effec-

tive neutrino mass, given by

〈mν〉 =
∑

i

λc∗
i UeiUei(mν)i. (1.58)

The Uei once again mix neutrino masses, but this form for the effective neutrino mass

stresses possible CP violation. All λc∗
i can be expressed as ±1 up to an unimportant

overall phase if CP is conserved. In this case, each pair of mass eigenstates would in-

terfere perfectly constructively or destructively. The virtual neutrino forms a loop (see

the right-hand diagram in Figure 1.4) and a calculation of the 0νββ decay rate requires

a sum over its possible spins and an integral over its undetermined momentum. Be-

cause of the loop, unlike the 2νββ case where the 1+ states in the intermediate nucleus
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dominate, every combination of spin-parity in the intermediate nucleus contributes to

the matrix element.

Equation 1.57 demonstrates the necessity of accurate knowledge about the nu-

clear matrix elements to extract information about the effective neutrino mass and

CP phases. The calculation of M(0νββ) is a formidable task. For large numbers of

nucleons and nuclei farther from closed shells, nuclear shell model calulations are un-

wieldy. The alternative that is widely present in the literature is the proton-neutron

quasiparticle random phase approximation (pnQRPA, hereafter referred to as QRPA).

The QRPA includes two interaction parameters that characterize the proton-neutron

coupling strengths, the particle-hole coupling strength gph and the particle-particle

coupling strength gpp. gph is widely used to fix the observed location of the Gamow-

Teller giant resonance (GTGR), where most of the transition strength resides. Then

gpp is left a free parameter which can be tuned to reproduce experimental observables.

The problem is that within this framework, the QRPA is not able to reproduce the β−,

EC, and 2νββ decay strengths simultaneously, which raises questions about its relia-

bility for calculations of the more complex M(0νββ), which involves states of all Jπ in

the intermediate nucleus instead of only Jπ = 1+. There are also arguments that none

of the Jπ terms except for Jπ = 1+ show much dependence on gpp and that other Jπ

terms dominate M(0νββ). Nevertheless, it is important to test these models as much

as possible to ensure reliable limits on, or extractions of, new physics parameters from

0νββ decay experiments.

In terms of the A = 100 system, a recent experiment [5] placed a limit for 100Mo

of T (0νββ) > 4.6 × 1023 yr, from which a limit was placed on the effective neutrino

mass of 〈mν〉 < 0.7 − 2.8 eV. The broad range in the corresponding effective neutrino

mass is due to uncertainties in the nuclear matrix element. The heavy interest in the

search for 0νββ decay requires equivalent efforts from the nuclear structure side for

maximum insight into the results of double-beta decay experiments.
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1.8 Solar Neutrino Detector

The Sun frees the energy that sustains life on our planet by converting protons into

strongly-bound helium nuclei. This energy is transferred to the Earth by electromag-

netic radiation. The pp chain (see Figure 1.5) is responsible for most of the energy

released in our Sun, and its net effect is

4p+ 2e− →4 He + 2νe + 26.7 MeV. (1.59)

Although the energy transferred to the Earth is mostly electromagnetic, neutrinos

provide the best test of our understanding of the Sun. This is because the Sun emits

light as a blackbody; on average, a photon near the center of the Sun takes tens of

thousands of years to make the random walk to the surface. Neutrinos, on the other

hand, exit the sun (effectively) at the speed of light, with a total flux of approximately

1011 cm−2 s−1 neutrinos reaching the Earth.

The neutrinos that comprise > 99% of the neutrino flux from the sun come with

energies Eν < 5 MeV. These neutrinos have been observed with radiochemical tech-

niques, but real-time spectroscopic observations are just beginning. The Borexino de-

tector [17] at Gran Sasso is now taking data on the 7Be neutrino flux from the ppII

chain. The detection of the lower energy (Emax
ν = 860 keV) neutrinos will provide a test

of the (MSW) matter effects that have been used to explain the missing 8B neutrino

flux. There could be surprises waiting at the lower energies of the pp chain neutrino

spectrum.

The small Q value for 100Mo neutrino capture, QEC = 168 keV, is ideal for detecting

low-energy neutrinos, with the potential to detect even the Emax
ν = 420 keV neutri-

nos from the p + p →2H+e+ + νe reaction. This detection would take place via the

coincidence between the electron released upon neutrino capture,

νe +100 Mo →100 Tc + e−, (1.60)

and the subsequent beta-decay electron from 100Tc:

100Tc → e− + ν̄e +100 Ru. (1.61)
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Figure 1.5: Schematic of pp chain reactions based on Reference [7]
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Currently, we know of no plans to build such a detector. One obstacle is the large

2νββ decay background (see Table 1.1). It is not possible to avoid the background

associated with 2νββ decay by means of shielding. Nevertheless, our measurement of

B(EC) provides useful information should someone devise a viable method to separate

double-beta decay events from neutrino-capture events in a Mo detector.
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Chapter 2

DESIGN AND APPARATUS

A measurement of the EC branch of 100Tc presents several difficulties. Its short

half-life, t1/2 ≈ 15 s, makes it necessary to create it via a nuclear reaction, extract it

from the various reaction products, and measure its decay quickly. The same nuclear

physics mechanisms used to create 100Tc also result in contaminants that complicate

the measurement. The predominant mode of beta decay to 100Ru (see Figure 2.1),

occurring > 99.99% of the time, results in low-energy backgrounds associated with

beta particles and electrons from Compton scattering of γ rays. These backgrounds

make it more difficult to observe the x rays emitted by 100Mo after EC decays.

2.1 Contaminants

Our production mechanism for 100Tc is the reaction 100Mo(p, n)100Tc. Competing reac-

tions, for example 100Mo(p, 2n)99Tc, create unwanted contaminants.

The only direct measurement of the EC branch of 100Tc published to date [36] used

a He-jet system to move the reaction products to a tape, monitored γ rays from several

contaminating radioactive Tc isotopes, then subtracted their calculated contribution to

the Mo x rays, which are the signature for the EC of 100Tc, but can also be generated by

the decays of numerous contaminants. The precision of such a procedure is limited by

the precision of the branch measurements in the decay schemes of the contaminants.

Figure 2.2 shows a γ-ray spectrum from a previous experiment that attempted to

avoid contamination with the mass-resolving power of a dipole magnet, plus periodic

movement of a tape-drive target to keep long-lived contaminants to a minimum. The

Eγ ≈ 140-keV γ ray from the t1/2 ≈ 6 h isomer of 99Tc is visible.

Figure 2.3 shows an x-ray spectrum from the same experiment. The spectrum has

been vetoed with a planar scintillator placed between the target and the Ge detector,
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Figure 2.1: 100Tc decay scheme: there is a large low-energy background due to energy

deposition by beta particles from decays to 100Ru, bremsstrahlung from the beta par-

ticles, Ru x rays created by internal ionization and excitation from beta decays and

internal conversion of γ rays, and Compton scattering of the γ rays.
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Figure 2.2: 100Tc γ-ray spectrum with 99Tc contamination. The funny bumps above all

three γ rays in the spectrum are from summing that came with overflow from the ADC

channel receiving the more amplified x-ray signals. Their problematic presence was

removed in later experiments by adding a Zener diode in parallel to the signal.
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Figure 2.3: 100Tc x-ray spectrum with 99Tc contamination: the dominant Ru and Tc x

rays are present despite beta-decay veto with a planar scintillator to reduce Ru decays

and periodic movemement of the tape upon which the activity was deposited to reduce

the presence of t1/2 ≈ 6 h 99Tcm.

but such a geometry can veto 50% of the beta-decay events at most. The Ru and Tc x

rays make it more difficult to resolve the Mo x rays by which we want to measure the

EC branch.

To avoid all possible contaminants, we opted to use the resolving power of a Penning

trap. The experiment was performed using the IGISOL [6, 50] facility at the Univer-

sity of Jyväskylä in Finland. A proton beam delivered from the K130 Cyclotron with

kinetic energy Ep = 10 MeV and intensity of I ≈ 24 µA impinged on a ρ ≈ 500 µg/cm2-

thick, 97.4%-enriched 100Mo target which was placed in an ion guide with helium at

p ≈ 100 mbar. The 100Tc ions recoiled into the helium where they thermalized and

the fraction that remained ionized were subsequently extracted from the gas cell. All

ions were electrostatically guided through an RF sextupole ion beam guide while the
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neutral gas was differentially pumped away. Finally, the ions were accelerated toward

the mass separator at an electrostatic potential of φ ≈ 30 kV.

The A = 100 component of this beam was roughly separated by a magnet with a

mass resolving power of M/∆M ≈ 250, after which it was cooled and bunched in a

linear segmented RFQ trap [63]. The bunched beam was introduced into a Penning

trap in a 7-T magnetic field with a helium buffer gas, in which isobaric purity was

achieved by means of a mass-selective buffer gas cooling technique. These separation

and purification techniques are explained with greater detail in Chapter 3.

2.2 4π Scintillator

To minimize backgrounds, the goal was to make a scintillator that would veto all beta-

decay events. Another goal was to maximize the number of events detected by the

Ge detector. It was possible to achieve these two goals simultaneously by introducing

the 100Tc+ ions directly into a scintillator with a cylindrical bore. The hollow cylinder

was given a length (≈ 4.8 cm) much longer than its diameter (≈ 0.95 cm) to maximize

the scintillator’s geometrical efficiency. A thin wall at the closed end of the cylinder

allowed the activity to be placed very close to the Ge detector, maximizing photon-

detection efficiency.

Figure 2.4 shows the setup. The purified A = 100 beam was extracted from the trap

and implanted inside a scintillator designed to achieve > 99% coverage while allowing

the target to be as close as ≈ 0.32 cm to a Ge detector. A hollowed cylinder within the

scintillator held vacuum as part of the same volume as the Penning trap. Ions from the

trap stopped in a ≈ 25 µm-thick aluminum foil that was inserted into the scintillator.

A 6 mm-diameter collimator mounted on the foil holder prevented deposition of ions

onto the sidewalls of the cylinder inside the scintillator.

The thickness of the thin plastic scintillator wall at the end of the cylinder was

more than enough to withstand stresses due to vacuum on the inside of the cylinder

and atmospheric pressure on the outside, but was very small compared to the ≈ 2.5-

cm diameter of the Ge crystal. In this geometry, the front of the Ge crystal can cover
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Figure 2.4: Experimental setup: 100Tc ions were deposited onto an aluminum foil in-

side the scintillator. The beam was tuned by triggering on the scintillator. The scin-

tillator allowed veto of > 90% of beta-decay events. The foil target in which the ions

stopped was only separated from the Ge detector by the ≈ 0.32 cm-thick face of the

scintillator to maximize photon-detection efficiency.
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≈ 17.7% of 4π steradians. Design drawings of the scintillator and its support apparatus

are included in Appendix E.

The scintillator was machined from a 2-in. thick sheet of organic plastic scintillator.

We chose BC-408 (polyvinyltoluene-based plastic) scintillator from Saint-Gobain based

on cost and performance. The two casted surfaces of the scintillator came with a very

fine polish. Our machinists at CENPA took great care not to damage the delicate

plastic of the scintillator while machining it. Precautions employed for handling the

scintillator included the use of gloves to avoid contamination by harmful oils from the

skin, the use of deionized water with soap in place of machining oil, and very slow

machining to prevent creating too much heat and causing crazing in the plastic.

To maximize the scintillator’s efficiency, we hand-polished the five surfaces that had

been machined to optimize internal reflection of light created within the scintillator.

The scintillator was polished by hand in eight steps, using progressively finer grits of

Micro-Mesh cushioned abrasive polishing cloths. A smooth, clean granite slab provided

a flat surface for polishing. Diluted detergent in deionized water provided lubrication.

The cloths and polishing slab were rinsed several times during each step in the process,

to remove the slurry created by the polishing process. The scintillator was also rinsed

with deionized water and examined under a lens to monitor progress along with each

rinse. The final polish produced a reflective surface of only slightly lower quality than

the sole unmachined surface of the scintillator, which retained its polish from casting.

Figure 2.5 shows the scintillator after polishing.

2.3 Phototube Mounts

A preliminary version of the experiment used optical glue to couple the PMTs to the

scintillator. We glued the PMTs to the scintillator in Seattle before performing tests

on the electronics and scintillator. The bonds failed during shipment to Finland, the

PMTs had to be reglued at Jyväskylä, and we found that one PMT was not functioning

during the preliminary run in November 2006.

To prevent the recurrence of this catastrophe, we designed a support system for the
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Figure 2.5: The scintillator, freshly polished and glued to its aluminum backing. Note

the two reflections of the central cylindrical bore.
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Figure 2.6: PMT mounting setup: the annular backing (far right) holds the PMT in

place and fits over the BNC and SHV connections, while still allowing the base to have

rotational freedom.

PMTs and achieved optical coupling with optical grease instead of glue, so that PMTs

could be easily removed and replaced, if necessary. This detachable system also made

the experiment more modular for shipment.

Figure 2.6 shows the PMT mounting system. The PMT mounting system was based

on a frame mounted to the scintillator’s aluminum backing with two threaded rods.

Two more threaded rods held each PMT in place with backings designed for the PMT

bases. Each PMT backing consisted of an annulus with an outer lip on one side and

two tabs with holes for the threaded rods. The annuli were necessary to give the PMTs

rotational freedom with the backing in place, while maintaining accessibility to the

BNC signal outputs and SHV connections for the bases. Better optical coupling could

be achieved by rotating the PMTs under pressure to remove bubbles from between the

PMT and scintillator. Springs were placed between washers between the PMT back-

ings and the nuts that tighened them, to keep the support from being too rigid for the

possibly fragile glass PMTs. The support system is visible as part of the experimental

setup in Figure 2.7.



4
3Figure 2.7: This picture shows the fully assembled experimental apparatus. The foil is visible in the scintillator. The

scintillator is attached to the vacuum system from the Penning trap. The Ge detector abuts the front of the scintillator.

The assembly is contained in a box built to prevent background light from reaching the phototubes.
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2.4 Foil System

A special foil-holding system prevented possible contamination of the scintillator and

allowed a diagnostic check on beam deposition into the scintillator. A copper guide,

machined to snugly slide into the scintillator’s aluminum backing, guided aluminum

foils into the scintillator. Aluminum foils were cut using a template. An aluminum

dowel turned on a lathe provided support to roll the foils into cylinders, then glue

them together with a circular end piece in place. This process required finesse. It

was important for the dowel to be significantly longer than the foil, not to give the foil

too much tension before gluing, and to place the foil on the copper guide squarely so

that it would enter the scintillator without getting caught on the constriction in the

aluminum backing. Figure 2.8 shows a foil being prepared with a radioactive solution

of 134Cs on it. Figure 2.9 shows the same foil on the copper guide.

Options to wrap the scintillator with reflective alumized mylar or coat it with some

type of paint to make it light proof were considered initially, but the delicate foils

required monitoring upon insertion to be sure that they reached the end of the bore in

the scintillator. Instead, we built a wooden box to sheild the scintillator from light. It

was painted black and the lid was covered with black velvet to provide more shielding

from light.

There were concerns that light would not reach the phototubes efficiently from the

thin wall at the end of the cylindrical bore in the scintillator. To test this, a collimated

134Cs source was placed between the scintillator and the Ge detector. Coincidence

spectra were taken, requiring a γ ray in the Ge detector. No difference was observed

between coincidence spectra taken with the source directly in front of the thin portion

of the scintillator and coincidence spectra taken with the source placed to either side

of the thin portion of the scintillator.

In Chapter 4, we will show that the scintillator was > 95% efficient for detection of

beta decays from 100Tc, so the polish and light-tight box were adequate. Figure 2.10

shows the output from one of the PMTs for two beta-decay spectra obtained during the

experiment.
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Figure 2.8: 134Cs calibration source foil preparation. First, the aluminum foil was cut

to a template made for the scintillator. Then a small amount of solution with 134Cs was

carefully placed on the foil in a fume hood (seen here), where the solution evaporated,

leaving 134Cs on the foil. Tape was placed over the radioactivity left from the solution,

then checked to determine that the source was safely sealed. Then the foil was rolled

on a specially-turned dowel and placed on a copper guide, as shown in Figure 2.9.
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Figure 2.9: An aluminum foil rolled and placed on the copper guide. The foil fits into

the hollow cylinder in the scintillator. The diameter of the copper fits snugly into the

scintillator’s aluminum mount to guide the foil into place.
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Figure 2.10: Spectra from one PMT for 100Tc and 92Tc. The 100Tc spectrum, in black,

is dominated by beta decays with endpoint E0 = 3.2 MeV and intensity Iβ = 93%. The
92Tc spectrum, in red, is dominated by 4.1 MeV positrons with Iβ = 88%. In addition to

the larger endpoint energy, the positrons are shifted to higher energies by the Coulomb

interaction, while the 100Tc beta particles are shifted to lower energies by the Coulomb

interaction.
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Prior to the preliminary run, there were concerns that the ≈ 7.6 mm diameter of

the copper guide for its ≈ 8.4 cm length would not allow the beam to pass into the scin-

tillator. Depositing the beam into the scintillator from the trap posed no problem. The

scintillator itself proved to be an ideal tuning mechanism, because of its highly effi-

cient detection of beta-decay events. The beam optics between the trap and scintillator

could be tuned to maximize the decay rate observed by the scintillator.

The foils could be removed should accidental contamination of the beam occur. The

foils also allowed us to check that the activity was only being deposited at the end of

the cylindrical bore. Activity spread along the sides of the cylindrical bore would make

calibrations more difficult and less dependable.

The distribution of the deposited activity was tested by implantion 99Tc. After im-

plantation, the foil was removed, cut into pieces, then the end and sides of the foil were

monitored for the Eγ ≈ 140-keV γ rays from the t1/2 = 6.02 h isomeric state. With a

6 mm-diameter collimator in place, activity was only found on the end of the foil.

2.5 Data Acquisition

A sketch of the counting setup is shown in Figure 2.4. A p-type, 1 cm-thick, 25 mm-

diameter Ge (LEPS) detector abutted the scintillator. The LEPS detector had an en-

ergy resolution of FWHM≈ 420 eV at Eγ ≈ 17 keV and a solid angle of 17.7% of 4π

with the Ge detector abutting the scintillator. The scintillator detector, which pro-

duced signals from beta particles emitted in the decay to 100Ru, enabled efficient veto

of backgrounds from low-energy beta particles and Ru x rays in the x-ray detector. Sig-

nals from the scintillator were read with two PMTs optically coupled to opposite faces

of the scintillator perpendicular to the beam axis.

We produced two amplifications of the Ge detector signal: one with high gain, to

observe the x rays with sufficient resolution, and one with low gain to measure γ rays.

With every event, we recorded these two signals, the amplitudes of the signals from

two phototubes on the scintillator, and TAC signals between x rays and either photo-

tube. Any signal with amplitude larger than 2.4 keV in the x-ray detector triggered
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Figure 2.11: This is a picture of the full setup assembled and taking data in Finland.

The beam comes from the Penning trap on the left. The scintillator and phototubes are

in the light-tight box. The Ge detector enters the box and abuts the scintillator. Lead

shielding is placed around the Ge detector to minimize backgrounds.

data acquisition. One signal from every 999 scintillator signals also triggered data

acquisition, to allow an independent measurement of the number of decays. The ap-

paratus was placed in a box to shield the phototubes from ambient light. Figure 2.11

shows the setup with the experiment in progress.

Figure 2.12 is a schematic diagram of the electronics system for data acquisition.

Only one of two PMT signals have been drawn for simplicity. A logical OR was applied

between both PMT signals going into the discriminator, which then provided a signal

for both the 1 µs TTL and the 19 µs delay. The amplitudes of both PMT signals were

also recorded. A 100 µs dead time was imposed upon the gate in hardware to ensure

that no later events would interfere while the ADC and computer were busy processing

an event. An OR was applied between the signal from the PMTs that was divided by

999 and the raw x-ray triggers, to generate the ultimate gate.
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Chapter 3

ION TRAPPING TECHNIQUES

3.1 Ion Traps

Ion traps use special arrangements of electromagnetic fields to spatially constrain ions.

In the absence of a buffer gas, the motion of an ion in such a trap depends solely upon

its charge-to-mass ratio,
q

m
. Two ion-trapping techniques provided our experiment

with an isobarically pure beam of mass A = 100: a radiofrequency quadrupole (RFQ)

mass filter (one manifestation of a Paul trap) and a Penning trap. Paul traps use RFQ

electric fields to create a potential with a time average that is effectively a binding

harmonic well for ions with the selected
q

m
. Penning traps combine a large magnetic

field to trap ions in the plane perpendicular to the field with a weak, static electric field

to constrain them in the direction of the magnetic field.

Ion traps have numerous applications in science and industry. Residual-gas analyz-

ers (RGAs) ionize gas molecules and use RFQ fields to detect trace amounts of residual

gases in vacuum systems. For example, one can locate leaks in vacuum systems by

introducting helium gas near possible leak sources while monitoring the amount of

helium in the system with an RGA. These RGAs also monitor impurities during semi-

conductor fabrication. RFQ mass spectrometry techniques are also applied to chem-

istry, forensics, and quantum computing. The most important RFQ application for our

experiment was to take a beam of ions, cool and bunch it in a helium buffer gas, and

improve its optical properties for efficient transport in the Penning trap.

Penning traps facilitate high-precision measurements of frequencies. These fre-

quencies are directly related to the trapped particle’s mass and magnetic moment.

Precise measurements of these quantities lead to cutting-edge tests of physics at the

most fundamental level. More precise mass measurements reduce uncertainties in Q

values for nuclear beta decay, leading to a reduction of the uncertainty in the value
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of the Vud element of the CKM matrix derived from 0+ → 0+ transitions [22]. Mea-

surements of multiple eigenfrequencies in Penning traps probe the relative strength of

the particle’s orbital and spin magnetic moments, giving their g factors; this technique

applied to both particle and antiparticle in the same trap tests CPT invariance [53]. A

Penning trap experiment is in progress [65] which will reduce the uncertainty in the Q

value for 3H→3He beta decay, important for the planned direct νe mass measurement

of the KATRIN experiment [64, 31].

Penning traps are also powerful tools for nuclear spectroscopy, with mass-resolving

power that allows for separation of all contaminants, even isomeric states. This chap-

ter only aims to describe the techniques used for isobaric beam purification at IGISOL

for the 100Tc EC branch experiment; for more thorough overviews of ion trapping tech-

niques and their applications in nuclear physics, see the references [11, 10].

Another branch of ion-trapping techniques now establishes the most precise stan-

dards for chronometry. An atomic clock using laser-cooled 87Sr ions in a lattice recently

achieved a frequency standard with a fractional uncertainty corresponding to one sec-

ond in more than two billion years [12].

3.2 IGISOL Facility

The cyclotron-based facility at the University of Jyväskylä in Jyväskylä, Finland pro-

vided us with an isobarically pure beam of mass A = 100, with approximately equal

amounts of stable 100Mo and the radiactive isotope of interest, 100Tc. This was achieved

using both the Ion Guide Isotope Separator On-Line (IGISOL) and the purifaction part

of their Penning trap system, which is known as JYFLTRAP. A beam of protons with

kinetic energy Ep= 10 MeV from the K130 cyclotron impinged upon a thin molybde-

num foil enriched to 97% in 100Mo. Recoil ions from the resulting nuclear reactions,

including 100Tc from 100Mo(p, n)100Tc, were extracted from a gas cell and electrostati-

cally guided through an ion guide, then delivered to the RFQ mass filter, where they

were cooled and bunched. After the RFQ mass filter, the beam was delivered to the

purification Penning trap in pulses, from which the isobarically pure beam was ex-
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tracted and delivered to our experimental setup. Figure 3.1 shows the layout of the

IGISOL/JYFLTRAP facility. The following sections of this chapter describe each part

of this process in more detail.

3.3 Ion Guide Isotope Separation

To use the power of ion-trapping techniques, first it is necessary to provide the desired

ions. The IGISOL technique provides fast (. 1 ms) extraction of primary recoil ions

from a nuclear reaction. The first development of this technique took place at Univer-

sity of Jyväskylä in the early 1980s [3]. This technique is powerful both because it is

chemically insensitive and because it obviates a dedicated ion source by utilizing the

natural ionization mechanisms of the nuclear reaction. The resulting rapid extraction

enables studies of radioactive isotopes with short half-lives, reaching all the way down

to the millisecond level.

Figure 3.2 illustrates the IGISOL technique. An energetic beam of charged parti-

cles from the K130 cyclotron impinges upon a thin target and causes nuclear reactions.

The reaction products recoil into helium gas, where they undergo collisions and reach

thermal equilibrium; a fraction of the reaction products remain singly charged. The

helium gas and ions flow through a nozzle toward vacuum due to differential pumping.

An extraction electrode on the vacuum side of the separator attracts the ions and a

beam of ions emerges with the energy of the extraction potential.

After extraction, the ions pass through an analyzing magnet with mass resolving

power
M

∆M
≈ 250. This resolving power is enough for significant isobaric separation,

but not to the level of purity desired for our 100Tc EC branch measurement. The sepa-

rated ions pass through an electrostatic lens and enter the two-dimensional Paul trap

of the RFQ mass filter.

3.4 RFQ mass filter

The RFQ mass filter prepares the beam for efficient introduction into the Penning

trap [63]. The ions undergo cooling in a buffer gas in a linear segmented RFQ trap
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Figure 3.1: The IGISOL/JYFLTRAP layout. Beams from the K130 cyclotron enter via

the upper right beamline (1), then impinge on a thin foil target (2). Recoil ions are

accelerated perpendicular to the cyclotron beam (down and right in the figure) and

bend through a dipole magnet (3). After the first dipole magnet, the beam is either

delivered directly to nuclear spectroscopy experiments, or redirected via another dipole

magnet (4) to the RFQ mass filter and Penning trap (5).
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Figure 3.3: Beam’s-eye view of RFQ mass filter: The four electrodes shown are cross

sections of cylindrical rods.

with three segments to allow for bunching.

The RFQ mass filter has three segments, each a two-dimensional Paul trap with

its own DC voltage. Two-dimensional Paul traps consist of four hyperbolic electrodes

with cylindrical symmetry. (In practice, circular rods approximate hyperbolae well

enough for many applications.) Each electrode is 180◦ out of phase with its nearest

neighbors (Figure 3.3). The ions for which the RFQ filter is tuned see a restoring force;

imagine an ion moving in a roughly circular path, being pushed toward the center by

one electrode, only to arrive near the next electrode when the potential has oscillated so

that it is pushed toward the center again. A time-dependent potential Φ0(t) applied to

the electrodes as shown in Figure 3.3 leads to an effective harmonic restoring potential

for ions with the desired
q

m
:
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Figure 3.4: 3D view of an RFQ mass filter, taken from [23].

Φ(~r, t) =
Φ0(t)

2

(x2 − y2)

r20
, (3.1)

Φ0(t) =
1

2
(Udc + Vrf cos(ωrf t)), (3.2)

Veff =
q

m

(

Vrf

r20ωrf

)2

r2. (3.3)

Vrf , Udc, and ωrf determine which ions stay centered and which ones are deflected

to the side of the guide. Only ions with a small range of values of
q

m
see the harmonic

restoring potential Veff (Equation 3.1). Figure 3.4 shows a three-dimensional view

of an RFQ mass filter. The ion-focussing properties of a Paul trap are analogous to
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those of an optical system with an alternating series of convex and concave lenses. The

RFQ frequency and voltage play the same role as the spacing between lenses and their

indices of refraction.

The RFQ mass filter segments at JYFLTRAP feature four cylindrical electrodes,

with diameters of 2.3 cm and lengths of 40 cm. Amplitudes and frequencies of approx-

imately 100 V and 500 kHz create an effective trapping potential with a depth on the

order of 10 V. The ions lose energy in collisions with a helium buffer gas until they

come to rest in the axial potential well of the mass filter created by the DC voltages

applied to the segmented electrodes (see Figure 3.5). The mass filter reduces the en-

ergy spread from 80 to 1 eV in a total time of 1 ms. By creating a bunched beam with

very low energy spread, the RFQ makes it possible to load the beam into the Penning

trap with very high efficiency.

3.5 Penning trap

Penning traps are relatively simple systems which open many research avenues due

to the myriad ion manipulation schemes they afford. The tandem Penning trap system

at University of Jyväskylä measures masses and Q-values of rare isotopes with unsur-

passed precision. The tandem Penning trap at Jyväskylä also offers rapid (∼10 ms)

mass resolution as powerful as
M

∆M
≥ 104 for spectroscopy experiments, using a mass-

selective buffer gas cooling technique. Isobaric purification requires only a short period

of time in a buffer gas plus quadrupole excitations; more complex time-dependent ex-

citation schemes can achieve isomeric purification.

It is rewarding to understand the simple elegance of a Penning trap. First consider

a classical description of the simplest implementation of a Penning trap. Ions are

constrained to cyclotron motion in two dimensions by a large magnetic field. The result

is circular motion at the cyclotron frequency, ωc, with a radius proportional to the ion’s

radial kinetic energy, Ekr.
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Figure 3.5: An electrostatic lens, held at φ ≈39.9 kV so that the ions enter the RFQ
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segments for both bunching and release.



59

−→
B = Bẑ (3.4)

ωc =
q

m
B (3.5)

rc =

√

2mEkr

ωc
(3.6)

An electrostatic potential traps the ions in the axial (z) direction. Because the

potential must satisfy Laplace’s equation, the electrostatic field also has an azimuthal

component. The equipotentials that meet these criteria are hyperboloids of revolution,

which give the desired potential well in the axial direction and retain symmetry in the

azimuthal plane.

Φ(z, r) =
Φ0

2d2
(z2 − r2/2) (3.7)

d =
1

2

√

2z2
0 + r20 (3.8)

z±(r) = ±
√

z2
0 + r2/2 (3.9)

r(z) =
√

2z2 + r20 (3.10)

Electrodes of the form z±(r) and r(z) satisfy boundary conditions to create the de-

sired potential, Φ(z, r). The factor of 2d2 in the denominator ensures that the potential

difference between the ring electrode, r(z), and the endcaps, z±(r), is equal to the

applied potential difference, Φ0. Figure 3.6 shows a cross-section profile of the hy-

perboloids of revolution in the ideal Penning trap geometry. JYFLTRAP and other

accelerator-based traps now use a more complex cylindrical geometry without endcaps

(see Figure 3.7). This geometry is much more convenient for the introduction and ex-

traction of ion beams. Many segments, specially designed with different lengths and

potentials, give the ideal field in a small, central volume.

The Lorentz force equation applied to the resulting field gives coupled motion in
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Figure 3.6: Electrode configuration for an ideal Penning trap with electrodes of the

hyperbolic from described in Equation 3.7, where z0=1 cm, r0=
√

2 cm, and d=1 cm. Real

Penning traps feature correction electrodes to account for the fact that the hyperbolic

electrodes don’t extend to infinity.
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Figure 3.7: The configuration of the cylindrical tandem Penning trap used at

JYFLTRAP, adapted from [23]. This configuration allows for easy introduction and

extraction of ions. The magnetic field points along the dot-dashed line that is the cen-

tral axis. Each trap is comprised of one central, eight-fold segmented electrode, a pair

of endcap electrodes, and two pairs of smaller correction electrodes between the central

electrodes and endcaps. The bunched ion beam from the RFQ cooler enters through

the 4 mm diaphragm on the left. The purification trap is centered at the intersection

of dot-dashed lines on the left; this region is filled with helium buffer gas at p ∼ 10−4

mbar. The 2 mm diaphragm between the purificaton trap and the precision trap serves

both to keep the buffer gas from diffusing into the precision trap and to prevent con-

taminant ions at larger orbital radii from exiting the purification trap.
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the azimuthal plane and decoupled motion in the axial direction.

z̈ = − q

m

(

Φ0

d2
z

)

= −ω2
zz (3.11)

ẍ =
q

m

(

Φ0

2d2
x+Bẏ

)

=

(

ω2
z

2
x+ ωcẏ

)

(3.12)

ÿ =
q

m

(

Φ0

2d2
y −Bẋ

)

=

(

ω2
z

2
y − ωcẋ

)

(3.13)

The use of a complex variable to describe the azimuthal motion gives two decoupled

solutions. Substitute ~r = x + iy = re−iωt into Equation 3.11 and two eigenfrequen-

cies, ω±, emerge. The eigenmode with larger frequency (ω+) and smaller amplitude is

known as reduced cyclotron motion; the eigenmode with smaller frequency (ω−) and

larger amplitude is known as magnetron motion.

~̈r = −ω2~r (3.14)

= ẍ+ iÿ =
ω2

z

2
~r − iωc~̇r (3.15)

→ ω2 − ωωc + ω2
z/2 = 0 (3.16)

ω± =
ωc ± ω1

2
(3.17)

ω1 =
√

ω2
c − 2ω2

z (3.18)

The motion is stable if the magnetic field is large; Equation 3.14 requires ω2
c > 2ω2

z

for the eigenfrequencies to be real. An ion’s motion is characterized by three frequen-

cies, ω+ > ωz > ω−, and three corresponding amplitudes, r+, rz, and r−. Figure 3.8

shows the three modes of motion, along with the net motion. The new eigenfrequen-

cies are related to the original eigenfrequencies,

ωc = ω+ + ω−,

ω2
z = 2ω+ω−, (3.19)

and

ω2
c = ω2

+ + ω2
z + ω2

−.
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Figure 3.8: Schematic diagram of ion motion in a Penning trap. The size of the reduced

cyclotron (ω−) orbits are exaggerated with respect to the other orbits for clarity.
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The last equality is the subject of an important invariance theorem [13, 14]; measur-

ing all three eigenfrequencies allows precision measurements to overcome limitations

due to misaligments between the electric and magnetic fields, along with small imper-

fections in the quadrupole field. In practice, the magnetic field is strong and results

in a pronounced heirarchy, ω+ ≫ ωz ≫ ω−. In this case, the eigenfrequencies can be

expressed more simply.

ω− ≅
ω2

z

2ωc
=

Φ0

2Bd2
(3.20)

ω+ ≅ ωc −
Φ0

2Bd2
(3.21)

Note that in Equation 3.20 the magnetron frequency, ω−, is effectively independent

of the mass; this property is important for purification techniques. For JYFLTRAP,

with 100Tc+ ions in a 7 T magnetic field, the approximate values are ωc/(2π) =1.1

MHz, ω−/(2π) =1.7 kHz, and ωz/(2π)=61 kHz. These will be the default values used to

estimate trap parameters for the remainder of this chapter.

Having solved the equations of motion for an ion in a Penning trap, it is enlight-

ening to use these solutions to write the system’s energy. The azimuthal energy takes

a simple form if one considers an ion at an instant when the magnetron and reduced

cyclotron motions are in phase. Figure 3.9 illustrates these two components of the ion’s

motion in this scenario. Solving for the corresponding energy in terms of the eigenfre-

quencies, one finds

Er =
1

2
m(~r+ω+ + ~r−ω−)2 − qΦ0

4d2
(~r+ + ~r−)2 (3.22)

→ Er =
1

2
mr2+ω

2
+

(

ω+ − ω−

ω+

)

− 1

2
mr2−ω

2
−

(

ω+ − ω−

ω−

)

. (3.23)

Thus the net motion is described by three independent simple harmonic oscillators.

Two simple harmonic oscillators describe the radial motion. The magnetron motion

term is negative, because of the −r2 form of the electrostatic potential in the radial

plane.

Having described the ion’s motion from a Newtonian perspective for simplicity, it

is useful to write its Hamiltonian to discuss perturbations in a quantum mechanical
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Figure 3.9: Vector diagram of an ion’s motion in the azimuthal plane of a Penning trap

when the magnetron motion and reduced cyclotron motion are in phase (not to scale).

The magnetic field goes into the page.

framework. The homogeneous magnetic field ~B = Bẑ can also be represented by a

vector potential

~A =
B

2
xŷ − B

2
yx̂. (3.24)

Using this potential to write the azimuthal Hamiltonian for a charged particle in a

Penning trap in terms of the known eigenfrequencies (see Equation 3.14), one finds

Hxy =
1

2m

(

p2
x + p2

y

)

− ω1 (xpy − ypx) +
1

8
mω2

1

(

x2 + y2
)

, (3.25)

which can be rewritten as the Hamiltonian of two independent simple harmonic oscil-

lators with a canonical transformation:

q± =
1√
2

(√

mω1

2
x±

√

2

mω1
py

)

, (3.26)

p± =
1√
2

(

±
√

mω1

2
y +

√

2

mω1
px

)

(3.27)

Note that the canonical coordinates still satisfy the commutation relations [qi, pj ] =
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i~δij . For symmetry, it is also nice to transform the z coordinates

qz =
√
mωzz, pz → pz√

mωz
,

so that we can write a Hamiltonian in terms of three independent simple harmonic

oscillators that all have the same form:

H = ~ω+(a†+a+ + 1/2) + ~ωz(a
†
zaz + 1/2) − ~ω−(a†−a− + 1/2), (3.28)

E(n+, nz, n−) = ~ω+(n+ + 1/2) + ~ωz(nz + 1/2) − ~ω−(n− + 1/2), (3.29)

ni = a†iai, (3.30)

ai =
1√
2
(qi + ipi), i = +, z,− (3.31)

a†i =
1√
2
(qi − ipi). (3.32)

The ais and a†i s are the familiar raising and lowering operators. The energies of the

modes are given by their quantum numbers, n+, nz, and n−. As an example, the

ground-state energy of an ion with mass A = 100 in a Penning trap with a 7 T magnetic

field is ∼ O(10−9) eV, corresponding to a temperature of ∼10 µK. Quantum effects are

generally not important for heavy ions, but they can be for electrons, especially with

the lower energy levels of the axial and magnetron motions.

The magnetron motion is unstable and excitations of it decrease the total energy.

Figure 3.10 shows an energy-level scheme. Any loss mechanism, or dipole excitations

applied in the radial plane at the magnetron frequency, will result in orbits of larger

radii. This is crucial for both beam purification and precision mass measurements.

The purification scheme for the 100Tc EC branch measurement used a buffer gas

and a quadrupole field in the azimuthal plane. After the bunched, cooled ion beam

enters the Penning trap from the RFQ, all ions lose energy to the buffer gas and their

magnetron orbits increase. In terms of the quantum numbers, n+ and nz decrease

until they are in equilibrium with the buffer gas, but n− will increase continually.

A quadrupole potential is applied to the segmented ring electrode of the Penning

trap, as shown in Figure 3.11, at the cyclotron frequency. For small radii, the resulting
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Figure 3.10: Energy level scheme for a proton in an ideal Penning trap; magnetron

energy levels are exaggerated. Spin energy levels are of the same order of magnitude

as the modified cyclotron levels, but nevertheless unimportant for the mechanisms

discussed here.

potential in the azimuthal plane is well approximated by

Vq(t) =
Φq

r20
(x2 − y2) cos(ωct+ φq).

This can be written as a perturbation to the Hamiltonian in terms of the creation and

annihilation operators of Equation 3.28. There are other terms, but the only ones that

are important for our purposes have the form

H1 =
e~Φq

2mω1r20

(

e−i(ωct+φq)a†+a− + ei(ωct+φq)a†−a+

)

.

The cyclotron frequency, ωc = ω++ω−, connects the energy levels of the magnetron mo-

tion and reduced cyclotron motion. See the paper by Kretzschmar [57] for a thorough

theoretical treatment of the rich phenomena associated with this perturbation.

Using Fermi’s Golden Rule, the transition rates are proportional to the matrix el-

ements of the raising and lowering operators squared, so for the two different terms
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Figure 3.11: Ring electrode configuration for quadrupole excitation: the ring electrode

is segmented into four pieces and the voltages Vq and −Vq are applied between the x
and y segments at a frequency of ωc.
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connecting the magnetron and cyclotron motion one finds the rates

Γ(|n+, n−〉 → |n+ + 1, n− − 1〉) = c(n+ + 1)(n−), (3.33)

and Γ(|n+, n−〉 → |n+ − 1, n− + 1〉) = c(n+)(n− + 1). (3.34)

Because n− ≫ n+ when the quadrupole excitation is initially applied, the ions gain

energy in cyclotron motion, which they subsequently lose to the buffer gas.

This process reaches equilibrium when the ions are in a state with n+ ≈ n− and

have the kinetic energy dictated by the temperature of the buffer gas. Thus the ions

are driven up the potential hill in the azimuthal direction until they are centered in

the trap at a radius defined predominantly by the reduced cyclotron motion. Figure

3.12 illustrates this process schematically. Assuming a temperature of 300 K, this

corresponds to n+ = n− ∼ O(107) and a radius of a few hundred microns for 100Tc with

the trap parameters discussed previously.

The applied quadrupole frequency selects ions by mass because the cyclotron fre-

quency, ωc = ω++ω−, depends upon the ion’s charge-to-mass ratio. The resolving power

that can theoretically be achieved is equal to the product of the applied frequency and

length of time during which the excitation is applied. The frequency of interest is 1

MHz and typical excitation times are on the order of 100 ms, which gives a resolution

M

∆M
= ωcTrf ≈ 105, (3.35)

so that for isotopes near mass A = 100, mass differences as small as several MeV can

be separated. The length of time over which centering takes place depends upon the

quadrupole voltage applied and the pressure of the buffer gas.

The selected ions are finally centered in the trap with very little energy. When the

potential on the exit side of the trap is lowered, only the centered ions with the selected

mass emerge through the 2 mm diaphragm that constricts the exit (see Figure 3.7).

The beam has a very small emittance, having been spatially constrained within a few

tenths of a millimeter and cooled to energies on the order of tens of meV.

Figure 3.13 shows a mass scan for A = 100 from the purification trap that gives a

resolving power M/∆M ≈ 25, 000, more than enough to prevent contamination from
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Figure 3.12: Schematic of ion motion with azimuthal quadrupole excitation in a buffer

gas: in this schematic diagram, the ion begins in a magnetron orbit with radius 2

mm; the magnetron radius decreases as the perturbation pushes the ion into cyclotron

motion, while the energy gained in cyclotron motion is constantly lost to the buffer

gas. The minimum radius the ions reach is determined by their equilibrium with the

buffer gas. The actual cooling by the buffer gas is based on collisions, so no actual ion

trajectory would be as orderly as the one shown.
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99Tc, which comes with unwanted Tc x rays from an isomeric state with a long haf-life,

t1/2 ≈ 6 h. The excitation frequency was set to f = 1, 075, 800 Hz for beam purification

during the experiment.
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Chapter 4

ANALYSIS

The ratio of the number of EC decays, NEC, to the total number of decays, Ntot,

determines the EC branch. Mo K-shell x rays, created by vacancies in the K-shell

electron energy levels of the Mo atom after electron capture, provide the signal for

NEC. The 539.5- and 590.8-keV γ rays, together with measurements of their intensities,

provide the signal for Ntot. A calibration of the Ge detector’s efficiency as a function of

photon energy determines NEC/Ntot from the number of Mo x rays observed relative to

the number of counts in either the 539.5- or 590.8-keV γ-ray photopeaks.

First we present our calibration of the Ge detector and use a precise measurement

of the 590.8-keV γ-ray intensity to calculate the EC branch. Then we present a calibra-

tion of the scintillator and an independent measurement of the 539.5- and 590.8-keV

γ-ray intensities. Finally, we discuss possible systematic errors.

4.1 Photon Efficiency

The relative efficiency between the Mo K-shell x rays and the 539.5-keV and 590.8-

keV γ rays, needed to extract NEC/Ntot, was obtained from calibration sources and

simulations based on the experimental geometry. 92Tc was obtained from impurities

in the enriched 100Mo target by tuning the dipole magnet, RFQ buncher, and Penning

trap for A = 92. Figure 4.1 shows the spectrum of x rays with our fit for the A = 92

beam.

92Tc provides an intense source of the same Mo x rays that signal the EC decay

of 100Tc. We produced fits for these x rays using a line-shape functional consisting

of a low-energy exponential folded with a Gaussian, plus a low-energy shoulder for

Compton scattering with a shape determined by PENELOPE [73] simulations. In our

fits we fixed the relative x-ray intensities and extracted the relative efficiencies for
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Figure 4.1: 92Tc x-ray spectrum fit: the two apparent peaks are actually composed of

five x rays, two Kα and three Kβ. The shape of the low-energy shoulder due to Comp-

ton scattering, seen below the E =17.44 keV Kα peak, was fixed using simulations

with PENELOPE and included in the fit. The same Compton shoulder shape, relative

efficiencies, and energy calibration were imposed on all fits to the x-ray spectra from

the decay of 100Tc. This fit gives χ2/285 = 1.030.
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the two Mo-Kα and three Mo-Kβ x rays. The shape of the Compton shoulder and the

energy calibration determined in Figure 4.1 were also used to constrain all fits to the

x-ray spectra from 134Cs and 100Tc. The relative efficiency between the Mo Kα and Kβ

x rays is dominated by the dead layer of the contact at the front of the Ge crystal and

the thickness of the thin wall of the scintillator (see Figure 2.4).

Figure 4.2 shows a fit to a 134Cs-source x-ray spectrum from a 134Cs calibration

source. Figure 4.3 shows a 134Cs-source γ-ray spectrum from the same source. The

calibration source was made by placing drops of a solution with 134Cs onto a foil made

for the scintillator, then allowing the solution to evaporate. Figure 2.8 shows a foil

with the 134Cs solution on it in preparation. This method facilitated reproduction of

the experimental geometry for accurate calibration. We used the known 134Cs x-ray

and γ-ray intensities [79] to determine the relative efficiencies between x and γ rays.

Summing corrections for the 134Cs source were taken into consideration and found to

be negligible.

Figure 4.4 shows efficiencies for x rays and γ rays from both 92Tc and 134Cs with

results of Monte Carlo simulations performed using the code PENELOPE [73]. The

563.2- and 569.3-keV γ rays from 134Cs are conveniently close in energy to the 539.5-

and 590.8-keV γ rays from the decay of 100Tc. The simulations were used to determine

the relative efficiencies between the 100Ru γ rays and the Mo K-shell x rays used in our

EC branch calculation.

4.2 Electron-Capture Branch Calculation

Figure 4.5 shows a raw γ-ray spectrum taken with the 100Tc beam. Figure 4.6 shows

a raw x-ray spectrum taken with the 100Tc beam. Figure 4.7 shows the fit for the Mo-

and Ru-x-ray lines to a scintillator-vetoed spectrum from five runs. We calculate the

electron-capture branch as:

B(EC) =
A(Mo-K)

A(590.8-keV)

η(590.8-keV)

η(Mo-K)

(1 − c) · Iγ(590.8-keV)

fKωK
, (4.1)

where A(Mo-K) and A(590.8-keV) are the photopeak areas for the Mo-K and 590.8-

keV transitions; η(590.8-keV)/η(Mo-K) is the relative efficiency between the 590.8-keV
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rays were fixed by the simulations used to calculate the relative efficiencies for the fit

to the 92Tc x rays in Figure 4.1.
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and Mo-K transitions; c is a correction for the fraction of 590.8-keV γ rays lost from

summing due to coincident 539.5-keV γ rays and beta particles, calculated from the

same simulations used to determine the Ge detector efficiency; Iγ(590.8-keV) is the

absolute intensity of the 590.8-keV γ ray; fK = 0.88 is the fraction of EC decays that

produce a vacancy in the K shell; and ωK = 0.765 is the total K-shell fluorescence

yield [15], i.e., the probability of emission of a K-shell Mo x ray per K-shell vacancy.

In practice, because the efficiency changes between the Kα and Kβ lines, we obtained

A(Mo-K)/η(Mo-K) as the sum of A(Mo-Ki)/η(Mo-Ki) over all the individiual K-shell

lines.

Over the course of several days running the experiment, we observed changes in

the Ge detector’s resolution. In our analysis we independently fit the x-ray spectrum

from each run with resolution better than FWHM≤ 700 eV in the x-ray region.
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To get the best value of the B(EC) from all runs, including short runs from which

one would individually obtain a value of B(EC) statistically consistent with zero, we

used the following scheme. For an assumed B(EC), we calculated the number of Mo x

rays expected given the number of 590.8-keV γ rays, fit the vetoed x-ray spectra from

all runs with the Mo x-ray areas fixed, then added the total χ2 for all runs. Figure 4.8

shows a plot of the results, from which we obtain

B(EC) = (2.60 ± 0.34 ± 0.20) × 10−5, (4.2)

in which the first uncertainty is statistical and the second uncertainty is due to the Ge

detector calibration. Adding the uncertainties in quadrature yields B(EC) = (2.60 ±
0.39)× 10−5 ≈ (2.6± 0.4)× 10−5; for simplicity, the latter will be used for discussions in

Chapter 5.

This result is more precise than the previous determination [36]: B(EC) = (1.8 ±
0.9) × 10−5. That experiment did not use a high-resolution mass separator and con-
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sequently had to make a separate measurement to determine the contributions from

contaminants. Radioactivity was collected on a tape for several hours, then γ rays

from the unwanted isotopes were measured, and finally the amount of Mo K-shell x

rays due to the electron capture of 100Tc during the experiment were deduced by ac-

counting for veto efficiencies, branching ratios, and the effect of the periodic movement

of the tape. This experiment avoids these difficulties and the limitations associated

with depending on the measured branches from each contaminating isotope.

4.3 Corrections to Scintillator Signals

The decay of 100Tc includes β−γ coincidences that allowed calibration of the scintillator.

By requiring the detection of a photon in the Ge detector, it is possible to obtain the

scintillator’s response for a beta-decay spectrum of known energy. But to use these

data, it was necessary to correct the measurements from the scintillator.

Dead time played an important role in our analysis of the 539.5- and 590.8-keV γ-

ray intensities. Due to decay rates as high as ≈ 20 kHz detected with > 95% efficiency

in the scintillator, delays in our electronics became significant sources of dead time.

See Appendix F for an explanation of the functional form of dead time corrections. For

the following analysis, ten periods were selected from all the data for approximately

constant event rates, then sorted individually. Figure 4.9 shows the events per unit

time for Sort 1 from Table 4.1.

To calculate the necessary corrections, we begin by determining the scintillator’s

trigger rate as a function of m, the rate at which events are read from the ADC. Fig-

ure 4.10 shows a schematic of the relevant electronics. The dead time imposed on all

gates to prevent signals from interfering with events being read from the ADC was

τg = 100 µs. An independent signal was recorded to count how many gates were from

the scintillator. The number of scintillator triggers divided by the time interval of the

sort determines R0, the rate at which the scintillator triggered data acquisition. This

signal was subject to the dead time, τg, imposed at the gate generator, so it follows that
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events recorded by the ADC per unit time. The width of each channel is 10.486 s.

The red region was selected for its approximately constant event rate. The average

rate for the gate shown in the figure is m = 1099.5 Hz. The gate shown in this figure

corresponds to Sort 1 from Table 4.1.
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Figure 4.10: Schematic for dead time correction to raw scintillator signals. The scin-

tillator trigger rate obtained from the ADC requires a correction for τg, the dead time

imposed on gates to prevent pileup in the Ge detector. The rate from the rate divider

requires a correction for τs, the width given to the pulses from the discriminator to

make them work properly with the rate divider. For a more complete schematic of the

electronics, see Figure 2.12.

the corresponding rate into the gate generator is

Rd =
R0

1 −mτg
. (4.3)

KnowingRd, the same form of correction but for the shorter dead time τs = 1 µs applies

due to the shaping of the scintillator pulses before the rate divider. The rate from the

scintillator itself is then

Rs =
Rd

1 −Rdτs
. (4.4)

Table 4.1 shows Rs calculated as a function of m from these two corrections.

A time-amplitude converter (TAC), which converts the time difference between two

logic signals into a voltage, recorded coincidences between the Ge detector and scintil-

lator to veto beta-decay events. It was imperative to trigger on the Ge signals to detect

the maximum number of x rays, needed to measure the EC decays from 100Tc. Because

the PMTs have a much faster response time than the Ge detector’s preamplifier, it was

necessary to delay the signals from the scintillator to make them arrive after the Ge

signals. The actual delay applied to the logic signals from the scintillator to stop the

TAC during the experiment was τd = 19 µs.

To get the correction for the number of TAC signals, it was necessary to solve for

the “observed” scintillator rate, ms, from the delay unit to the TAC (see Figure 4.11).
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Figure 4.11: Schematic of dead time correction to TAC signals. Signals from the scin-

tillator are lost because the delay unit is “dead” until the end of its delay period from

the previous scintillator signal. For a more complete schematic of the electronics, see

Figure 2.12.

Using the imposed delay time τd =19 µs to solve for Rs from

Rs =
ms

1 −msτd
, (4.5)

one obtains the correction to the TAC signal:

CTAC ≡ 1

1 −msτd
=

1

1 −Rsτd/(1 +Rsτd)
. (4.6)

The correction to the number of triggers from the scintillator, Cst, also has the same

form but with τd → τs and ms → Rd. Both CTAC and Cst for all ten rate sorts are shown

in Table 4.1.

4.4 Scintillator Effficiency

We use the 590.8-keV γ ray to determine the efficiency of the scintillator. Direct beta-

decay feeding of the 100Ru excited state at Ex = 1130 keV accounts for 99.9% of the

590.8-keV γ-ray intensity [8], which makes it convenient to determine the scintilla-

tor’s efficiency for a known beta-decay energy spectrum. To do this, we gate on the

photopeak of the 590.8-keV γ ray and find the number of TAC signals.

The calibration procedure follows. Three coincidence spectra were taken, as shown

in Figure 4.12: a low-energy background, a high-energy background, and a spectrum

in coincidence with the 590.8-keV γ ray. The net number of coincidences from the TAC

is given by

NTAC = AT (Chp) −AT (Ch1)
Chp

2Ch1
−AT (Ch2)

Chp

2Ch1
, (4.7)
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Table 4.1: Dead time corrections. m is the rate at which events were written from the

ADCs. ∆T is the length of the sort’s time interval. Nst/999 is the number of scintillator

triggers after the rate divider; these are non-integers because a background rate, which

accounted for < 0.6% of the total rate in all sorts, has been subtracted. Rs is the rate

coming from the scintillator, calculated from Equations 4.3 and 4.4. CTAC and Cst are

the corrections for NTAC and Nst/999 calculated from Equation 4.6 and its counterpart

for Nst.

Sort m(Hz) ∆T (s) Nst/999 Rs(Hz) CTAC Cst

1 1099.5 3156.3 25884.5 9290.3 1.1765 1.0093

2 982.1 996.2 7400.3 8297.6 1.1577 1.0083

3 1479.8 450.9 4913.2 12941.5 1.2459 1.0129

4 1291.8 2107.7 20217.5 11126.6 1.2114 1.0111

5 871.6 660.6 4347.2 7254.1 1.1378 1.0073

6 1247.2 2107.7 19156.5 10482.3 1.1992 1.0105

7 1858.6 1583.4 20145.5 15859.4 1.3013 1.0159

8 1912.3 2107.7 27923.5 16636.7 1.3161 1.0166

9 1901.7 2107.7 27249.5 16207.0 1.3079 1.0162

10 1980.9 3156.3 44210.5 17759.6 1.3374 1.0178
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Figure 4.12: γ-ray gating scheme to measure scintillator coincidences: the number of

coincident signals was determined for each of the three gated regions shown, to make

a linear background subtraction. This is the actual 590.8-keV γ ray from Sort 1 of

Table 4.1

in which Ch1, Ch2, and Chp are the number of channels in the respective gate for the

low-energy background, high-energy background, and peak, and AT (Chi) is the num-

ber of TAC signals in coincidence with the Ge signals in gate i. Figure 4.13 shows the

TAC peak obtained from the gate on the 590.8-keV γ ray in Figure 4.12. The corre-

sponding scintillator efficiency is

ηs(Ex = 1130 keV) =
NTACCTAC

A(γ)
, (4.8)

where A(γ) is the net area of the photopeak in the γ-ray spectrum and CTAC is the

correction applied to the TAC signal due to dead time, given in Equation 4.6 and Ta-

ble 4.1.

The scintillator’s efficiency for this beta-decay branch was calculated for ten constant-
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Figure 4.13: TAC peak obtained from gating on the 590.8-keV γ ray in Figure 4.12.

This is the TAC peak corresponding to Sort 1 from Table 4.1 and to the gate on the

photopeak in Figure 4.12. To obtain AT (Chp) from Equation 4.7, we take the area of

this peak with a (small) background subtraction.
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Table 4.2: Scintillator efficiency data. These data are from the same sorts listed in

Table 4.1. A(590.8-keV) is the net area of the 590.8-keV γ ray from the sort. NTAC is the

net area of the TAC peak in coincidence with the γ ray, calculated using Equation 4.7.

CTAC is the correction to the TAC. ηs is the efficiency of the scintillator for each sort, as

calculated by Equation 4.8. The fit gives χ2/9 = 0.895.

Sort A(590.8-keV) NTAC CTAC ηs(%)

1 5355(117) 4220.4 1.1765 92.7(2.2)

2 1537(66) 1246.2 1.1577 93.9(4.0)

3 989(51) 767.7 1.2459 96.7(5.0)

4 4082(100) 3094.2 1.2114 91.8(2.2)

5 858(43) 736.2 1.1378 97.6(4.9)

6 3885(102) 3176.8 1.1992 98.1(2.6)

7 3949(112) 2851.9 1.3013 94.0(2.7)

8 5264(135) 3890.9 1.3161 97.3(2.5)

9 5281(129) 3874.8 1.3079 98.4(2.4)

10 8628(165) 6235.3 1.3374 96.7(1.8)

LS fit 95.5(0.8)

rate sorts. A least-squares fit to these ten efficiencies gives

ηs(Ex = 1130 keV) = 95.5 ± 0.8%, (4.9)

which can be compared to the the same efficiency calculated using our simulations,

ηsim(Ex = 1130 keV) = 95.4%. Table 4.2 shows the TAC and γ-ray areas from the sorts

used to calculate the efficiency for the beta-decay branch to the 100Ru excited state,

Ex = 1130 keV. Figure 4.14 shows the measurement of the scintillator’s efficiency,

using the TAC signal corrected over a range of event rates.

We use the simulations, which showed excellent agreement with the measured scin-

tillator efficiency for the Ex = 1130 keV excited state, to calculate the scintillator’s

average efficiency for all the decay branches of 100Tc. Table 4.3 shows the simulation
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Figure 4.14: Scintillator efficiency as a function of data acquisition rate. The red points

are prior to correction, the black points are corrected, and the overall fit of ηs = 95.5 ±
0.8% gives χ2/9 = 0.895. The actual rates that determined the dead time correction

were the scintillator rates, which were approximately an order of magnitude larger,

approaching 20 kHz at its maximum. Table 4.1 gives the corrections and Table 4.2

gives the data used to calculate the efficiency.
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Table 4.3: Simulated scintillator efficiencies obtained from PENELOPE using the de-

sign geometry for the scintillator and 1 mil for the thickness of the aluminum foil,

measured with a micrometer. c(β) is the calculated percentage of beta decays for each

spectrum that deposit energy in the Ge detector.

E0 Ē ηsim c(β)

(keV) (keV) (%) (%)

3202.8 1351.1 98.1 11.2

2663.3 1099.3 97.1 8.0

2072.6 825.2 95.4 4.0

1151.3 415.0 86.9 0.5

results for each decay branch. The resulting average efficiency is η̄sim = 97.9%. This

average depends weakly on the decay-branch intensities assumed since the sum of the

total intensity to all excited states is Ix ≈ 7%; the result is dominated by the efficiency

for the ground state, ηsim(Ex = 0 keV) = 98.1%.

4.5 Calculation of γ Intensities

Given the scintillator’s efficiency, η̄sim, and the number of triggers from the scintillator,

Nst, we obtain the number of decays for the same rate-selected data as

ND =
NstCst

η̄sim

. (4.10)

The total number of decays should be related to the number of counts in the γ-ray

photopeaks by the relationship

A(γ) = NDIγη(Eγ)(1 − c), (4.11)

in which A(γ) is the area in the photopeak of the γ ray, Iγ is the intensity of the γ ray,

η(Eγ) is the Ge detector’s efficiency for the γ ray, and c is a correction for coincident beta

particles and γ rays summing with the γ ray of interest in the Ge detector. The most

directly accessible quantity from the data is the product Iγη(Eγ)(1 − c). Figure 4.15
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Figure 4.15: Weighted average of ten measurements of the 590.8-keV γ-ray intensity

at different rates. The actual quantity measured is the product of the intensity, Iγ ,

the Ge detector’s efficiency at Eγ =591 keV, ηγ , and a correction for summing from

beta particles and γ rays coincident with the γ ray, (1 − c). The weighted average is

Iγηγ(1 − c) = (1.904 ± 0.019) × 10−4. The average gives
χ2

9
= 0.823.

shows a least-squares fit to this quantity for the 590.8-keV γ ray, from which we obtain

the 590.8-keV γ-ray intensity.

All values used to calculate Iγη(Eγ)(1 − c) for the 590.8-keV γ ray are given in

Tables 4.1 and 4.2. Calculating the same quantity for the 539.5-keV γ ray using the

same scintillator calibration and the areas of the 539.5-keV γ rays from the same sorts,

we find Iγηγ(1 − c)(539.5-keV) = (2.68 ± 0.03) × 10−4. Table 4.4 shows the values used

to calculate both branches, from which we obtain

Iγ(590.8-keV) = 5.5 ± 0.3% (4.12)

and

Iγ(539.5-keV) = 6.6 ± 0.3%. (4.13)
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Table 4.4: Values used to calculate γ-ray intensities. The corrections c take into account

summing from beta particles and the other γ ray in the cascade, including the angular

correlation between the two γ rays due to the E2 multipolarity of the transition.

Eγ Iγηγ(1 − c) η(Eγ) c

(keV) (×104) (%) (%)

590.8 1.90(2) 0.379(17) 8.4(4)

539.5 2.62(3) 0.437(19) 9.1(5)

These intensities can be compared with the recent precision measurements [34, 32] of

Iγ(590.8-keV) = 5.5 ± 0.3% and Iγ(539.5-keV) = 6.6 ± 0.5%. The agreement is remark-

able, considering the estimated 4.5% uncertainty in our calibration of the Ge detector’s

absolute efficiency. A weighted average of these two independent results yields

Iγ(590.8-keV)avg = 5.5 ± 0.2% (4.14)

and

Iγ(539.5-keV)avg = 6.6 ± 0.3%. (4.15)

4.6 Internal Ionization and Excitation

Our experiment allos us to determine the probability of K-shell internal ionization and

excitation (IIE) [51] from the decay of 100Tc. The Ru Kα x-ray peak in the raw x-ray

spectrum originates mainly from three sources: internal conversion (IC) of the 539.5-

and 590.8-keV γ rays, and IIE from the β− decay of 100Tc. In general, atomic vacancies

are created predominantly by internal conversion (IC) of γ rays, but the contribution

from IIE is approximately equal to the contribution from IC in the beta decay of 100Tc

because the gamma intensities are relatively small. The tabulated IC coefficients from

Reference [15], the probability of a K-shell vacancy due to IC per γ ray emitted, are

eK/γ(539.5) = 0.0038(2) and eK/γ(590.8) = 0.0030(2). Our data allows us to calculate

PK(IIE) from the relative number of Ru K-shell x rays in a raw x-ray spectrum versus
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the number of 590.8- or 539.5-keV γ rays in a raw γ-ray spectrum. We find

PK(IIE) = (7.2 ± 0.6) × 10−4, (4.16)

which can be compared with the result quoted in Reference [36], PK(IIE) = (6.0±0.6)×
10−4. This reference used different values of the IC coefficients and would agree with

our PK(IIE) value if the same IC coefficients were used.

4.7 Monte Carlo Simulations

The measured γ- and x-ray spectra from 92Tc and 134Cs were used to determine the

Ge detector’s relative efficiency as a function of energy. Simulations with PENELOPE

using the experimental geometry, tuned to match the calibration spectra, determined

the absolute efficiency and provided our interpolation from the energies of the lines in

the calibration spectra to the 539.5- and 590.8-keV γ rays from the excited states of

100Ru.

Figure 4.16 shows a cross section of the geometry used for simulations. The Ge

detector’s housing and the foil within the scintillator are both aluminum, represented

by the green bodies. The BC-408 plastic scintillator consists of 1.032 g/cc of polyvinyl-

toluene, represented by the blue body. The red body is the 0.254-mm thick Be window

for the Ge detector. The Ge crystal is purple.

The parameters used to tune the simulations were a front and back dead layer on

the Ge crystal. The front dead layer owes its explanation to boron ions implanted to

make the p-type contact at the front of the crystal. Other phenomena that could pro-

duce similar x-ray attenuating effects include damage to the front layers of the crystal

that affect charge collection and the presence of unknown attenuating materials. The

PVT scintillator absorbs a fraction of the x rays comparable to the fraction absorbed by

the front Ge dead layer. The method by which our simulations were tuned and the dead

layers obtained are similar to those described as Set 2 in Reference [46], which a more

rigorous calibration described as Set 3 in the same reference showed to be accurate to

better than 1% for energies from 20 keV to energies greater than 1 MeV.
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0.595 cm

Figure 4.16: Geometry used in PENELOPE simulations. The magenta body is the Ge

crystal. The blue body is the plastic scintillator. The green bodies are the aluminum

housing of the Ge detector and foil inside the scintillator. The red body is the beryllium

window of the Ge detector.
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Table 4.5: Parameters for Compton shapes in x-ray fits: for the average energy of each

Kα and Kβ peak, the Compton shoulder shape was included in the fit using these

parameters. At each energy, a peak with the same FWHM as the photopeak and an

amplitude equal to the amplitude of the photopeak multiplied by the factor under Am-

plitude.

X Ray Energy (keV) Amplitude X Ray Energy (keV) Amplitude

Mo Kα 17.27 0.022 Mo Kβ 19.34 0.035

Mo Kα 16.90 0.043 Mo Kβ 18.84 0.038

Mo Kα 16.46 0.037 Mo Kβ 18.39 0.041

Mo Kα 16.02 0.013 Mo Kβ 17.95 0.012

Mo Kα 15.45 0.0032 Mo Kβ 17.49 0.0045

Ru Kα 18.908 0.0479 Ru Kβ 21.469 0.0311

Ru Kα 18.418 0.0270 Ru Kβ 21.005 0.0320

Ru Kα 18.040 0.0365 Ru Kβ 20.480 0.0394

Ru Kα 17.611 0.0109 Ru Kβ 20.050 0.0353

Ru Kα 17.146 0.0056 Ru Kβ 19.520 0.0100

The x-ray spectrum in Figure 4.1 shows excellent agreement between the shape of

the Compton shoulder on the Mo Kα x ray from the fit and the 92Tc x-ray calibration

data. Compton shoulders were included for the Mo Kα, Mo Kβ, Ru Kα, and Ru Kβ

x-ray peaks in all fits to the 100Tc data. The shapes used in the fits, extracted from

simulations, were given by five Gaussian amplitudes for each of the peaks, with en-

ergies and amplitudes fixed relative to the overall amplitude of the x-ray peak. The

FWHM for the Gaussian distributions used to represent the Compton shoulders were

kept the same as the FWHM of the photopeaks obtained in each fit, for functional sim-

plicity. Table 4.5 shows the energies and amplitudes used to represent the Compton

shoulder of each x-ray peak. Figure 4.17 shows a comparison between the PENELOPE

simulation and the shape obtained from the peak plus five Gaussians for the Mo Kα

peak.
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Figure 4.17: Comparison of PENELOPE simulation (thick black line) of a 17.44-keV

peak to approximate the average Mo Kα energy and the form obtained from the five

Gaussians listed in Table 4.5 (thin red line). Both the simulation and the fitting form

have been given a FWHM of 509 eV for this comparison.



98

4.8 Systematic Uncertainties

The purification Penning trap ensured that only ions having A = 100 could reach the

experimental setup. Neither the γ-ray nor x-ray spectra (Figure 4.5 and Figure 4.6)

show any signs of contaminants.

Mo x rays could potentially be generated by fluorescence of 100Mo, coming with

the A = 100 beam and from the decay of 100Tc. In order to check for this possibility

we inserted a 1 µm-thick Pd foil between the scintillator and Ge detector and tried

to observe fluorescence while taking the A = 100 beam. The amount of Pd in the

foil is ≈ 1010 times greater than the total amount of Mo deposited during the entire

experiment. No Pd x rays were observed; thus we exclude contamination of the Mo x

rays by fluorescence.

Our calibration scheme determines the Ge detector efficiency as a function of pho-

ton energy. The simulations used for the efficiencies were also used to determine the

summing corrections in our extraction of the γ-ray intensities (c in Equation 4.11). Un-

certainties in the actual geometry of the experiment, including detector specifications

for both the scintillator and Ge detector, could cause these values to be inaccurate. To

account for these geometrical uncertainties, we calculated an uncertainty based on a

shift in the detector’s beam-axis position of 0.5 mm in both the summing corrections

and the Ge efficiency, η(Eγ). We also studied radial beam position and beam spread,

which we found to be negligible.

For the calculation of B(EC) (Equation 4.1), the uncertainties in the summing cor-

rection c and the γ-rau efficiency η(Eγ) are negligible because coincidence measure-

ments with the scintillator determine the product η(590.8-keV)(1 − c)Iγ(590.8-keV) to

1% accuracy (as shown in Figure 4.15). The uncertainty in η(Mo-K) was determined

from the fits explained in Section 4.1 to be 6.2%. This was added in quadrature to

smaller effects due to experimental geometry and beam variations described above to

determine an overall systematic uncertainty of 7.7% in our determination of B(EC).

The same systematic uncertainty applies to the determination of PK for IIE.

For our determination of Iγ(590.8-keV) and Iγ(539.5-keV), the estimated error due
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to η(Eγ) is 4.5%. The efficiencies of the higher energy x rays in the 134Cs spectrum

(Figure 4.2), which were used to determine the ratios between the efficiencies for the

x rays and γ rays, show less sensitivity to the tuned parameters in our simulations.

Corrections calculated for both the 590.8- and 539.5-keV γ rays include summing from

both beta particles and the angular correlation between the E2 transitions in the 0+ →
2+ → 0+ γ-ray cascade.
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Chapter 5

CONCLUSIONS

5.1 Calculation of log(ft)

First we use our determination of B(EC) to calculate the log(ft) for the electron-

capture branch of 100Tc. The most precise lifetime measurement [34] to date for 100Tc

is

T1/2(
100Tc →100 Ru) = 15.27 ± 0.05 s. (5.1)

It follows from our branch measurement that the partial half-life

T1/2(
100Tc + e− →100 Mo + νe) = 5.87+1.07

−0.78 × 105 s. (5.2)

We calculate the phase space using the tables of Reference [15], in which the total

electron-capture decay rate is cited as

T−1 =
G2

β

2π3

∑

x

nxCxFx (5.3)

with nx being the occupation number (all nx = 1 for states with appreciable contribu-

tion to the EC of 100Tc), Cx is the modulus squared of the nuclear matrix element, and

Fx is the phase space given by

Fx =
π

2
q2xβ

2
xBx, (5.4)

in which qx is the neutrino energy in units of me for the capture of an electron with a

particular binding energy, βx is the amplitude of the bound-state electron radial func-

tion at the origin (nucleus), and Bx is a correction for exchange effects and imperfect

atomic overlap between the parent and daughter nuclei.

Table 5.1 shows the numbers used to calculate the phase space. The result gives

log(ft) = 4.29+0.08
−0.07 (5.5)

for the EC decay of 100Tc. This can be compared with the log (ft) values for the decays

of 98Zr and 102Mo, for which log (ft) ≈ 4.2.
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Table 5.1: 100Tc atomic levels, binding energies BE, neutrino energy qx in units of

me, squared atomic wavefunctions with corrections, and the resulting contribution to

the phase space. Only levels with contributions that are nonnegligible in the least

significant digit shown have been included in the table. The stated error is due to the

uncertainty in the value of QEC, propagated to the Fx via the uncertainty it implies in

the neutrino energy, qx.

Level BE (keV) qx β2
xBx Fx

K 21.0440 0.2876 0.2129 0.0277

L1 3.0425 0.3228 0.02522 0.0041

L2 2.7932 0.3233 3.937×10−4 0.0001

L3 2.6769 0.3235 0.001086 0.0002

M1 0.5440 0.3277 0.004965 0.0008

N1 0.0680 0.3286 9.186×10−4 0.0002

Total 0.0331(24)

5.2 Implications for a pp neutrino Detector

Reference [20] estimated the amount of 100Mo necessary to make a solar nuetrino de-

tector. They used a value of B(GT;100 Mo →100 Tc) = 0.52 ± 0.06, extracted from a

measurement of the charge-exchange reaction 3He + 100Mo →3H+100Tc. Our direct

measurement of B(EC) also determines this B(GT).

First we determine B(GT) from B(EC). We combine the result of Equation 5.2 with

the calculated phase space using the relationship

T−1
1/2 =

∑

i

fi
B(GT)i
D

, (5.6)

in which D = 6145.4(1.6) s. This value of D follows from the weighted average FT 1/2 =

3072.7(8) s for the superallowed decays between T = 1 nuclear analog states in Ref-

erence [42]. The matrix elements for these decays are given by B(F) = |MF |2 =

|GV |2〈τ+〉2 = |GV |2T (T + 1) = 2|GV |2, so it follows that D = 2FT 1/2.
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Our determination of the EC branch gives the Gamow-Teller strength,

B(GT;100 Mo →100 Tc) = 0.95 ± 0.16. (5.7)

This determination of the Gamow-Teller strength is approximately 80% larger than

the value used in Reference [20], so that the estimate would be revised to 1.6 × 103 kg

of 100Mo (17 × 103 kg of natural Mo).

5.3 Comparisons to QRPA Models for Double-Beta Decay

This section compares theoretical studies of the A = 100 system using the pn-QRPA

approximation to our measurement. Griffiths and Vogel [41] performed QRPA calcu-

lations of both ground state to ground state single-beta decay strengths and the 2νββ

decay strengths to both the 100Ru ground state and the Ex = 1130-keV, Jπ = 0+ excited

state. They used zero-range δ forces to approximate the residual interaction-strength

parameters. Tuning the particle-hole proton-neutron interaction parameter, gph, to re-

produce the observed energy of the Gamow-Teller (GT) giant resonance in 100Tc, they

found that values of the particle-particle proton-neutron interaction parameter, gpp,

which could reasonably reproduce both the 2νββ decay rates and the single-beta de-

cay to the ground state of 100Ru resulted in a very large value for the electron-capture

decay strength: B(GT;100 Tc →100 Mo) ≈ 2.5.

Suhonen and Civitarese [81] also used the QRPA to calculate the single-beta decay

rates from 100Tc to 100Ru and 100Mo and the 2νββ and 0νββ decay rates from 100Mo

to 100Ru, and aditionally E2 transition strengths for both 100Mo and 100Ru and 0νββ

decay rates. They used more realistic spatial dependences for their residual nucleon-

nucleon interactions. They also tuned the gph parameter using the GT giant reso-

nance. The particle-particle interaction parameter, gpp, was determined by calculating

the single-beta decay rate to the ground state of 100Ru, B(GT;100 Tc →100 Ru). In this

scheme, for a smaller and larger truncated set of single-particle states they calculated

B(GT;100 Tc →100 Mo) = 1.41 and B(GT;100 Tc →100 Mo) = 2.03. These are both signifi-

cantly larger than our measurement, B(GT;100 Tc →100 Mo) = 0.32 ± 0.05.
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Tuning the two parameters gph and gpp does not appear adequate to reproduce the

full set of observables. A recent paper by Faessler et al [28] shows that the three

ground-state beta-decay observables may be reproduced simultaneously, for both of

the double-beta decaying nuclei 100Mo and 116Cd, by fitting the axial vector coupling

constant and allowing gA < 1. One would assume that the similar structure of the

2νββ decay calculations to both the 0+ ground state and 0+ excited state would al-

low the calculations for both to be successfully scaled simultaneously, but their work

does not mention a corresponding calculation and comparison with the experimentally-

measured 2νββ decay rate to the 1130-keV, Jπ = 0+ excited state of 100Ru. It remains

to be seen how meaningful tuning these three parameters (gA, gph, and gpp) to repro-

duce three observables (τ(2νββ), τ(EC), and τ(β−)) will be for predicting M(0νββ).

5.4 100Tc Ground-State Contribution to 2νββ Decay Rates

In order to test the SSD hypothesis as precisely as possible, we use the calculations

from Reference [76], in which the denominator in the matrix element,

Mfi =
∑

m

〈100Ru||στ ||100Tcm〉〈100Tcm||στ ||100Mo〉
MMo − Eβ1 − Eν̄e1 − ETcm

, (5.8)

was evaluated with the phase space integral. Their calculations found that the the-

oretical half lives obtained by performing the integral with the denominator intact

were smaller than those obtained from a constant denominator using the approxima-

tion 〈Eβ1 + Eν̄e1〉 = Qββ/2. Their calculations yield a 20% reduction in the theoretical

half-life for the 2νββ decay to the ground state of 100Ru and a reduction of 18% for the

2νββ decay to the 0+ excited state. Table 5.2 compares the results for the SSD hypoth-

esis with the approximate denominator, the SSD hypothesis with the calculations of

Reference [76], and recent measurements. In both cases, the double-beta decay con-

tribution from only the ground state appears to be stronger than the total double-beta

decay strength. It appears that contributions from higher levels of the intermediate

nucleus must interfere destructively. These results suggest that the ground state plays

an important role in the 2νββ decay rates.
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Table 5.2: Predictions of the single-state dominance hypothesis versus experimen-

tal data for 2νββ decays of 100Mo. The first column (SSD1) uses the approximation

〈Eβ1
+ Eν̄1

〉 = Qββ/2. The second column (SSD2) includes the integrated denominator

from Reference [76]. The third column lists experimental data from Reference [25] for

comparison.

100Ru level T 2νββ
1/2 -SSD1 T 2νββ

1/2 -SSD2 T 2νββ
1/2 -Experiment

Jπ Ex(keV) (years) (years) (years)

0+ 0 (6.2 ± 0.9) × 1018 (5.0 ± 0.7) × 1018 (7.3 ± 0.4) × 1018

0+ 1130 (3.8 ± 0.6) × 1020 (3.1 ± 0.5) × 1020 (5.7+1.5
−1.2) × 1020

2+ 539.5 (3.2 ± 0.5) × 1023 (1.2 ± 0.2) × 1023 > 1.1 × 1021

5.5 Future possibilities

A proposed experiment using our scintillator again with the purification Penning trap

at the IGISOL facilitiy will benefit from insights obtained during our analysis. Most

significantly, any reduction in the delay of the scintillator signal to the TAC will lead

to a corresponding reduction in the fraction of TAC signals that are lost because of

dead time. The Ge detector gates were generated from the bipolar output of the am-

plifier that shaped the x-ray signals. Generating a faster trigger from the Ge detector

independent of the spectroscopy amplifier and minimizing the timing between the Ge

detector trigger and scintillator trigger for the TAC should already yield a 50% re-

duction in the dead time of the TAC. This will lead to more efficient veto, smaller

backgounds, and a higher signal-to-noise ratio in the scintillator-vetoed x-ray spectra

For instance, an easily-achieved reduction to a 10-µs delay for the TAC would result in

approximately 20% less background in Figure 4.7.

Having demonstrated the viability of our experimental technique, we intend to ap-

ply it to the EC branch of 116In, which holds interest as an intermediate nucleus with

spin-parity Jπ = 1+ in another double-beta decay scenario. This decay has been di-

rectly measured previously, finding [9] B(GT) = 0.75 ± 0.21. The A = 116 system
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features beta-decay energies similar to the A = 100 system, Qβ− = 3274 keV from

116In to 116Sn. B(EC) is approximately a factor of 10 larger for 116In due to the addi-

tional phase space available from the higher value of QEC = 470 keV, compared with

the value QEC = 168 keV for 100Tc. Thus the same experimental advantages of the

trap and scintillator apply, but much higher x-ray production can be expected from

the larger value of B(EC). Naively assuming that all other factors (beam time, pro-

duction from the source and trap, scintillator-veto efficiency, x-ray detection efficiency)

will remain equal, B(EC) being ten times larger should lead to ten times the number

of observed x rays to signal EC events, and therefore approximately three times the

precision of our measurement. If this were the case, the result using the same tech-

niques with no improvements would be limited by systematic uncertainties and should

yield a precision on the order of 10%.

116Cd is another daughter nucleus in which the SSD hypothesis very nearly repro-

duces the measured double-beta decay rate, so there is motivation to pursue a more

precise measurement. The B(EC) of 116Cd will provide another good test for QRPA

calculations, which are expected to perform better for 116In (the double-beta decay par-

ent) because of smaller nuclear deformations.
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Chapter 6

POLARIZED NEUTRON β-DECAY: THE PROTON ASYMMETRY AND
RECOIL-ORDER CURRENTS

This chapter presents an analytic, recoil-order calculation of the proton asymmetry

from polarized neutron β-decay. The differential decay rate in terms of electron en-

ergy and proton direction follows, parametrized in terms of the most general Lorentz-

invariant hadron current coupled to a left-handed lepton current. Implications for

experimental efforts to measure recoil-order currents are discussed.

6.1 Introduction

It is possible to calculate the decay distributions of the proton, electron and antineu-

trino from a polarized, free neutron due to the weak interaction with great precision

within the framework of the standard model. In the case of neutron decay, electro-

magnetic effects are relatively small. Consequently, precision measurements of the

decay distributions from polarized neutrons are good candidates in the search for new

physics.

Measurements of the correlations from polarized free neutrons in conjunction with

the neutron lifetime, τn, have been used to study the overall coupling constant, GF ,

the ratio of the axial vector to vector couplings, to put limits on possible right-handed

currents, and to probe for time reversal invariance-violating effects [26]. Given the

neutron lifetime, τn ∝ [|Vud|2G2
F (1 + 3λ2)]−1, it is also possible to extract the quark-

mixing matrix element |Vud| from measurements of τn and λ, where λ is the ratio of

axial vector to vector coupling in the hadron current. The value of |Vud| has important

implications for the unitarity of the CKM matrix in conjunction with |Vus| and |Vub| via

the constraint |Vud|2 + |Vus|2 + |Vub|2 = 1.

There are ongoing efforts to improve significantly on these measurements. The
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first measurement of the beta asymmetry with ultracold neutrons was recently pub-

lished [67].

6.2 Overview of Polarized Neutron β-decay Asymmetries

The purpose of this chapter is to present an anlytical formula for the proton asymmetry

from polarized neutron decay including recoil-order effects. It is useful to expand the

neutron’s differential decay rate in terms of the electron’s maximum energy divided

by the neutron mass. We refer to this small, dimensionless quantity as R for recoil,

R ≡ max(Ee/mn) ≈ 0.001. Both kinematic effects and terms in the interaction current

proportional to the momentum transfer contribute at O(R). Taking these effects into

account will play a role not only in searching for new physics, but also in extracting

the standard-model form factors from combined measurements.

Excellent reviews on the effects of recoil-order corrections in beta decay already

exist [48, 40, 43], so here we give a brief introduction. A common expression for the

decay rate [52] is

d5Γ =
2|GF |2
(2π)5

Ee|−→pe |(E0−Ee)
2

[

1+a
−→pe

Ee
·
−→pν

Eν
+
−→
P ·
(

A
−→pe

Ee
+B

−→pν

Eν
+D

−→pe

Ee
×

−→pν

Eν

)

]

dEedΩedΩν ,

(6.1)

in which E0 is the maximum electron energy, −→pe and −→pν are the momenta of the elec-

tron and neutrino, and Ee and Eν are the energies of the electron and neutrino.
−→
P is

the neutron’s polarization. As can be seen from the equation a determines the e−ν cor-

relation, A the beta asymmetry, B the neutrino asymmetry, andD is a T-odd term. The

coefficients a,A,B, and D depend on the form of the interaction. Within the standard

model and ignoring recoil-order effects and radiative corrections,

a =
1 − λ2

1 + 3λ2
, A =

2λ(1 − λ)

1 + 3λ2
, and B =

2λ(1 + λ)

1 + 3λ2
. (6.2)

To first order (O(R)), the neutrino exhibits a large asymmetry (B ≈ 0.98) and the

electron exhibits a small asymmetry (A ≈ −0.1, see Figure 6.3).

Because the neutron is a composite object, the weak current contains terms in ad-

dition to those found for point-like particles, and the most general possible (Lorentz
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invariant) V-A hadron current can be written with six dimensionless constants (form

factors), three vector (fi) and three axial vector (gi). Parametrizing these currents in

terms of the momentum transfer leads to a matrix element of the form

M =
GF√

2
〈p|Jµ(q2)|−→n 〉 × e(pe)γµ(1 − γ5)ν(pν), (6.3)

in which

〈p(p′)|Jµ|n(p,−→s )〉 = p(p′)
[

f1γ
µ−i f2

mn
σµνqν+

f3

mn
qµ−g1γµγ5+i

g2
mn

σµνγ5qν−
g3
mn

γ5q
µ
]

n(p,−→s ).

(6.4)

Here qµ = pµ − p′µ is the momentum transfer, which is equal to the difference between

the neutron (pµ) and proton (p′µ) momenta. mn and −→s are the neutron’s mass and spin.

Because the mass of the neutron is of order 1 GeV, while the momentum transfer in

its decay is ≈ 1 MeV, the recoil-order effects are of order 0.1%. All the vector (fi) form

factors are related to the isovector electromagnetic form factors of the nucleon via the

Conservation of the Vector Current (CVC) hypothesis [30, 38]:

f1 = 1

f2 =
µp − µn

2

f3 = 0.

(6.5)

Both the terms with f3 and g2 are called Second Class Currents (SCC) [83]. Within

the standard model and assuming isospin to be an exact symmetry, f3 and g2 should

be zero, but due to differences between the quark wave functions within the neutron

and proton one expects [19, 74] g2/g1 in the range ≈ 0.01 − 0.05. Presently the best

value of g2 comes from an experiment in the A = 12 system [62], which found 2g2/g1 =

−0.15±0.12±0.05(theory). The pseudoscalar term g3 only results in smaller terms that

don’t contribute to O(R2).

Measurements of neutron decay have a distinct advantage over experiments with

composite nuclei in terms of systematic uncertainties, since one need not account for

the effects of the many-body nuclear system. In a composite nucleus, the observables

used to search for second-class currents include contributions from first-class currents.

In order to disentangle the effects of these two types of couplings, it is necessary to
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measure both β+ and β− decays from mirror nuclei. It is also necessary to calculate and

compensate for the two separate nuclear transition matrix elements to the daughter

nucleus to use the data from the mirror nuclei.

The neutron is simply three quarks in a bound state. Precision measurements of

the parity-breaking beta and proton asymmetries with respect to the neutron spin

could provide better tests of the recoil-order terms within the weak interaction hadron

current. To this end, we present a calcuation of the proton asymmetry.

Much work has been done on recoil-order effects in the weak interaction. Recoil-

order calculations of the lepton asymmetry were performed by Harrington [43] for the

polarized weak hadron decays of the neutron, Σ−, Λ, and Ξ. A very general treat-

ment within “effective field theory” covering various asymmetries and correlations of

both composite nuclei and hadrons was published by Holstein [48]. Recently, Gardner

and Zhang [37] gave results specialized to the neutron for the β-asymmetry and eν

correlation. Glück and Toth [39] numerically calculated asymmetries, including the

recoil asymmetry. Notably missing from all this work is an analytic calculation of the

recoil asymmetry. We performed an analytic calculation of the recoil asymmetry for

completeness, maximum insight into possible systematic errors, and to get access to

as many analysis tools as possible for neutron β-decay. It is experimentally possible

to measure both the electron and the proton from neutron β-decay. Several experi-

mental collaborations [85, 67, 69] are making precision measurements of A and the

recoil asymmetry; hopefully calculations of the recoil asymmetry will prove useful in

subsequent analyses.

In the process of evaluating the proton asymmetry, it was natural to reevaluate the

hadronic matrix element. We found small differences with previous calculations that

are listed under [43]. Evaluation of the matrix element in the rest frame of the neutron

leads to a general expression of the form

M = C1 +
−→
P · (C2

−→pe + C3
−→pν + C4(

−→pe ×−→pν)) , (6.6)

in which each Ci is a function of the four-momenta pe, pp, and pν . We performed recoil-

order calculations of a and A, obtaining agreement with the results of Gardner and
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Zhang [37]. Experimentally, current values of these parameters are λ = −1.2695 ±
.0029, a = −0.103 ± .004, and A = −0.1173 ± 0.0013 [26].

6.3 Calculation of the Proton Asymmetry

The desired new observable is the decay rate in terms of electron energy and proton

angle, or d2Γ
dEed(cos θp) . The easiest way to calculate this is to first integrate over d3−→pν ,

then d(cos θep). In order to obtain the asymmetry term C3 as a function of −→pp instead

of −→pν , simply substitute −→pν = −−→pe − −→pp. With the limits cos(θep) = ±1, conservation of

energy and momentum give three limiting equations,

|−→pν | = Eν = (mn − Ee − Ep) = |−→pe | + |−→pp|,
|−→pe | − |−→pp|, and

|−→pp| − |−→pe |.

(6.7)

The first two provide lower limits of the integral over proton momentum for low and

high electron energies, respectively, and the last is an upper limit for all electron en-

ergies. The first of the two lower limits applies when −→pe is smaller than −→pν , which is

equivalent to Ee < Ec
e, where Ec

e is the solution to −→pe = −→pν . The second lower limit

applies when −→pe is larger than −→pν , or when Ee > Ec
e. These limits reflect the fact that

in the neutron’s rest frame at very low electron energies, the recoil momentum must

oppose the neutrino momentum; similarly at high electron energies, the recoil momen-

tum must oppose the electron’s momentum.

It is simplest to express the result in terms of the dimensionless recoil variables.

To this end, we define

R ≡ E0

mn
=
m2

n +m2
e −m2

p

2m2
n

≈ .0014,

x ≡ Ee

E0
= Ee/(Rmn),

ǫ ≡
(me

mn

)2
≈ 3 · 10−7, and

β ≡ pe

Ee
,

xc ≡ Ec
e

E0
=

mn[(mn −mp)
2 +m2

e]

(mn −mp)[(mn −mp)(mn +mp) +m2
e]

≈ 0.578

(6.8)
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and the limits for the integral over proton momentum become

pp/mn ≡ y

y− =
R(1 − x)

1 −Rx(1 + β)
− βRx (x < xc)

y− = βRx− R(1 − x)

1 −Rx(1 + β)
(x > xc)

y+ = βRx+
R(1 − x)

1 −Rx(1 − β)
(upper limit ∀ x).

(6.9)

Two integrals are necessary to obtain the proton asymmetry, one for the portion

dominated by the neutrino (Ee small) and one for the portion dominated by the elec-

tron. The results for the proton asymmetry follow (see Appendix), with all recoil-order

terms included. See Figure 6.1 for a plot of the proton asymmetry. All plots are of the

observable

Λ = 2(N+ −N−)/(N+ +N−), (6.10)

where N+ is the number of the given particle emitted in the hemisphere defined by

a positive dot product with the direction of the neutron’s polarization, and N− is the

number in the opposing hemisphere. Λ is 1 if the given particle is always emitted along

the parent’s polarization, 0 if the particle is emitted isotropically, and -1 if all emissions

oppose the parent’s polarization. Note that the value of the proton asymmetry ranges

from −Λν at Ee = me to −Λe at Ee = E0.

The proton asymmetry follows, omitting a factor of |f1|2 so that f1 is normalized

to 1. The equations appear as if all form factors are real for the sake of brevity. To

obtain the more general complex expressions, first separate all possible factors of λ2

and replace with |λ|2. All remaining expressions involve only two form factors. Take

the real part of the product of one form factor and the complex conjugate of the other,

e.g. f2f3 → Re(f2f
∗
3 ). (The only possible exception is a single factor of λ, which would

imply Re(f1g
∗
1).) For completeness, the full matrix element is included in Appendix G.

d2Γ

dEed(cos θp)
=

2|GF |2
(2π)3

(mnR)4βx2(1 − x)2[1 +Ap cos θp] (6.11)
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Figure 6.1: The proton asymmetry, with f2 set to its CVC hypothesis value and all

other recoil-order hadron couplings set to zero. Λp is equal to the observable 2(Np+ −
Np−)/(Np+ +Np−).
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Figure 6.2: Possible changes in the proton asymmetry. The solid line is the change in

Λp from f2 set to the value predicted by the CVC hypothesis to f2 = 0. The dashed line

is the change in Λp from λ equal to the world average[26] to λ set to the world average

plus its uncertainty, λ+ ∆λ.
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Ap = − 2λ

3(1 − x)2(1 + 3λ2)
× [3λ(1 − x)2 + 3(1 − x)2 + β2x((2 − 3x) + λ(−2 + x))]

R
2

3(1 − x)2(1 + 3λ2)2
× {λ[3(1 − x)3(λ3 − λ2 − λ+ 1)

+β2x(λ3(−5 + 3x− 4x2 − 4β2x+ 19
5 β

2x2)

+λ2(9 − 11x + 4x2 − 11
5 β

2x2) + λ(−3 + 5x− 4x2 + 4β2x− 27
5 β

2x2)

+(−1 + 3x− 4x2 + 3
5β

2x2))]

+f2λ[3λ2(1 − x)2(x+ 2) + 3λ(1 − x)2(3x− 4) + 6λ(1 − x)3

+β2x(λ2(1 − 2x)(10x − 7) + λ(7 − 8x+ 2x2) − 6(1 − x)2)

+β4x2(λ2(−8 + 53
5 x) + λ(6 − 11x) + (2 − 4

5x))]

+2f2
2λ[λ(−3(1 − x)3 + β2(1 − x)(3 − 4x+ 2x2) + β4(1 − x)(x− 2))

−3(1 − x)3 + β2(1 − x)(3 − 8x+ 6x2) + β4x(1 − x)(2 − 3x)]

+2f2f3λ
2[−3(1 − x)3 + β2(1 − x)(3 − 4x+ 2x2) + β4x(1 − x)(x− 2)]

+f3λ[3λx(1 − x)2 + x(1 − x)2 + β2x(λ(−3 + 4x− 2x2) + (−3 + 8x− 6x2))

+β4x2(λ(2 − x)) + (−2 + 3x)]

+g2[2λ
3(3(1 − x)3 + β2x(1 − 2x)(1 − x) − β4x2(2 − x))

+λ2(3(x− 4)(1 − x)2 + β2x(1 − 10x+ 12x2)) + β4x2(4 − 27
5 x)

+3λ(3(1 − x)2 − β2x(2 − x)) + (3x(1 − x)2 + β2x(1 − 2x) + 1
5β

4x3)]} + O(R2)

(Ee < Ec
e)

(6.12)
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Ap =
2λ

3βx2(1 + 3λ2)
× [−λ(1 − x2) + (1 − 3x)(1 − x) + 3β2x2(λ− 1)]

−R 2λ

15βx2(1 + 3λ2)2
× {(1 − x)(2x2 + 21x− 13) + 15β2x2(1 − 2x)

+λ[−(1 − x)(3 − 41x + 28x2) + 5β2x(2x+ 1)(2 − 3x) − 30β4x3]

+λ2[−(1 − x)(39 − 103x + 34x2) + 5β2x2(1 − 10x)]

+λ3[31 − 28x− 7x2 + 4x3 + 5β2x(−2 + 3x− 10x2) + 30β4x3]

+f2λ[−3(1 − x)2(3x+ 2) + 5β2x(1 + 4x− 8x2) − 15β4x3]

+10f2
2λ[(3x− 1)(1 − x)2 + λ(x+ 1)(1 − x)2

+β2(1 − x)(1 − 4x+ 6x2 − λ(1 + 2x2)) + 3β4x2(1 − x)(1 − λ)]

+10f2f3λ[(1 − x)2((3x− 1) + λ(x+ 1) + β2(1 − x)((1 − 4x+ 6x2) − λ(2x2 + 1))

+3β4x2λ(1 − x)(1 − λ)]

+5xf3λ[−(1 − x)(3x− 1) + λ(x2 − 1) + β2((−1 + 4x− 6x2) + λ(1 + 2x2))

+3β4x2(1 − λ)]

+g2[−2(1 − x)(3x2 + 4x− 2) + 10λ(x2 − 1) + 5λ2x(x2 − 1) − 10λ3(x+ 1)(1 − x)2

+10β2x(−x+ x2 + 3λx+ λ2(1 − x+ 9x2) + λ3(1 − x)(2x− 1))

+15β4x3λ(1 − λ)]} + O(R2)

(Ee > Ec
e)

(6.13)

6.4 Conclusions

The proton asymmetry could be used to measure f2 and check its agreement with

the CVC hypothesis. The absolute magnitude of the f2 contribution to Λp(Figure 6.2)

is approximately twice as large as the f2 contribution to Λe, the beta asymmetry (Fig-

ure 6.4). The overall magnitude of the proton asymmetry is much larger, but the f2 con-

tribution results in a shift of 1.896 keV in the electron energy at which Λp crosses zero,

which could be detected with sufficient precision. The proton distribution is isotropic

at a higher electron energy if f2 = 0.

SCC effects would be much harder to observe. Based on the current limit, g2 could

only contribute to Λp at 5% of the level at which f2 does. To extract g2 from a measure-
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Figure 6.3: The beta asymmetry, with f2 set to its CVC hypothesis value and all other

recoil-order hadron couplings set to zero. The beta asymmetry is dominated by the

overall factor β = pe

Ee
.

ment of Λp would require accuracy better than one part in ten thousand.

Incomplete knowledge of the polarization of the neutron could be a dominant sys-

tematic effect in experiments to measure decay asymmetries [58], so it is useful to

consider a quantity that is independent of the polarization. The ratio Λp/Λe is inde-

pendent of the neutron’s polarization. Figure 6.5 shows the ratio Λp/Λe. Λp/Λe also

shows sensitivity to the values of f2 and λ. Figure 6.6 shows the change in Λp/Λe,

which is at the 1% level. So not only is the ratio of the asymmetries independent of the

neutron’s polarization, it is also more sensitive to variations in the parameters λ and

f2 than either Λp or Λe alone.

In summary, we presented an analytical expression for the proton asymmetry from

polarized neutron decay and used it in conjunction with a similar expression for the

beta asymmetry to highlight advantages of a combined measurement.
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Figure 6.4: The possible changes in the beta asymmetry. The solid line is the change

in Λe from f2 set to the value predicted by the CVC hypothesis to f2 = 0. The dashed

line is the change in Λe from λ equal to the world average to λ set to the world average

plus its uncertainty, λ+ ∆λ.
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Figure 6.5: The ratio Λp/Λe, which is independent of the neutron’s polarization, with

f2 set to its CVC hypothesis value and all other recoil-order hadron couplings set to

zero. The plot excludes the lowest energies because the ratio diverges as Ee → me and

Λe → 0.
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6.5 Comments

This work was previously published [78]. Since then, the proton asymmetry has been

measured with 1% precision [75]. The magnitudes of various recoil-order currents

based on supersymmetric extensions to the Standard Model have recently been esti-

mated [66]. Next-generation proton asymmetry measurements, especially combined

with the beta asymmetry, truly have the potential to text the limits of the standard

model.
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Appendix A

PERTURBATION THEORY

For the sake of both clarity and an avid interest in the subject itself, the following

is a presentation of perturbation theory and some of its particularly relevant results.

This first two sections are essentially modified from Sakurai [72]; the remainder takes

an approach motivated by and relevant to beta and double-beta decay.

A.1 Schrödinger Equation for Time-Dependent Perturbations

Consider a Hamiltonian H0 with a complete set of eigenstates |i〉 such that H0|i〉 =

Ei|i〉. Any state |α〉 may be written as a linear combination of the eigenstates, |α〉 =
∑

i ci|i〉. The aim is to study the effect of a perturbation V on the Hamiltonian H0, so

the true Hamiltonian is

H = H0 + V, (A.1)

where V is small relative to H0. The first step is to remove the known time dependence

due to the unperturbed Hamiltonian, which is achieved by multiplying the ket |α〉 by

the inverse of the time-evolution operator for the unperturbed Hamiltonian:

|α〉I = eiH0t/~|α〉. (A.2)

The suffix I denotes the new basis and stands for interaction. Now consider a matrix

element for an operator O, 〈α|O|α〉. To obtain the same matrix element using |α〉I
instead of |α〉, it is necessary to transform the operator:

OI = eiH0t/~Oe−iH0t/~. (A.3)
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The goal is now to rewrite the Schrödinger Equation in terms of |α〉I . To this end, apply

i~
∂

∂t
to |α〉I to get

i~
∂

∂t
|α〉I = −H0|α〉I + eiH0t/~i~

∂

∂t
|α〉 (A.4)

= −H0|α〉I +H0|α〉I + eiH0t/~|α〉 (A.5)

= eiH0t/~V
(

e−iH0t/~eiH0t/~

)

|α〉. (A.6)

Taking the derivative, applying the Schrödinger Equation to |α〉, and multiplying by a

suggestive form of 1, one obtains

i~
∂

∂t
= VI |α〉I , (A.7)

in which the time dependence due to H0 has been removed from the state vectors.

The goal is to study transitions between the H0 eigenstates due to V . For a state

|α〉 =
∑

i ci|i〉, with time dependence |α〉(t) =
∑

i cie
−iEit/~|i〉, the time dependence has

been strategically removed in the interaction basis, |α〉I(t) =
∑

i ci|i〉. Next we apply

our modified Schrödinger Equation (Equation A.7) to this ket |α〉I and operate from

the left with the bra 〈f |, to find

i~ċf (t) =
∑

i

〈f |V |i〉ei(Ef−Ei)t/~ci(t) (A.8)

=
∑

i

Mfie
iωfitci(t), (A.9)

where we have defined Mfi = 〈f |V |i〉 and ωfi = (Ef −Ei)/~. Equation A.9 is exact, but

for a Hamiltonian with an infinite number of states, it defines an infinite set of coupled

differential equations. Approximation methods will be necessary.

A.2 Dyson Series

To facilitate approximations, it is useful to rewrite the Schrödinger Equation for the

interaction basis in terms of a time-evolution operator. Define the operator UI(t) so

that

|α〉I(t) = UI(t)|α〉I (t = 0), (A.10)
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which requires that UI(t = 0) = 1. Now require the time-dependent state vector

UI(t)|α〉I to satisfy Equation A.7. |α〉I(t = 0) is a constant, so UI(t) must satisfy

i~
∂

∂t
UI(t) = VI(t)UI(t). (A.11)

Integrating to time T , one finds

i~ (UI(T ) − UI(0)) =

∫ T

0
dtVI(t)UI(t), (A.12)

on which we impose the initial condition UI(0) = 1 to find

UI(T ) = 1 +
1

i~

∫ T

0
dtVI(t)UI(t). (A.13)

Now we solve for UI(T ) recursively to obtain the Dyson Series:

UI(T ) = 1 +
1

i~

∫ T

0
dtVI(t) +

1

(i~)2

∫ T

0
dt

∫ t

0
dt′VI(t)VI(t

′) + ... (A.14)

This series has an infinite number of terms. The second and third terms are sufficient

for our purposes. Although the derivation used the Schrödinger Equation instead of

fields and a Lagrangian density, the same series can give us the correct results for the

Weak Interaction processes we wish to study.

A.3 Fermi’s Golden Rule

The second term on the right-hand side of Equation A.14 describes processes involving

a single interaction. Consider a system initially in a state |i〉. To first order in the

perturbation V , assuming that the perturbation is time-independent, the probability

of a transition to state |f〉 is

Pi→f (t) = |〈f |UI(t)|i〉|2 (A.15)

=

∣

∣

∣

∣

1

i~

∫ t

0
dt′〈f |VI |i〉

∣

∣

∣

∣

2

(A.16)

=

∣

∣

∣

∣

Mfi

i~

∫ t

0
dt′eiωfit

∣

∣

∣

∣

2

(A.17)

=
|Mfi|2
(~ωfi)2

(2 − 2 cos(ωfit)) , (A.18)
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where the notation introduced for Equation A.9 has been used again. This is the total

probability of a transition to a state |f〉. Note that for short times, the probability is

actually nonzero even for states that violate conservation of energy. This is why pro-

cesses like beta decay, in which there is an intermediate virtual W boson that violates

conservation of energy, are possible.

For most purposes, the quantity of interest is the transition rate. For instance,

measuring the lifetime of a radioactive isotope, one measures the decay rate as a func-

tion of time for a large sample. To find the average transition rate from the transition

probability, divide by t and take the limit as t becomes very large:

Γi→f = lim
t→∞

|Mfi|2
(~ωfi)2

(2 − 2 cos(ωfit))

t
. (A.19)

Clearly, the transition rate vanishes unless ωfi → 0. The function diverges at ωfi = 0.

This expression for the decay rate at long times behaves like an energy-conserving δ

function.

To extract the normalization of the δ function, one can integrate the function by use

of contour integrals in the complex plane. For convenience, we momentarily discard

the subscripts to write ω in place of ωfi. The integral of interest is
∫ ∞

−∞
dω

(2 − 2 cos(ωt))

ω2
. (A.20)

Consider the two terms in the numerator of the integral separately. The two integrals

are
∫ ∞

−∞
dω

2

ω2
(A.21)

and
∫ ∞

−∞
dω

−2 cos(ωt)

ω2
. (A.22)

Both integrals can be solved by allowing ω to take complex values and considering

the two contour integrals in Figure A.1. By the Residue Theorem, the integral A.21

vanishes because it has no residue. The second integral can be solved as the real part

of the integral of an exponential
∫ ∞

−∞
dω

−2 cos(ωt)

ω2
= Re

(
∫ ∞

−∞
dω

−2eiωt

ω2

)

. (A.23)
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C1

C2

Im(

Re(ω

ω)

)

Figure A.1: Contours to integrate the δ function in Fermi’s Golden Rule. In the limit

where the semicircular radius R→ ∞, its contribution to both integrals vanishes. The

integral from −∞ to ∞ along the real axis is equal to the average of the integral over

each of the two contours. Both contours follow the real axis except at the origin, where

there is a pole. The semicircles about the pole at ω = 0 are considered in the limit

where the radius r → 0. The contours have been drawn away from the real axis for

clarity.

The desired integral is equal to the average of the two contour integrals in Figure A.1.
∫ ∞

−∞
dω

−2eiωt

ω2
=

1

2

(
∮

C1

dω
−2eiωt

ω2
+

∮

C2

dω
−2eiωt

ω2

)

(A.24)

The integral over C1 vanishes because it has no residue. All that is necessary to solve

the integral over C2 is to determine the residue at ω = 0.

To find the residue at ω = 0, expand the exponential:

−2
eiωt

ω2
= −2

(

1 + iωt− ω2t2/2 − · · ·
ω2

)

(A.25)

The coefficient for the term that goes like 1
ω is −2it; this is the residue at ω = 0. Using

the Residue Theorem, the result is
∫ ∞

−∞
dω

−2 cos(ωt)

ω2
=

1

2
Re (2πi[−2it]) = 2πt. (A.26)

Now we revisit Equation A.19 with this result to obtain

Γi→f = 2π
|Mfi|2

~2
δ(ωfi). (A.27)
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This is the average rate of transition from a state |i〉 to a state |f〉 due to the perturbing

interaction, V .

For beta decay, we will consider final states that involve a continuum of states for

free particles: for example, a β− shares energy available from a decay’s Q value with a

ν̄e; both are free particles that can be emitted in any direction, with continuous energy

distributions. For this reason, to get an actual decay rate, one must sum Equation A.27

over the number of final states available. Since the final states are continuum states,

the integral performed over ωfi becomes an integral over Ef , while changing the units

within the δ function gives a factor of ~. Integrating over the continuum states by

applying
∫

dEf
dN

dEf
to get the total decay probability, one finds the standard form of

Fermi’s Golden Rule:

Γi→f =
2π

~

∫

dEf
dN

Ef
|Mfi|2δ(Ef − Ei) (A.28)

The factor
∫

dEf
dN

dEf
gives the number of final states available. The number of final

states available is determined by the total phase space available, which is given by the

dimensionless integral

N =

∫

dEf
dN

dEf
=

∫

∏

k

d3~pkd
3~xk

(2π~)3
, (A.29)

where the product is over the number of particles in the final state, k. In general, the

volume integrals are performed to evaluate the interaction matrix elements. Barring

non-local interactions, the volume integrals will yield a momentum-conserving delta

function, δ3(
∑

i ~pi −
∑

k ~pk). The remaining integral,

f ≡
∫

∏

k

d3~pk

(2π)3
δ3(
∑

i

~pi −
∑

k

~pk)δ(
∑

i

Ei −
∑

k

Ek), (A.30)

is commonly denoted by f in the literature and referred to as the phase-space inte-

gral. The results of this integral for several beta-decay processes are presented in

Appendix B.
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A.4 Second-Order Transitions

Now we examine the third term on the right-hand side of Equation A.14. The results

apply to both 2νββ and 0νββ decay. These are both processes that feature two interac-

tions. Consider the term

1

(i~)2

∫ T

0
dt

∫ t

0
dt′VI(t)VI(t

′), (A.31)

which gives the transition amplitude

Mi→f (T ) = 〈f | 1

(i~)2

∫ T

0
dt

∫ t

0
dt′VI(t)VI(t

′)|i〉. (A.32)

Insert a complete set of states,
∑

m |m〉〈m|, between VI(t) and VI(t
′) to find

Mi→f (T ) =
∑

m

1

(i~)2

∫ T

0
dt

∫ t

0
dt′Mfme

iωfmtMmie
iωmit

′

. (A.33)

The result from the integral over dt′ is

Mi→f (T ) =
∑

m

1

(i~)2

∫ T

0
dt
MfmMmi

iωmi

(

eiωfit − eiωfmt
)

. (A.34)

For systems that exhibit double-beta decay, energy levels of the intermediate nu-

cleus are the statesm over which one sums. In cases of experimental interest, the inter-

mediate nucleus has a higher ground-state energy than either the parent or daughter

nucleus. The modulus-squared of the previous expression includes terms proportional

to eiωfm and eiωmi , but because there are no states in the intermediate nucleus that

satisfy conservation of energy, these terms will vanish. The same integrals performed

to obtain Equation A.28 apply to this expression and give the same result, with a mod-

ification to the matrix element

Mfi →
∑

m

MfmMmi

~ωmi
. (A.35)

In the case of 2νββ decay of 100Mo to the ground state of 100Ru, for example, the

matrix element can be expressed as

Mfi =
∑

m

〈100Ru|V |100Tcm〉〈100Tcm|V |100Mo〉
MMo − Eβ1 − Eν̄e1 − ETcm

, (A.36)
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where the sum is over the ground and excited states of 100Tc and Eβ1 and Eν̄e1 are the

energies of the electron and neutrino emitted in the first virtual transition. Making

the intuitive assumption that Eβ1 and Eν̄e1 should have the same energy as Eβ2 and

Eν̄e2 on average, one can substitute

Eβ1 + Eν̄e1 =
Qββ

2
=

(Qβ −QEC)

2
(A.37)

in the denominator to obtain the contribution to the total decay matrix element from

the 100Tc ground state (or any other state, for that matter):

|Mfi(gs)| ≈
|〈100Ru|V |100Tc(gs)〉||〈100Tc(gs)|V |100Mo〉|

(QEC +Qβ)/2
(A.38)

The approximation of a constant denominator using an effective Q-value for the av-

erage excitation energy in the intermediate nucleus has been used extensively in the

literature. This approximation is especially suited for 0νββ decay, because the denom-

inator gets integrated with an additional factor of the virtual neutrino’s energy Eν ,

which is large compared to the Q values involved (See Section 1.7).
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Appendix B

BETA-DECAY KINEMATICS

It is worthwhile to consider phase-space integrals for the weak processes and ap-

proximations that are referenced throughout this document. Here we consider only

the functional forms of the integrals for clarity, leaving dimensions, factors of 2, and

factors of π for the references that will inevitably be necessary for precise calculations.

B.1 Electron Capture

The simplest of these integrals for β-decay processes is the integral corresponding to

electron capture. This is the process in which a nucleus captures one of its atomic

electrons and emits a neutrino,

A(N,Z) + e− → A(N + 1, Z − 1) + νe. (B.1)

The same integral applies to neutrino capture. Writing f in terms of the final-state

neutrino and daughter nucleus in the rest frame of the parent nucleus,

f ∝
∫

d3~pfd
3~pνδ

3(~pν − ~pf )δ(Ef + Eν −M). (B.2)

Performing the integral, one finds

f ∝ p2
ν

pν

Eν
+ pν

Mf

, (B.3)

which is now constrained such that p2
ν +m2

ν +
p2

ν

2Mf
= ∆M . Treating the neutrino mass

as negligible compared to the Q-value and the Q-value as negligible compared mass of

the daughter nucleus, this simplifies to

f ∝ p2
ν , (B.4)

where pν = Eν = Q. Just to put the approximations in perspective, for the EC de-

cay of 100Tc, the energy available is QEC = 168 keV. The recoil correction is O(10−6).
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Assuming a neutrino mass mν = 1 eV, the correction for the for the neutrino mass is

< 10−5.

Accurate calculations must take into account the captured electron’s wave function

and binding energy, which can be significant compared to the low Q values at which

electron captures take place. Exchange effects, due to antisymmetrization of all the

final-state electron wave functions, are also relevant.

B.2 Beta Decay

In beta decay, an initial nucleus decays into a daughter nucleus with a different charge,

emitting either a β− and a ν̄e

A(N,Z) → A(N − 1, Z + 1) + β− + ν̄e, (B.5)

or a β+ and a νe,

A(N,Z) → A(N + 1, Z − 1) + β+ + νe. (B.6)

In the rest frame of the parent nucleus, the phase space for the three final particles is

given by

f ∝
∫

d3~pfd
3~ped

3~pνδ
3(~pf + ~pe + ~pν)δ(M − Ef − Ee − Eν), (B.7)

in which M is the mass of the parent nucleus and mf and Ef are the mass and energy

of the daughter nucleus. Integrating over the daugher nucleus’s momentum first and

using the relation d3~p = p2dpdΩ ∝ pEdE for both the neutrino and the electron, one

finds

f ∝
∫

dEνdEepeEeE
2
νδ(M −

√

M2
f + p2

e + p2
ν + 2~pe · ~pν − Ee − Eν), (B.8)

in which mν/Eν has been neglected. Integrating over dEν , the derivative of the δ

function’s argument gives a denominator of 1 + (Eν + pe cos(θeν))/Ef . Note that this

denominator differs from 1 only by a very small quantity. For the moment, neglect

the small term in the denominator. This gives an approximate result that is adequate

qualitatively adequate for many beta-decay spectra:

dΓ

dEe
= Eepe(E0 − Ee)

2. (B.9)
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The integral over the electron energy gives a decay rate that is proportional to Q5,

which is known as Sargent’s Rule. The next most important effect to calculate an

accurate beta-decay spectrum takes into account the charge of the nucleus with the

Fermi function, F (Z,Ee).

B.3 Beta Decay with Recoil Corrections

Extract a factor of 1
Ef

from the matrix element and distribute it through the de-

nominator before performing the integral in Equation B.8, then use the identity

Ef + Eν = M − Ee to obtain

f ∝
∫

dEedΩedΩν
EepeE

2
ν

M − Ee + pe cos(θeν)
. (B.10)

It is useful to define some variables. Conservation of energy and momentum give

|~pe + ~pν | =
√

Ef −m2
f =

√

(M − Ee − Eν)2 −M2
f , (B.11)

which can be solved for the neutrino’s energy:

Eν =
M2 +m2

e −M2
f − 2MEe

2(M − Ee + |~pe| cos(θeν))
. (B.12)

Defining a small, dimensionless parameter that characterizes the decay, R ≡
max(Ee/M), set Eν = 0 in the previous equation and it follows that

R =
M2 +m2

e −M2
f

2M2
. (B.13)

Then the differential probability as a function of electron energy and the electron-

neutrino angle becomes

f ∝ (MR)4
∫

dxd(cos(θeν))
βx2(1 − x)2

1 −Rx (1 − β cos(θeν))
, (B.14)

in which x is the electron’s energy divided by its maximum energy, RMn. The kinemat-

ical corrections from the denominator have effects on the same order as non-Standard

Model couplings, so they are important for precision measurements that aim to probe

for new physics. See Chapter 6 for more on these recoil-order effects.
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B.4 Double-Beta Decay

The 0νββ decay mode has larger phase space than 2νββ decay. To make a simple

approximation, ignore the portion of the phase space for the two neutrinos in 2νββ

decay; the missing dimension of [E]6 in the 0νββ decay phase space is contained in the

neutrino potential and matrix element of Equations 1.56 and 1.57. The phase space

contribution from the two electrons in either case is proportional to

(

Q

me

)5

, (B.15)

similar to Sargent’s Rule for single-beta decay. The total energy Q must be divided

between all of the final-state particles. Only two electrons are emitted from 0νββ decay;

thus the phase space is roughly proportional to

(

Q

2me

)5

. (B.16)

But there are four particles from 2νββ decay; the estimate becomes

(

Q

4me

)5

. (B.17)

Therefore the phase space is ≈ 30 times larger for 0νββ decay. However, this is in-

significant compared to the suppression due to the 〈mν〉/〈Eν〉 factor in the 0νββ matrix

element, which was discussed in Section 1.7.
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Appendix C

DIRAC EQUATION

The Dirac equation is a first-order equation that describes spin-1/2 particles. As-

suming that such an equation exists, the wave functions must satisfy

Eψ = ~α · ~pψ + βmψ. (C.1)

Squaring both sides of the equation yields

E2ψ =
∑

i6=j

{αi, αj}pipjψ + β2m2ψ +
∑

i

{αi, β}pimψ +
∑

i

α2
i p

2
iψ, (C.2)

in which the anticommutators are given by {αi, αj} = αiαj + αjαi. This equation will

satisfy the requirement of Lorentz invariance, E2 − p2 = m2, only if the following

relationships are satisfied:

{αi, αj} = δij , (C.3)

{αi, β} = 0, (C.4)

β2 = 1. (C.5)

To make the Lorentz invariance manifest in the equation, multiply Equation C.1 by β

and rearrange to obtain

βEψ − β~α · ~pψ −mψ = 0. (C.6)

In the Chiral representation, also referred to as the Weyl basis, the matrices take the

explicit forms

β =





0 1

1 0



 (C.7)

and

αi =





−σi 0

0 σi



 , (C.8)
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where σi refers to the three 2×2 Pauli matrices and the 1s in β refer to the 2×2 identity

matrix. These four 4 × 4 matrices define a four-vector,

(γ0, ~γ) = (β, β~α), (C.9)

such that the manifestly Lorentz-invariant form of the Dirac equation is

γµpµψ = mψ, (C.10)

and pµ is the four-momentum (E, ~p). The Dirac equation satisfies Lorentz invariance

because of the anticommutation relation between the γ matrices:

{γµ, γν} = 2gµν (C.11)

In this representation, the metric tensor has negative spatial components gii = −1 and

g00 = +1, descriptively known as the “mostly-minus metric.” The gamma matrices are

conveniently expressed as

γµ =





0 σµ

σ̄µ 0



 , (C.12)

if we define σµ = (1, ~σ) and σ̄µ = (1,−~σ). The Feynman dagger notation is often

convenient, /p ≡ p · γ = γµpµ. It gives the Dirac equation an especially compact form:

/pψ = mψ. (C.13)

This notation disguises a first order, linear differential equation in four dimensions in

terms of complex four-by-four matrices to look as innocent as possible.

Now we seek solutions of the Dirac equation. A substitution of ψ =

eip·x(u−(p)χT , u+(p)χT )T into the Dirac equation written in terms of the four-vectors

σ and σ̄ defined after Equation C.12 yields




−m p · σ
p · σ̄ −m









u−(p)χ

u+(p)χ



 = 0. (C.14)

The identity (p · σ)(p · σ̄) = p2 makes it easy to find two solutions based on this substi-

tution:

ψ =





√
p · σχ

√
p · σ̄χ



 (C.15)
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There are two solutions, one for each component of the spinor χ. These wave functions

describe particles. Another set of solutions can be obtained in the same way but with

the the exponent changed to Et− ~p · ~x→ −Et− ~p · ~x and u± → v±:





−m −p · σ̄
−p · σ −m









v−(p)χ

v+(p)χ



 = 0. (C.16)

The “negative energy” solutions follow in a similar fashion,

ψ =





√
p · σ̄χ

−√
p · σχ



 (C.17)

The negative energy in the exponent finds its interpretation in the form of antipar-

ticles. For charged particles, these spinors correspond to particles with the opposite

charge. The only uncharged fermions currently known are neutrinos. Because the

neutrinos have no charge, it is not yet clear whether they are distinguishable from or

identical to their antiparticles (or some subtle mixture of these two possibilities), as

discussed in Section 1.7.

Consider the normalization of these wave functions. For both sets of wave functions

(Equations C.15 and C.17), one finds

ψ†ψ = p · σχ†χ+ p · σ̄χ†χ, (C.18)

from which a sum over helicity states (χ+ and χ−) yields ψ†ψ = 2E, which is the zeroth

component of the momentum four-vector. To make a Lorentz-invariant quantity from

this product of the wave functions, take the dot product of it with the four-vector (γ0, ~γ).

The Lorentz-invariant product is

ψ̄ψ ≡ ψ†γ0ψ, (C.19)

and the result of the sum over spins is ±2m, with the plus and minus signs correspond-

ing to the positive and negative (particle and antiparticle) solutions.

Because of its importance in the weak interaction, we discuss the discrete symme-

try of parity. ψ̄ψ is a scalar. ψ̄γµψ is a vector, but substituting ~p → −~p into ψ does not
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give the required transformation property Π : ψ̄~γψ ⇒ −ψ̄~γψ. The correct transforma-

tion properties are exhibited by

ψ(~p) → γ0ψ(−~p). (C.20)

For ψ̄ this gives

ψ̄ = (γ0ψ)† → (γ0γ0ψ)† = ψ† (C.21)

The spatial gamma matrices change sign:

ψ̄~γψ → ψ†~γγ0ψ = −ψ̄~γψ. (C.22)

But γ0 does not change sign, because it commutes with itself. By this prescription, any

operator O is given a parity transformation not only by substituting ~p → −~p, but also

by performing the similarity transformation:

Π : O ⇒ γ0Oγ
−1
0 = γ0Oγ0. (C.23)

The anticommutation relations between the gamma matrices ensure that this quantity

transforms properly under parity. The matrix

γ5 ≡ iγ0γ1γ2γ3 =





−1 0

0 1



 (C.24)

anticommutes with γ0 and the components of ~γ, which allows us to write the quantity

that transforms like an axial vector,

ψ̄γµγ5ψ. (C.25)

This is the bilinear poduct of the fields that has the same transformtion properties as

ψ̄γµψ, plus an additional overall minus sign. This completes the list of ingredients

essential to the weak interaction’s V −A current.
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Appendix D

PION DECAY

The pion decay branching ratio for the production of muons versus electrons is

simple to calculate. The matrix element for the decay comes from the current-current

coupling,

Lweak ∝ hµlµ, (D.1)

in which lµ represents the leptons. For the electron current,

lµ = ēγµ(1 − γ5)ν, (D.2)

in which ē is the field of the outgoing electron and ν is the field of the outgoing antineu-

trino. Only vector and axial vector currents result in a non-zero matrix element given

the V −A form of the lepton current. Since the pion has no spin, the only vector associ-

ated with the pion is its momentum, so we take the hadron current to be proportional

to this vector

hµ ∝ fπ(q2)qµ → fπq
µ, (D.3)

in which qµ is the pion’s four-momentum and fπ accounts for the strong interaction.

First, we present a calculation that emphasizes the role of the chiral form of the

weak interaction. To do this, write lµ in a form that emphasizes the chiral projections

that participate in the weak interaction:

lµ = ē
1 + γ5

2
γµ

1 − γ5

2
ν (D.4)

The matrix element is proportional to the invariant product of the hadron current and

the lepton current. The rest frame of the pion makes the calculation simple. Then

hµ ∝ (mπ, 0), which allows one to substitute γµ → γ0 in lµ with impunity.
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π−

l
− ν

Strong
Interaction

Figure D.1: Pion decay diagram for decay into a lepton-antineutrino pair. The strong-

interaction’s effects are represented by fπ in the calculation.

Now write the matrix element explicity in terms of the matrices and wave functions:

M ∝ fπmπ× (D.5)




√
Ee + ~pe · ~σeχe

√
Ee − ~pe · ~σeχe





T 



0 0

0 1









0 1

1 0









1 0

0 0









√
Eν + ~pν · ~σνχν

−
√
Eν − ~pν · ~σνχν





The wave functions for the electron and neutrino were taken from Equations C.15

and C.17. Note that the chiral projection operators pick only the
√
Ee − ~pe · ~σeχe and

√
Eν + ~pν · ~σνχν components of the wave functions. Because of this, the matrix element

is proportional to their product:

M ∝
√

Ee − ~pe · ~σe

√

Eν + ~pν · ~σνχ
T
e χν . (D.6)

To perform the sum over spins, it is convenient to write the spinors in the helicity basis.

In this basis, χ+ represents spin in the same direction as the particle’s momentum and

χ− represents spin opposed to the particle’s momentum. The sum over these two states

in the helicity basis gives

M ∝
√

Ee − pe

√

Eν + pν +
√

Ee + pe

√

Eν − pν , (D.7)
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in which the first term is from χ+ and the second term is from χ−. If the electron and

neutrino were both massless, the matrix element would be zero. Because me ≫ mν ,

the second term is negligible. Conservation of momentum gives pe = pν = Eν . It

is only the mass of the electron, which mixes positive helicity into the left-handed

chiral projection in proportion to the electron’s mass, that results in a non-zero matrix

element. The result is

M ∝
√

Ee − Eν

√

2Eν . (D.8)

The kinematics of the decay giveEe−Eν = m2
e/mπ, so that |M|2 ∝ m2

e. This kinematical

result is included after another calculation. The point here was to show explicitly, in

terms of the effect of the chiral projection operators on the wave functions, that the

weak interaction suppresses this decay, which only occurs in proportion to the electron

mass.

More complicated calculations (for example, see Appendix G) require more sophis-

ticated techniques than explicitly writing the matrices and spinors. To this end, we

now calculate the same matrix element using trace identities. First, use conservation

of momentum (pµ
π = pµ

e + pµ
ν ) to write

M ∼ fπ(pµ
e + pµ

ν )ēγµ(1 − γ5)ν

= fπ

(

ē/pe
(1 − γ5)ν + ē(1 + γ5)/pν

ν
)

. (D.9)

The Dirac equation tells us that

ē/p = −meē, (D.10)

and

/pν = 0, (D.11)

neglecting the neutrino mass. The decay rate is proportional to the modulus-squared

of the matrix element,

|M|2 ∼ |fπ|2m2
eν

†(1 − γ5)
†γ†0eē(1 − γ5)ν

= |fπ|2m2
eν̄(1 + γ5)eē(1 − γ5)ν. (D.12)
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This expression simplifies immensely if we sum over spins,

|M|2 ∼ |fπ|2m2
eTr

[

/pν
(1 + γ5)(/pe

+me)(1 − γ5)
]

= 8|fπ|2m2
e(pe · pν)

= 8|fπ|2m2
e(EeEν − ~pe · ~pν)

= 8|fπ|2m2
eEeEν(1 + βe). (D.13)

The last line uses βe for the electron’s relativistic velocity, pe/Ee, and also the fact

that the electron and neutrino must be emitted in opposite directions in the pion’s rest

frame.

Now consider the kinematics. Neglecting the neutrino mass again, in the pion’s

rest frame conservation of momentum yields

|~pe| = |~pν | = Eν , (D.14)

from which we use conservation of energy to write

mπ = Ee + Eν =
√

m2
e + E2

ν + Eν . (D.15)

A bit of algebra reveals the remaining ingredients:

Eν =
m2

π −m2
e

2mπ
, (D.16)

and Ee =
m2

π +m2
e

2mπ
(D.17)

Putting it all together into a decay rate,

Γ(π− → eν̄e) ∝
∫

d3ped
3pνδ

4(pπ − pe − pν)
|M|2
EeEν

. (D.18)

Integrate over d3pe in the pion’s rest frame to find

Γ ∝
∫

dEνE
2
νδ(mπ − Eν −

√

m2
e + E2

ν)
|M|2
EeEν

, (D.19)

from which the delta function gives

Γ ∝ E2
ν

1 + Eν

Ee

|M|2
EeEν

. (D.20)
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The denominator is just 1 + βe. Including the matrix element from Equation D.13, the

final result is

Γ ∝ m2
e

(m2
π −m2

e)
2

m2
π

. (D.21)

For the decay rate to the muon, only the labels change: me → mµ. Thus the branching

ratio is:

Γ(π− → e− + ν̄e)

Γ(π− → µ− + ν̄µ)
=
m2

e

m2
µ

(1 −m2
e/m

2
π)

(1 −m2
µ/m

2
π)

= 1.30 × 10−4 (D.22)

The decay to the muon dominates because the larger muon mass mixes more positive

helicity into the left-handed chiral projection of the weak interaction.
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Appendix E

DESIGN DRAWINGS
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Figure E.1: Clamp to support scintillator assembly



1
5

1

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������������������������������������������������

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

������������������������������������������

1/4 thru

1/4 thru

1/4 thru

1/4 thru

1/4 thru

1/4 thru

CROSS SECTIONSIDE VIEW
ASSEMBLY

Figure E.2: PMT Mount support assembly.
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Figure E.3: Scintillator design drawing. The 2” width matched the diameter of the photomultiplier tubes. The thin wall

at the end of the cylinder maximizes the x- and γ-ray detection efficiency for the germanium.
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Figure E.4: Aluminum backing and vacuum coupling for the scintillator
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Figure E.5: Stainless steel mount for the scintillator
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Figure E.6: Copper target-foil holder for the scintillator
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Figure E.7: Composite drawing of the scintillator in the experimental setup
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Appendix F

DEAD TIME

Dead time is the time during which signals may be lost because some component

of the detection system is busy. Each component of a system from the detector to the

final data acquisition has some characteristic length of time required to perform its

function. Signals can be lost or altered when one of the components is subjected to

too high of a rate. The higher the rate, the shorter the time between events, and the

probability for another event to occur within the dead time interval increases.

There are two limiting models for dead time, paralyzable and nonparalyzable. Fig-

ure F.1 illustrates these two models. In the paralyzable model, any signal that comes

during the dead time from a previous signal resets the system’s dead time. In the non-

paralyzable model, the next signal to come after the dead time is recorded, regardless

of how many signals come during the dead time.

Nonparalyzable behavior is more desirable, both because it is easier to correct and

because less events are lost. Consider a nonparalyzable system with a characteristic

dead time, τ , and an observed event rate, m. On average, the fraction of events lost

must be equal to the product, mτ . The actual event rate, n, can be related to the

measured event rate by multiplying it by the fraction of time that the system is live,

1 −mτ . Solving for the true rate, one finds

n =
m

1 −mτ
. (F.1)

With paralyzable behavior, there must be a time interval τ between events for the

latter event to be recorded. The probability of a time interval τ between events with an

average rate n is e−nτ . Using this probability to relate the actual and recorded event

rates, one finds

ne−nτ = m. (F.2)
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τ

Live
Dead

Detector Events

Time

Nonparalyzable status

Dead
Live

Paralyzable status

Figure F.1: Illustration of the behavior of a nonparalyzable and paralyzable system,

both with dead time τ . With nonparalyzable behavior, three of five events are recorded.

The paralyzable system only records two events.

In the limit where the product nτ ≪ 1, including only the first two terms of the expo-

nential’s Taylor series yields

n =
m

1 − nτ
=

m

1 − mτ
1−nτ

≈ m

1 −mτ
, (F.3)

so that the two models give the same result when the rates are small compared to
1

τ
.

Note that the observed rate approaches zero in the limit nτ ≫ 1 for the paralyzable

model, while the observed rate becomes
1

τ
in the same limit for the nonparalyzable

model.

In summary, it is best to avoid scenarios in which the product mτ becomes large,

so that corrections due to dead time are small. Smaller corrections lead to less error.

When the dead time is small enough relative to the event rate, it is unimportant which

type of behavior best characterizes the system, since both models give the same result.

For more background on dead time, see Knoll [55].
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Appendix G

GENERAL V − A HADRON CURRENT MATRIX ELEMENT

This section includes the matrix element for the most general Lorentz-invariant

V −A hadron current and an outline of the procedure used to calculate it. The following

form of the hadron current (see Equation 6.4) was more convenient for calculations:

〈p(p′)|Jµ|n(p,−→s )〉 = p(p′)
[

F1γ
µ +

F2

mn
pµ

n +
F3

mn
qµ −G1γ

µγ5 −
G2

mn
γ5p

µ
n − G3

mn
γ5q

µ
]

n(p,−→s ).

(G.1)

This form can be obtained from Equation 6.4 by simple Dirac Equation algebra. Since

the weak lepton current is purely left-handed, consisting only of a vector and axial

vector coupling, the hadron current can only contribute to a lepton decay via vector

and axial vector currents. The form factors, fi and gi, are functions of the momentum

transfer qµ = (pn − pp)
µ, and as stated above they contain the effects from QCD and

QED for the quarks that are the true elementary particles within the neutron and

proton.

The vector qµ is the conserved quantity in the process. The expression for Jµ is the

most general expression possible for a strictly vector and axial vector current, since it

exhausts the possibilities for constructing vectors and axial vectors from combinations

of γ matrices and the momentum transfer, qµ.

It is possible to simplify this expression for calculation by rewriting the terms in-

volving iσµν = i i
2 [γµ, γν ] = −1

2 [γµ, γν ]. The Dirac Equation and a few identities for the

γ matrices suffice. Consider two useful identities for the Dirac spinors first:

(pµγµ −m)u = 0 → pµγµu = mu. (G.2)

Similarly for for u, one obtains

upµγµ = um. (G.3)
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As for the γ matrices, all we need is the identity {γµ, γν} = 2gµν . Now rewrite the

f2 term:

p1
2σ

µνkνn = p
1

2
(γµγν − γνγµ) kνn

= p
1

2
({γµ, γν} − 2γνγµ) kνn

= p (gµνkν − kνγ
νγµ)n

= p (kµ − (pn − pp)νγ
νγµ)n

= p (kµ + ppνγ
νγµ − pnνγ

νγµ)n

= p (kµ +mpγ
µ − pnν2g

µν + γµγνpnν)n

= p (kµ + (mp +mn)γµ − 2pµ
n)n, (G.4)

from which one deduces

p

(

f2
1

2
[γµ, γν ]

kν

mn

)

n = pf2

(

kµ

mn
+ (1 +

mp

mn
)γµ − 2

pµ
n

mn

)

n (G.5)

A nearly identical calculation for g2 using the identity {γµ, γ5} = 0 yields

p

(

g2
1

2
[γµ, γν ]γ5

kν

mn

)

n = pg2

(

γ5k
µ − (1 − mp

mn
)γ5γ

µ − 2γ5
pµ

n

mn

)

n. (G.6)

The desired form for easier calculation is now easy to see. Using the neutron’s rest

frame, pn = (mn,
−→
0 ), and q = (mn − Ep,

−→pe + −→pν) = (Ee + Eν ,
−→pe + −→pν). Calculations

in terms of pn will be very simple in the neutron’s rest frame, where 1
2 [γµ, γν ]kν would

have been quite unwieldy. To calculate matrix elements we will use Equation G.1,

then after calculations we can transform the results to the from factors of Equation 6.4

using the identities

F1 = f1 + (1 +
mp

mn
)f2

F2 = −2f2

F3 = f2 + f3

G1 = g1 − (1 − mp

mn
)g2

G2 = −2g2

G3 = g2 + g3. (G.7)
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More calculations are avoided by choosing a definite form for the neutron spinor.

The quantity that will enter calculations is nn̄. The spinor for a polarized neutron at

rest in the Weyl basis is

nn̄ =
√
mn(1, 0, 1, 0)T

√
mn(1, 0, 1, 0)

=
mn

2
(1 + γ0γ3γ5 + γ0 + γ3γ5). (G.8)

All observables will be proportional to |M|2. This means there will always be two of

the form factors in any term. If one considers the definite form for the polarized, at-rest

neutron spinor, matrix algebra obviates half of the calculations. Begin by considering

|F1|2 → |G1|2. We need only look at the γ matrices involved. |F1|2 involves

γµ(1 + γ0γ3γ5 + γ0 + γ3γ5)γ
ν . (G.9)

|G1|2 can be written in exactly the same form with only a couple sign changes, by

anticommuting γ matrices and using γ2
5 = 1.

γµγ5(1 + γ0γ3γ5 + γ0 + γ3γ5)γ
νγ5

= γµ(γ5)
2(−1 − γ0γ3γ5 + γ0 + γ3γ5)γ

ν

= γµ(−1 − γ0γ3γ5 + γ0 + γ3γ5)γ
ν (G.10)

The |G1|2 term is exactly the same as the |F1|2 term, but the nn terms with an even

number of γ’s have changed sign. The net effect is that these terms in the matrix

element give the same result, with the transormation |F1|2 → |G1|2 requiring mp →
−mp. Using the same procedure one can also see that |F2/3|2 → |G2/3|2 has the same

effect; this also applies to F2F
∗
3 → G2G

∗
3. Including the complex conjugate terms that

come with the F2F
∗
3 lot, ten calculations have now reduced to four.

F1F
∗
2/3 → G1G

∗
2/3 will reduce four more calculations to one. F1F

∗
2 has the following

combination of γ matrices:

γµ(1 + γ0γ3γ5 + γ0 + γ3γ5). (G.11)
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Now rearrange the G1G
∗
2 matrices into the same combinations.

−γµγ5(1 + γ0γ3γ5 + γ0 + γ3γ5)γ5

= γµ(γ5)
2(−1 − γ0γ3γ5 + γ0 + γ3γ5)

= γµ(−1 − γ0γ3γ5 + γ0 + γ3γ5) (G.12)

Thinking about the combinations of γ matrices that will yield non-zero traces when

this is sandwiched between the proton spinors, the result is the same as the F1F
∗
2

contribution with pp → −pp.

All that remains is algebra with the γ matrices. The resulting matrix element can

be expressed in the form

|M|2 =
1

2mn

1

2Ee

1

2Eν

1

2Ep
× 16[C1 + C2

−→
P · −→pe + C3

−→
P · −→pν + C4

−→
P · (−→pe ×−→pν)], (G.13)

in which each Ci is a function of pe, pν , pp, and the six form factors, Fi and Gi, i = 1, 2, 2.

−→
P is just a unit vector in the direction of the neutron’s polarization. Expressing each
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Ci in terms of the form factors, one finds,

C1 = |F1|22mn[Eν(pp · pe) + Ee(pp · pν) −mp(pe · pν)] (G.14)

+|F2|2mn(Wp +mp)[2EeEν − (pe · pν)]

+2Re(F1F
∗
2 )mn[Eν(pp · pe) + Ee(pp · pν) + 2mpEνEe − (Ep +mp)(pe · pν)]

+4Re(F1G
∗
1)mn[Eν(pp · pe) −Ee(pp · pν)]

+2Re(F1F
∗
3 )m2

e[(pp · pν) +Wνmp]

+2Re(F2F
∗
3 )Eνm

2
e(Ep +mp)

+|F3|2
1

mn
m2

e(Wp +mp)(pe · pν)

+symmetric terms

C2 = |F1|22mn[Wνmp − (pp · pν)] (G.15)

+2Re(F1F
∗
2 )mn[EpEν − (pp · pν)]

+4Re(F1G
∗
1)mn(pp · pν)

−2Re(F2G
∗
2)mn[2EeEν − (pe · pν)]

−2Re(F1G
∗
2)mn[2EeEν − (pe · pν) + (Ep −mp)Eν ]

−2Re(F1G
∗
3)m

2
eEν

−2Re(F2G
∗
3)m

2
eEν

−2Re(F3G
∗
3)

1

mn
m2

e(pe · pν)

+symmetric terms

C3 = −|F1|22mn[Eemp − (pp · pe)] (G.16)

−2Re(F1F
∗
2 )mn[EpEe − (pp · pe)]

+4Re(F1G
∗
1)mn(pp · pe)

−2Re(F2G
∗
2)mn[2EeEν − (pe · pν)]

−2Re(F1G
∗
2)mn[2EeEν − (pe · pν) + (Ep −mp)Ee]

−2Re(F1G
∗
3)m

2
e(Eν + Ep −mp)

−2Re(F2G
∗
3)m

2
eEν

−2Re(F3G
∗
3)

1

mn
m2

e(pe · pν)

+symmetric terms
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C4 = 2Im(F1F
∗
2 )(Eν − Ee) (G.17)

+2Im(F1G
∗
1)mnmp

+2Im(F1G
∗
2)(Ep −mp)

−2Im(F1F
∗
3 )m2

e

+symmetric terms

The symmetric terms follow from the substitutions outlined above.
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