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THE ISOBARIC MULTIPLET MASS EQUATION AND ft VALUE OF THE

0+ → 0+ FERMI TRANSITION IN 32Ar: TWO TESTS OF ISOSPIN

SYMMETRY BREAKING

Abstract

by

Smarajit Triambak

This dissertation describes two high-precision measurements concerning isospin

symmetry breaking in nuclei.

1. We determined, with unprecedented accuracy and precision, the excitation

energy of the lowest T = 2, Jπ = 0+ state in 32S using the 31P(p, γ) reaction.

This excitation energy, together with the ground state mass of 32S, provides

the most stringent test of the isobaric multiplet mass equation (IMME) for

the A = 32, T = 2 multiplet. We observe a significant disagreement with

the IMME and investigate the possibility of isospin mixing with nearby 0+

levels to cause such an effect. In addition, as byproducts of this work, we

present a precise determination of the relative γ-branches and an upper limit

on the isospin violating branch from the lowest T = 2 state in 32S.

2. We obtained the superallowed branch for the 0+ → 0+ Fermi decay of

32Ar. This involved precise determinations of the beta-delayed proton and γ

branches. The γ-ray detection efficiency calibration was done using pre-

cisely determined γ-ray yields from the daughter 32Cl nucleus from an-

other independent measurement using a fast tape-transport system at Texas
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A&M University. This superallowed branch, along with previously deter-

mined half-life and QEC value measurements, provides the ft value for

the decay. On comparison with the ft values of nine previously measured

T = 1 → T = 1 Fermi transitions, this provides a useful check of calcu-

lated isospin breaking corrections, which, in the case of 32Ar, is ≈ 3 times

larger than the nine measured cases. The calculated corrections for nuclear

β decays play an important role in determining Vud, the first element of the

CKM matrix.
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CHAPTER 1

INTRODUCTION

We cannot help being thirsty,
moving toward the voice of water....
- Jalal ad-Din Rumi

The Standard Model of particle physics describes nature at the most fundamen-

tal level. This Standard Model is an elegant theory that describes elementary

particles and their interactions in terms of the strong, electromagnetic and weak

forces. It comprises of the standard electroweak theory, which unifies the electro-

magnetic and the weak interaction, and of quantum chromodynamics, which is the

theory of strong interactions. Within the Standard Model, the elementary parti-

cles that constitute matter are made up of fermions, and the interactions between

the fermions are mediated by bosons. Although the Standard Model has been

extremely successful in reproducing experimental results and vice-versa (such as

the masses of the W bosons and the existence of top quark), there is reason to

believe that it is not a complete theory of fundamental interactions. Several ques-

tions remain unanswered. For example, the model contains approximately 19 free

parameters (such as the masses of the elementary particles and the values of the

coupling constants) that cannot be independently calculated. These values need

to be experimentally measured and then incorporated into the model. It also does

not answer other important questions such as why there exist three generations of

1



fermions or why there is more matter than antimatter in the universe. These are

but a few questions that lead us to believe that there exists a more fundamental

theory that offers a complete description of nature.

One way to investigate physics beyond the Standard Model is by careful mea-

surements of beta-decay observables, which are supposedly governed by the the

theory of electroweak interactions. The standard electroweak theory assumes the

validity of various fundamental symmetries, such that the violation of any of these

symmetries would constitute a signal of new physics. In this dissertation, we de-

scribe two measurements that are related to such Standard Model tests. In these

measurements, the atomic nucleus is used as a probe to search for and set improved

constraints on new physics.

The first measurement described in this dissertation stringently tests the iso-

baric multiplet mass equation (IMME) for the A = 32 multiplet. Although this

is not directly related to testing the Standard Model, it addresses important nu-

clear physics issues related to observables and parameters that are important for

Standard Model tests. For example, the IMME has been previously used to deter-

mine configuration mixing corrections and beta endpoint energies in the absence

of experimental data, which are directly related to tests of CKM unitarity and

searches for scalar interactions in weak processes.

The second measurement described is the determination of the ft value for

the 0+ → 0+ Fermi decay of 32Ar from the superallowed decay branch. This

measured ft value provides a useful check of theoretically calculated corrections

that are important for tests of CKM unitarity and the conserved vector current

hypothesis.

Both the measurements described are related to isospin symmetry breaking,

2



which occurs due to charge-dependent interactions within nuclei. A thorough

understanding of such effects is important in the study of nuclear beta decays to

probe the fundamental properties of the electoweak interaction.
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CHAPTER 2

THE ISOBARIC MULTIPLET MASS EQUATION AND ITS RELEVANCE

2.1 Isospin in nuclear physics: charge independence of nuclear forces

The concept of isospin in nuclear physics was first introduced by Heisenberg

in 1932 [1] based on observations of clustering of stable nuclei about the N ≈ Z

line. He noted that such an effect indicates an underlying symmetry of the strong

interaction. Furthermore, he made the hypothesis that the neutron and the proton

can be treated as two states of the same particle, called the nucleon. A new

quantum number called isospin was thus assigned to the nucleon on the basis

of its charge. Since the nucleon was a two-state system, analogous to a spin-

1/2 particle, the isospin assigned to each nucleon was 1/2, with two possible

projections in isospin space. It soon became apparent, with the investigation of

proton-proton (pp) and neutron-proton (np) interaction strengths via low energy

scattering experiments, that the nucleon-nucleon interaction was approximately

charge independent. These experiments determined that, if the ranges are taken to

be identical, after Coulomb corrections are taken into account, there exists rough

agreement between the pp and np forces [2]. Furthermore, the study of mirror

nuclei 1 (such as 3H and 3He) showed that these nuclei had approximately the same

masses after correcting for the electrostatic energy [3]. Such similarity strongly

1Mirror nuclei are pairs of nuclei having the same A such that either nucleus can be obtained
from the other by transforming all the neutrons of one into protons and all protons into neutrons.
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indicated identical nn and pp interaction strengths and further corroborated the

charge independence of the nucleon-nucleon interaction.

The charge independence of the nuclear force is analogous to the spin indepen-

dence of the Coulomb force in atoms. For a spin-1/2 particle, spin independence

implies that the Hamiltonian is invariant under unitary transformations in two

dimensions. Such transformations are described in the group theoretical repre-

sentation by the SU(2) rotation group, where the angular momentum operator is

the generator of the group. Rotational invariance in 3-dimensional space implies

conservation of total angular momentum and vice-versa.

In a formalism identical to angular momentum, the nucleon wavefunction can

be represented by a two-component spinor. On separating the isospin part from

the space-spin part of the wavefunction, we define the proton and the neutron

basis vectors in isospin space

|χp〉 =






1

0




 |χn〉 =






0

1




 (2.1)

and the Pauli isospin matrices

�
=






1 0

0 1




 τ1 =






0 1

1 0




 τ2 =






0 −i

i 0




 τ3 =






1 0

0 −1




 (2.2)

which follow the usual commutation relations

[τi, τj] = 2iεijkτk . (2.3)

It follows from above, that if there exists a charge operator Q which follows the
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eigenvalue equation

Q|χ〉 = q|χ〉 (2.4)

with q = 0 if |χ〉 = |χn〉 and q = e if |χ〉 = |χp〉, then this operator can be obtained

in terms of the Pauli matrices as

Q = e

( �
+ τ3
2

)

. (2.5)

The eigenvalue of this operator gives the charge of the nucleon in units of e by

definition.

The other two components of τ (τ1 and τ2) are not related to any observables.

However, it is customary to define the isospin raising and lowering operators in

terms of their linear combinations, τ (±) = 1
2
(τ1± iτ2), which convert neutrons into

protons and vice-versa.

The arguments stated above can be generalized for a system of A nucleons,

such that the total nuclear isospin T and its component T3 are

T =
1

2

A∑

i=1

τi T3 =
1

2

A∑

i=1

τi3 . (2.6)

From this, it follows that the charge operator for the nucleus satisfies the eigenvalue

equation

QN |ψN〉 =
A∑

i=1

Qi|ψN〉 = e(A/2 + T3)|ψN〉 = Ze|ψN〉 . (2.7)

The arguments stated above have two direct implications:

1. The third component of nuclear isospin can be written as

T3 =

(
Z −N

2

)

. (2.8)
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2. The conservation of electric charge demands that T3 has to be a conserved

quantity, i.e.

[H,T3] = 0. (2.9)

2.2 Isospin symmetry violation, isobaric multiplets and the IMME

The approximate charge independence of the strong nuclear force implies that

the nucleon wavefunction is invariant under the application of a rotation operator

in isospin space. In a manner analogous to angular momentum, such a rotation

can be represented as a continuous unitary transformation, where the unitary

operator that corresponds to a finite rotation of angle φ about n̂ in isospin space

is given by

Un̂(φ) = exp(−iφn̂ · T ) , (2.10)

T being the generator of the rotation group. This SU(2) rotation group has

single-valued irreducible representations of dimension 2T + 1. Therefore, for a

particle moving in a central hadronic field with total isospin T , there exist 2T +1

degenerate states that can be characterized by projections of the total isospin onto

an arbitrary axis. This leads to the conclusion that isospin is a conserved quantity

in the presence of purely hadronic forces.

However, it is known that isospin is not an exact symmetry. The isotropy of

isospin space (neglecting the mass difference between u and d quarks) is broken

by the electromagnetic interaction. Such charge-dependent couplings break the

(2T + 1)-fold degeneracy (akin to the Zeeman and the Stark effects in atomic

physics) and lead to the existence of isospin multiplets. The members of a given

multiplet are labelled by T3 (projections on the ẑ axis by definition) on the basis of

electric charge. As in the case with angular momentum, T3 takes values between
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−T and +T . In a simple model describing isospin multiplets, the level schemes of

each nucleus would therefore be shifted by the Coulomb energy and the neutron-

proton mass difference. What follows below is the description of such a model,

namely the isobaric multiplet mass equation (denoted as IMME henceforth), that

relates the masses of the members of an isospin multiplet. The mass difference

between u and d quarks is neglected throughout.

The IMME was first proposed by Wigner at a conference proceedings [4] and

later derived with more mathematical rigor by Weinberg and Treiman [5]. Since

electromagnetic effects are characterized by the fine structure constant, isospin is

conserved sufficiently to the lowest order in e2. This allows for first-order per-

turbation theory to work well in the description of isospin symmetry violation by

electromagnetic effects.

A two-body charge-dependent interaction can be added to the isospin conserv-

ing hadronic Hamiltonian as a perturbation such that,

H = HCI +HCD , (2.11)

where the indices refer to charge independent and charge dependent respectively.

In its most general form, at tree-level, HCD can be written in terms of the Pauli

matrices as

HCD =
∑

i<j

(ατ3(i) + β)(ατ3(j) + β)f(rij) , (2.12)

where α and β are constants that depend on the nature of the charge-dependent

interaction, and f(rij) is a function dependent on the relative separation between

two interacting nucleons, which are labelled by the indices i and j. This charge
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dependent perturbation can be written as

f(rij)

(
∑

i<j

[

β2 +
α2

3
τ (i) · τ (j)

]

+
∑

i<j

αβ [τ3(i) + τ3(j)]

)

+f(rij)

(
∑

i<j

α2

3
[3τ3(i)τ3(j)− τ (i) · τ (j)]

)

. (2.13)

The three sums in Eq. (2.13) transform as tensors of rank 0, 1, and 2 respectively

in isospin space. Thus, the expectation value of the total Hamiltonian can be

expressed as

〈ξTT3|HCI +HCD|ξTT3〉 = Eξ,T + 〈ξTT3|H(0)
CD|ξTT3〉

+〈ξTT3|H(1)
CD|ξTT3〉+ 〈ξTT3|H(2)

CD|ξTT3〉 . (2.14)

Here Eξ,T are the eigenvalues of HCI , ξ represents all the other quantum numbers

necessary for a unique representation of the eigenstate |ξTT3〉, andH(n)
CD transforms

as an isotensor of rank n.

The matrix elements of irreducible tensor operators (such as the ones in Eq. (2.14))

can be expressed as the product of reduced matrix elements and Clebsch-Gordan

coefficients (that purely depend on the geometrical properties of the tensor and

the states involved) using the Wigner-Eckart theorem [6]. Application of the

Wigner-Eckart theorem to Eq. (2.14) yields

〈ξTT3|HCI +HCD|ξTT3〉 = Eξ,T + 〈ξT‖H(0)
CD‖ξT 〉

+
T3

[T (T + 1)]1/2
〈ξT‖H(1)

CD‖ξT 〉

+
3T3

2 − T (T + 1)

[(2T − 1)T (T + 1)(2T + 3)]1/2
〈ξT‖H(2)

CD‖ξT 〉 . (2.15)
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This expression is constituted of energies expressed in terms of the reduced matrix

elements and coefficients involving T and T3
2. Therefore, the relation between the

masses of a given isospin multiplet can be written to the first-order as

M(ξ, T, T3) = a(ξ, T ) + b(ξ, T )T3 + c(ξ, T )T3
2 , (2.16)

which is the isobaric multiplet mass equation (IMME). The coefficients of the

IMME are mainly related to the Coulomb displacement energies between isobaric

analog states, with small contributions from other charge dependent effects (such

as the electromagnetic spin-orbit interaction) [7]. Deviations from Eq.(2.16), such

as the requirement of a non-vanishing d(ξ, T )T3
3 term could indicate one of many

scenarios: isospin mixing with nearby states of different isospin, the presence of

many-body charge-dependent forces, or the need for a higher order perturbation

theory calculation.

2.3 Experimental tests of the isobaric multiplet mass equation

Although there is no fundamental principle that forbids violation of Eq. (2.16),

theoretical calculations indicate that the IMME should hold down to |d| . 1 keV

for multiplets that do not have isospin-allowed strong decays [8, 9]. Over the

years many experimental tests have been performed looking for potential devia-

tions from the IMME (for example, an additional cubic term) [10, 11] that show

remarkable agreement with the model. The only significant deviations are found

in light nuclei with unbound states and smaller Coulomb barriers, which lead to

non-perturbative effects. For example, the lowest A = 9, T = 3/2 quartet requires

a significantly large cubic term and has been explained as a combination of higher

order charge-dependent interactions and expansion of the nuclear wavefunction
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due to Coulomb effects [9]. The A = 8, T = 2 multiplet was the only known

quintet that required either an additional dT3
3 term or an eT3

4 term or both for

a satisfactory fit.

The success of the IMME makes it a useful tool to predict masses and level-

energies for cases where experimental data is lacking. For example, it has been

used to map the proton drip line over a wide range, determine the rp-process

path in stellar nucleosynthesis, identify candidates for diproton emisson [12], and

constrain models for the configuration mixing correction factor needed for tests of

CKM unitarity [13]. In addition, the IMME was used to determine the β end-point

energy from the decay of 32Ar which is a requirement for analyzing the Doppler

broadening of β-delayed groups from 32Ar. The shape of the proton spectrum

provides information about the β− ν correlation, which sets constraints on scalar

contributions to the weak interaction [14].

A recent precision measurement of the 33Ar mass using a Penning trap mass

spectrometer at ISOLDE indicated breakdown of the IMME for the A = 33,

T = 3/2 quartet, where an unexpectedly large cubic term was required to fit

the members of the quartet (d = −2.95 ± 0.90 keV) [15]. It was later realized

that the problem originated due to an incorrect determination of the mass of the

lowest T = 3/2 state in 33Cl [16]. The masses of the members of the lowest

A = 33, T = 3/2 quartet are now known with high precision and are in excellent

agreement with IMME predictions [17]. Another recent measurement of the mass

of 32Ar to 1.8 keV [18] made the lowest A = 32, T = 2 quintet the most precisely

measured quintet to date [11]. In spite of excellent agreement with the IMME,

the mass of the T3 = 0 member of this multiplet (32S) was on a weak footing.

A 31P(p, α) resonance study [19] gave an excitation energy of 12049 ± 2 keV for
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the lowest T = 2 state. An earlier 31P(p, γ) study [20] obtained a significantly

different result, i.e. an excitation energy of 12045.0± 0.4 keV, but no details were

provided about the difficult task of determining the excitation energy to such a

high precision. This provides the motivation to remeasure the excitation energy

of the lowest T = 2 state in 32S with high accuracy and precision. The following

chapter describes the experiment involved to remeasure the mass of the lowest

T = 2 state in 32S.
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CHAPTER 3

MASS OF THE LOWEST T = 2 STATE IN 32S: TESTING THE IMME

In the previous chapter we have described the motivation for determining the

excitation energy of the lowest T = 2 state in 32S. In this chapter we present

details and the results of our measurement.

3.1 Introduction

Before this work, the lowest Jπ, T = 0+, 2 state in 32S had been observed using

the isospin-forbidden 31P(p, γ) resonance reaction at Ep = 3283(3) keV [21]. The

total width of the state is known to be Γ = 40(15) eV [22]. Although the state is

mainly unbound to isospin-forbidden proton and α emission [19], it also de-excites

to the ground state via γ transitions, with Γγ ≈ 2 eV. Figure 3.1 shows the allowed

γ transitions from the Jπ, T = 0+, 2 state in 32S. This level mainly decays via a

M1 transition to the Jπ, T = 1+, 1 state at ≈ 8 MeV, which in turn decays to

the ground state with a high branching ratio [21]. The excitation energies of

the states in 32S can therefore be obtained by precise determination of the γ-ray

energies from 32S via 31P(p, γ).
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Figure 3.1. Allowed γ decays of the lowest T = 2 state in 32S.

3.2 Experimental details

3.2.1 Target preparation

The 31P target was produced by ion-implantation. A 3 µA beam of 31P ions

at ≈ 90 keV was produced using a sputter ion source and implanted on an ultra-

pure, 0.5 mm thick Tantalum backing. The beam was collimated and rastered

using computer-controlled magnetic steerers to produce a uniform target. Calcu-

lations using TRIM [23] indicated that the implantation profile had a FWHM of

≈ 700Å at 90 keV incident energy. A total of 55 µAh 31P ions were deposited,

yielding a ratio of ≈ 3 : 1 Phosphorus to Tantalum atoms in the target. This

target had a measured energy loss of ≈ 4 keV for 3 MeV protons.
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3.2.2 Apparatus

The 31P(p, γ) measurement was performed with the University of Washing-

ton FN tandem accelerator, operating such that the ion source was positioned

at the terminal. The target chamber was a ISO-NW100 tee, with three glass

viewports for alignment purposes. The target ladder was designed to allow for

direct water-cooling of the target backings. An adjustable bellows arrangement

provided vertical degree of freedom to the ladder, such that three targets could

be used at anytime during the experiment, without breaking vacuum. The target

ladder is shown in Figure 3.2 and the bellows and flange arrangement is shown in

Figure 3.3. Gamma-rays were registered with two 50% HPGe (GMX) detectors

whose signals were processed by temperature-controlled electronics to minimize

gain-drifts. Figure 3.4 shows a simplified block diagram of the electronics setup.

The detectors were mounted on platforms that could rotate about the vertical

axis at the center of the chamber and were aligned using mechanical alignment

jigs. Two independent measurements were done at different times by impinging

the 31P target with an ≈ 6 µA, 3.285 MeV proton beam. In the first measurement,

data were obtained with two HPGe detectors located ≈ 60 cm from the center

of the chamber, at ±90◦ to the beam where the Doppler shift is minimal. This

is shown in Figure 3.5. The energy calibration was based on a 56Co source and

35Cl(n, γ) capture radiation. In the second measurement, one detector was aligned

at 0◦ and positioned 10.3 cm from the target as shown in Figure 3.6. Although

Doppler shifts are maximum at θγ = 0◦, the sensitivity to detector misalignment

was minimal. The energy calibration for this measurement was based on 56Co

and 27Al(p, γ) radiation. Figure 3.7 shows a gamma spectrum from the 0 degree

experiment.
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Figure 3.2. Target ladder with water cooling. Dimensions are in inches
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Figure 3.3. Bellows and flange arrangement for target ladder.
Dimensions are in inches
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Figure 3.4. Schematic of electronics setup. Spec Amp = Spectroscopy
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3.3 Energy calibration

A 56Co source, present at all times during data acquisition, provided γ-ray

calibrations with energies up to 3.5 MeV. Calibration points at higher energies

were obtained using the 27Al(p, γ) and 35Cl(n, γ) capture reactions. For the former,

the target was prepared by thermal evaporation of 99.999% pure Aluminium in

a Tungsten boat, deposited on a Tantalum backing. The target thickness was ≈

20 µg/cm2. This 27Al target was bombarded by a 15 µA, 992 keV proton beam

to produce γ-rays with well known energies up to 11 MeV [24]. For the 35Cl(n, γ)

reaction, the target ladder was removed and a Li2O target placed at the edge of

the target chamber as shown in Figure 3.8. This target was produced by thermal

evaporation of Lithium Oxide in a Platinum boat. The 7Li target was bombarded

by a 600 nA, 1.912 MeV proton beam to produce neutrons in a forward-angle

cone, with a nearly Maxwellian velocity distribution for neutron energies between
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Figure 3.5. Top view of the experimental setup used for the 31P(p, γ)
data at θγ = 90◦.

HPGe detector

31

3.285 MeV Protons

Water Cooled P Target

Figure 3.6. Top view of the experimental setup used for the 31P(p, γ)
data at θγ = 0◦.
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Figure 3.8. Top view of the experimental setup for the 35Cl(n, γ)
calibration used in the θγ = ±90◦ measurement.

0− 110 keV via the 7Li(p, n) reaction [25]. The target thickness (≈ 500 µg/cm2)

was chosen such that all the protons lose energy up to the neutron-separation

energy (≈ 1881 keV). The emitted neutrons were first moderated by a 4 cm thick

paraffin slab, and then captured on to a 8×103 cm3 volume of NaCl to produce

gamma rays with well-determined energies up to 8.5 MeV from 35Cl(n, γ) [26].

The HPGe detector was moved to an angle of 90◦ approximately 60 cm from the

center of the chamber as shown in Figure 3.8. Neutrons moving toward the Ge

detector were moderated by 8 cm of paraffin and further attenuated by 15 cm of

borax to protect the detectors from neutron damage. Figure 3.9 shows typical

calibration spectra.

3.4 Data Analysis

Incomplete charge collection within Ge detectors produces exponentially de-

caying tails below gamma-ray peaks [27, 28] while multiple-Compton scattering
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Figure 3.9. Calibration lines with detector postioned at 90◦ to the beam.

gives plateaus below the peak centroid. Peak centroids were extracted by fitting

the γ peaks with a Gaussian folded with a delta function and two low-energy

exponential tails. Each tail was of the form

T (x;µ) =
1

2l
exp

[
(x− µ)

l
+

1

2

(σ

l

)2
]

× erfc

[
1√
2

(
(x− µ)

σ
+
σ

l

)]

, (3.1)

where erfc is the complementary error function, l is the decay-length of the tail,

σ is the Gaussian spread and µ is the peak centroid. The derivation to obtain

T (x;µ) is described in detail in appendix A. The γ-peak line-shapes were assumed

to have the form

L(x;µ) =
2∑

i=1

fiTi(x;µ) +
1√
2πσ2

(

exp
−(x− µ)2

2σ2

)

, (3.2)

where f1 and f2 were the relative areas of the exponential tails with respect to the

pure Gaussian. Figure 3.10 shows the contribution of each tail to the photopeak
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for a 50Co calibration line.

The γ spectrum was analyzed in the following manner: first, the line-shape of

a high statistics peak from 56Co at 3253 keV was determined by keeping the decay

length of the second tail, l2 (representing the multiple-Compton plateau below the

centroid) at a large and fixed value (≈ 460 keV). Then, the background and the

remaining parameters were varied to minimize χ2 using the procedure described

in Appendix A. The other peaks were then fitted by requiring l1 and f1 to scale

linearly with energy while varying the other parameters to minimize χ2. Peaks on

Compton edges of other γ rays were avoided so that we could fit the data using a

flat background. Figure 3.11 shows two gamma rays of interest and their fits.

Sensitivity to ADC nonlinearities and line-shape variations were minimized in

the following manner. The centroids, xi, of a few calibration gamma-ray peaks
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Figure 3.11. Fits to the most intense de-excitation gamma-rays from the
T = 2 state.

around each 31P(p, γ) line of interest were fitted to a linear function, Eγi = a+bxi.

The uncertainties in peak centroids were obtained by combining in quadrature the

errors due to counting statistics and uncertainties in the calibration energies. This

provided the a and b coefficients, which related the 31P(p, γ) energies to the closest

calibration line,

Eγi(
32S) = Eγi(cal) + b× [xi(

32S)− xi(cal)] . (3.3)

3.5 Systematic Effects

3.5.1 Gain Drifts

In spite of the use of a temperature-controlled electronics rack, small gain drifts

did occur during the course of the experiment. These drifts were large enough to

have a significant effect for the centroids at higher energies. Figure 3.12 shows
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the variation of the centroid of a 56Co calibration line with time. Such gain shifts

were corrected using a time stamp that was recorded for each event. Piecewise

corrections to the data (taken over time intervals ranging between 15 and 180

minutes) were based on a few high statistics peaks. After each time interval, the

centroid (µ) and the standard deviation (σ) for events belonging to these peaks

were registered. Each of these calibrations were used to match the centroids of

the shifted events to a fixed reference using a linear fitting routine. Events whose

centroids were shifted by more than 3 standard deviations were vetoed from the

spectrum. Figure 3.13 shows the marked improvement in the reduced χ2 on fitting

a calibration line before and after the application of such corrections. The 56Co

lines were common to all data sets and were used to correct gain shifts that may

have occurred between runs when data were not being acquired.
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3.5.2 ADC nonlinearities

Detector signals were digitized by an Ortec 413 ADC. We observed significant

non-linearity in the energy range 0 ≤ Eγ ≤ 1.5 MeV (see Figure 3.14) and did not

use any lines in that range for gain-matching or energy determination. Additional

data, taken with the doubled gains in the spectroscopy amplifiers, proved that

the non-linearity was a property of the ADC and not of the preceding electronics;

these data also provided an additional check on the energy of the 3.9 MeV 31P(p, γ)

gamma ray, which corresponds to a transition from the T = 2 state to the Jπ =

1+, T = 1 state at 8125 keV.

3.5.3 Doppler effects

Since the observed γ rays were emitted from a recoiling compound nucleus,

their registered energies would be Doppler shifted depending on detector orienta-

tion. The Doppler-shifted energy observed by a detector at an angle θγ is given

by

E ′ = E0

√

1− (v2/c2)

1− (v/c) cos θγ
(3.4)

which in the non-relativistic limit reduces to

E ′ = E0(1 +
p

m
cos θγ) , (3.5)

where p is the momentum of the recoiling compound nucleus. Although Doppler

shifts are minimal at θγ = ±90◦, the sensitivity to angular uncertainty is maximal.

For the θγ = 0◦ case, the Doppler shift is maximal, but there is least sensitivity to

angular displacements. In addition, the shift in γ energies is attenuated due to the

solid angle subtended by the detector. The Doppler shifts for both the geometries
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Figure 3.15. Detector geometry used for simulations. The dimensions of
the crystal are obtained from the manufacturers. We make conservative

estimates on the uncertainties.

were determined using careful Monte Carlo simulations using a conservative esti-

mate of 1.0 cm for target-detector misalignment. Figure 3.15 shows the geometry

of the Ge detector used for the simulations.

For the 31P(p, γ) and the 27Al(p, γ) gamma rays, the half-life of the decaying

state was used to randomly generate decay times from an exponentially decaying

distribution. The energy loss by the compound nucleus during that lifetime was

calculated using the stopping power at that particular energy, which was deter-

mined using SRIM [23]. For the 27Al(p, γ) reaction only the primary γ rays from

the parent Ex = 12541.31 keV state were used for calibration since the angular

correlations between the cascading gammas were unknown. Doppler broadenings

of the secondary gammas from 31P(p, γ) were simulated by accounting for the

angular correlation between the two emitted gammas as well as the transverse

component of momentum imparted by the emission of the first gamma ray.

For the 35Cl(n, γ) reaction, the neutron angular-distribution results for 7Li(p, n)
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from Ref. [25] were fed into a program that simulated neutron scattering on paraf-

fin and neutron capture on 35Cl. This simulation provided us with the eventual

recoil velocities and positions of the 36Cl nuclei prior to γ emission. The recoil

velocities and directions and the known γ energies from Ref. [26] were entered

into the radiation-transport program PENELOPE [29] to simulate the interaction

of the γ radiation with the detector and calculate the net Doppler shift. Ta-

ble 3.1 shows the results for the predicted Doppler shifts from the Monte Carlo

simulations. The uncertainties in the predicted shifts arise from uncertainties in

the detector solid angle, the lifetime of the state, the uncertainty in the stopping

power and target-detector misalignment. Although the corrections for the 0◦ data

are large, their model-dependence is very small because the shifts were virtually

unattenuated; in all the cases the ions changed their velocities by < 10−7 c during

the parent state’s lifetime.

TABLE 3.1

PREDICTED DOPPLER SHIFTS FROM MONTE CARLO

SIMULATIONS

Source Eγ Detector Detector Doppler shift

(keV) distance angle (keV)

(cm) (deg)

31P(p, γ) 2840 10.3(1.0) 0.0(5.5) 7.28(5)

31P(p, γ) 3922 10.3(1.0) 0.0(5.5) 10.06(7)

31P(p, γ) 3922 59.0(1.0) 90.00(97) 0.00(17)

31P(p, γ) 4770 10.3(1.0) 0.0(5.5) 12.16(7)
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TABLE 3.1

Continued

Source Eγ Detector Detector Doppler shift

(keV) distance angle (keV)

(cm) (deg)

31P(p, γ) 5046 10.3(1.0) 0.0(5.5) 12.94(9)

31P(p, γ) 5894 10.3(1.0) 0.0(5.5) 15.11(10)

31P(p, γ) 8124 10.3(1.0) 0.0(5.5) 20.83(13)

31P(p, γ) 8124 59.0(1.0) 90.00(97) 0.00(36)

31P(p, γ) 9206 10.3(1.0) 0.0(5.5) 23.21(16)

27Al(p, γ) 2777 10.3(1.0) 0.0(5.5) 4.31(3)

27Al(p, γ) 3062 10.3(1.0) 0.0(5.5) 4.75(3)

27Al(p, γ) 3124 10.3(1.0) 0.0(5.5) 4.85(3)

27Al(p, γ) 3376 10.3(1.0) 0.0(5.5) 5.24(3)

27Al(p, γ) 3952 10.3(1.0) 0.0(5.5) 6.14(4)

27Al(p, γ) 4607 10.3(1.0) 0.0(5.5) 7.15(4)

27Al(p, γ) 4742 10.3(1.0) 0.0(5.5) 7.36(5)

27Al(p, γ) 5653 10.3(1.0) 0.0(5.5) 8.78(6)

27Al(p, γ) 5662 10.3(1.0) 0.0(5.5) 8.79(6)

27Al(p, γ) 6264 10.3(1.0) 0.0(5.5) 9.73(6)

27Al(p, γ) 7922 10.3(1.0) 0.0(5.5) 12.30(8)

35Cl(n, γ) 1131 59.0(1.0) 90.00(97) −0.03(3)
35Cl(n, γ) 2676 59.0(1.0) 90.00(97) −0.07(6)
35Cl(n, γ) 2975 59.0(1.0) 90.00(97) −0.08(7)
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TABLE 3.1

Continued

Source Eγ Detector Detector Doppler shift

(keV) distance angle (keV)

(cm) (deg)

35Cl(n, γ) 3333 59.0(1.0) 90.00(97) −0.09(8)
35Cl(n, γ) 3981 59.0(1.0) 90.00(97) −0.11(9)
35Cl(n, γ) 4980 59.0(1.0) 90.00(97) −0.13(12)
35Cl(n, γ) 5715 59.0(1.0) 90.00(97) −0.15(13)
35Cl(n, γ) 6978 59.0(1.0) 90.00(97) −0.19(16)
35Cl(n, γ) 7790 59.0(1.0) 90.00(97) −0.21(18)
35Cl(n, γ) 8579 59.0(1.0) 90.00(97) −0.23(20)

3.5.4 The field-increment effect

Acceleration of primary and secondary charge carriers within the intrinsic vol-

ume of the detector and variations in the charge collection efficiency over the

detector volume can shift the observed peaks in a manner that depends on source

position, detector geometry, bias voltage and γ-ray energy [30]. It was important

to test the magnitude of this effect in the measurement because the γ rays from

the 31P(p, γ) and 27Al(p, γ) reactions were at ≈ 0◦ to the detector, whereas the

35Cl(n, γ) γ-rays were incident on the detector from the side (see Figure 3.8).

The magnitude of this effect was tested by fixing a 56Co source at 0◦ to the
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Figure 3.16. Shifts in apparent γ-ray energies with changes in the
incident γ-ray angle. The y-axis shows the difference in the inferred

Doppler-shift-corrected γ energies from 35Cl(n, γ) at two extreme angles
(incident along the axis of the co-axial detector and approximately

normal to the detector axis).

detector at a distance of 5 cm from the detector end-cap. This provided an angle-

independent reference. Then 35Cl(n, γ) data were taken with the Ge detector

at 65◦, 90◦ and 125◦ to the beam at the center of the chamber. This ensured

that the 36Cl γ rays were incident on the detector at three different angles, while

gammas from the 56Co source were always from a fixed postion. The energies

of the 35Cl(n, γ) lines were corrected for Doppler shifts as previously described.

Figure 3.16 shows the difference between the Doppler-shift-corrected data at 125◦

and 65◦. A small systematic effect may be present, but it was not large compared

to our other uncertainties. The shifts are relatively insignificant for high energies.
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Figure 3.17. Energies of the 3.9 and 8.1 MeV γ peaks versus proton
energy in the lab frame. For comparison the γ1 data is shown (which

corresponds to transitions to the first excited state at 2.2 MeV). The γ1

data shows a non-resonant behavior as expected.
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3.5.5 Nonresonant background

If there were non-resonant components to the 31P(p, γ) γ-rays, they would

shift their centroids in a manner depending on the beam energy and the structure

of the target. The data showed no evidence for such non-resonant components.

Figure 3.17 shows the centroids of 3922 and 8124 keV γ rays versus proton energy

from the 0◦ detector. Data points at lower proton energies are missing for the 3.9

MeV and 8.1 MeV gammas because there are no observable peaks. For compar-

ison we show the centroid for the γ1 yield, which does not come from a narrow

resonance.

3.6 Results and Discussion

3.6.1 Excitation energy of the T = 2 state

The precision of the ± 90◦ data was limited both by possible misalignments of

the Ge detectors and by the incident-angle dependence of the pulse height in the

36Cl calibration. The 0◦ data, on the other hand, were limited by uncertainties in

the calibration γ ray energies and peak line-shapes. Table 3.2 shows the gamma

ray energies deduced from this work. The 3.9 MeV and 8.1 MeV γ ray energies

are obtained from a weighted mean of the 0◦ and the 90◦ data. Since some of the

uncertainties are common to both data sets, we use only the uncertainties from the

0◦ data in Table 3.2. The excitation energies of the levels are obtained by adding

the energies of the cascading γ rays to the nuclear recoil energy. The excitation

energy of the Jπ, T = 1+, 1 state at 8.1 MeV was obtained using the weighted mean

of the excitation energy from the 5894-2230 keV cascade and the 8124 keV γ ray.

On comparison with previous determinations, we obtain satisfactory agreement
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TABLE 3.2

LEVEL ENERGIES AND DOPPLER-CORRECTED

GAMMA RAY ENERGIES FROM 32S.

Jπ, T Ex (keV) Eγ (keV)

Previous work This work

2+, 0 2230.57(15)a ... ...

1+, 1 7002.5(10)b 7001.44(36) 4770.49(33)

1+, 1 8125.40(20)a 8125.32(24) 5894.32(28)

8124.12(24)

1+, 1 9207.5(7)b 9207.55(71) 9206.13(71)

0+, 2 12045.0(4)c 12047.96(28) 2840.32(14)

3922.37(15)

5046.09(39)

a M. Babilon et al. [31].

b From Ref. [32].

c M. S. Antony et al. [20].
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TABLE 3.3

GAMMA-RAY ENERGIES FOR CASCADES FROM

THE LOWEST T = 2 STATE IN 32S.

Eγ1 (keV) Eγ2 (keV) Ex (keV)

5046.09(39) 4770.49(33)a 12047.96(53)

3922.37(15) 8124.12(24) 12047.86(28)

3922.37(15) 5894.32(28)a 12048.10(35)

2840.32(14) 9206.13(71) 12048.01(72)

Combined value 12047.96(28)

a This γ-ray de-excites to Ex1 = 2230.57(15) keV [31].

for the excitation energies of the three T = 1 levels fed by the T = 2 state, but

not with the previously cited value [20] for the excitation energy of the T = 2

state itself. Table 3.3 shows the gamma energies in the 3 cascade chains observed

in this work and the deduced excitation energy of the T = 2 level. Since the

uncertainties are correlated we use the smallest of the uncertainties in the data as

the total uncertainty in the excitation energy. Our value for the excitation energy

of the lowest T = 2 state, 12047.96(28) keV, is about 3.0 keV (≈ 7σ) higher than

that reported by Antony et al. [20] but agrees well with the lower-precision results

of Ref. [19].
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3.6.2 Relative gamma branches from the T = 2 state

In addition to precise determination of excitation energies in 32S, we obtain

more precise values for the relative γ branches from the T = 2 state in 32S. The

relative branches to states labelled by i were obtained by

BR(i) =
A(i)

(
3∑

j=1

A(j)η(i)

η(j)

) , (3.6)

where A represents the photopeak area and η is the efficiency for detecting a

particular γ ray. The γ detection efficiencies at various γ ray energies were ob-

tained using PENELOPE Monte Carlo simulations. Table 3.4 shows the relative γ

branches. A 6% uncertainity was assumed in the ratio of γ-detection efficiencies.

For comparison we show the relative branches from the isobaric analog state in

the mirror 32P nucleus.

3.6.3 Isospin violating γ decays

The transition matrix element for electromagnetic transitions in nuclei is com-

posed of isoscalar and isovector components. The isospin selection rules follow as

a direct consequence, i.e., ∆T = 0,±1 for allowed γ transitions [34].

The lowest T = 2 state in 32S provides an excellent opportunity to investi-

gate the possibility of an additional isotensor component to the electromagnetic

interaction. Such a component would allow ∆T = 2 γ transitions, which, in this

particular case, would be manifest as a resonant component to the γ1 yield at

Eγ = 9.8 MeV. Although a previous measurement showed a flat background for

the γ1 yield [35], it was interesting to check for a significant contribution to the
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TABLE 3.4

RELATIVE GAMMA BRANCHES (IN %) FROM THE

LOWEST A = 32 T = 2 STATES. EXCITATION ENERGIES

ARE IN KEV

Final st. 32P 32S

Jπ
n ;T Ex Ref. [33] Ex Ref. [21] This Work

1+
3 ;1 2230 9.4(5) 9208 11(2) 9.4(7)

1+
2 ;1 1149 85.7(8) 8125 83(8) 84.3(9)

1+
1 ;1 0 4.7(6) 7001 6(1) 6.3(7)
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Figure 3.18. Top panel: Excitation function of 3922-keV γ yield.
Bottom panel: Excitation function of γ1 yield (this includes the single
escape peak for additional statistics). The continuous line shows the

upper limit described in the text.
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γ1 yield in this particular experiment.

Figure 3.18 shows excitation functions for the 3.9 MeV γ ray (that corresponds

to an isospin-allowed, ∆T = 1 transition) and the 9.8 MeV γ ray. These were

obtained by varying the proton energy in steps of ≈ 1 keV through the resonance

and observing the yields. The γ1 yield data were fitted to a model using the

method of least squares with two adjustable parameters (a constant background

and a resonant term), which was assumed to have the same shape as the 3922-

keV γ yield. The best fit gave a resonant contribution consistent with zero. We

assumed the resonant γ1 yield to be factor 10−3 smaller than the 3922-keV yield.

An upper limit on the isospin violating branch was obtained using

BR(9.8 MeV) = BR(3.9 MeV)× 10−3 × η(3.9 MeV)

η(9.8 MeV)
. (3.7)

This upper limit was 0.25% at the 90% confidence level and yielded a γ1 width of

≤ 7.3 meV.

Our measured strength ratio Γγ1/Γγ(3.9 MeV) when expressed as an E2/M1

ratio of Weisskopf reduced strengths is less than 0.9%.

3.6.4 A test of the IMME

On combining our results with the best available results for the other 4 mem-

bers of the A = 32 isospin multiplet, we obtain the most precisely measured

quintet known to date. The revised masses are shown in Table 3.5. The measured

mass excesses were fitted to the IMME using a second-order polynomial fitting

routine. Ref. [37] was used for the 32Si mass rather than the more precise value

from the latest compilation [36] because the uncertainty quoted for the mass was
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TABLE 3.5

COMPARISION OF MEASURED MASS EXCESSES OF THE

LOWEST T = 2, A = 32 QUINTET WITH IMME FIT

Isobar T3 MExp (keV)a MIMME (keV)

32Si −2 −24080.86(77)b −24082.52(61)
32P −1 −19232.78(20)c −19232.48(18)
32S 0 −13967.74(31)d −13968.32(26)
32Cl +1 −8291.5(1.8)e −8290.05(63)
32Ar +2 −2200.2(1.8)f −2197.67(1.50)

Q(χ2 = 13.1, ν = 2)g = 0.001

a Ground state masses are from Ref. [36].

b From Ref. [37].

c Ex = 5072.44± 0.06 keV from Ref. [22].

d This work.

e M. C. Pyle et al. [16].

f K. Blaum et al. [18].

g Q(χ2
0, ν) is the probability of obtaining a set of data with χ2 ≥ χ2

0, given that

the model is correct.
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Figure 3.19. Difference between measured mass excesses and IMME fit
for the A = 32, T = 2 quintet in keV.

≈ 15 times smaller than that quoted by the experimenters themselves. Because of

the high precision attained in this multiplet, a new measurement of the 32Si mass

would be welcome as the existing mass measurements are not well documented 2.

The fit results are shown in Table 3.5 and Figure 3.19. We observe a significant

disagreement with the IMME prediction, Q(χ2, ν) = 0.001. Reasonable agree-

ment with the data, Q(χ2, ν) = 0.21, can be found by adding a very small cubic

term, dTz
3 to the IMME with d = 0.54 ± 0.16 keV, which is the smallest known

and most precisely determined violation of the IMME. For comparison, the most

precise determination of a d coefficient previously had an uncertainty of 1.4 keV

[11]. Fitting the data with a quartic term rather than a cubic term yields a quartic

coefficient, e = 0.53± 0.15 keV; with Q(χ2, ν) = 0.64.

2Ref. [36] calculated the mass from the 31Si(n, γ) gamma-ray energy published in Ref. [38],
but corrected the unreasonable published uncertainty of 0.0005 keV to 0.05 keV by studying how
well other known γ-ray energies were reproduced. However, the authors of Ref. [38] themselves
presented a revised evaluation of the mass of 32Si with an uncertainty of 0.822 µu or 0.77 keV
[37].
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3.6.5 Isospin mixing with other 0+ levels

The presence of nearby 0+ levels could affect the isospin purity of the T = 2

state in 32S and lead to breakdown of the IMME. In particular, for the case of

two-state isospin mixing, the T = 2 state would possess an admixture of the other

0+ state and vice-versa, such that

|T = 2〉 = α|Ψ;T = 2〉+ β|Ψ;T 〉 (3.8)

|Tadmixed〉 = −β|Ψ;T = 2〉+ α|Ψ;T 〉 , (3.9)

where |Ψ;T = 2〉 and |Ψ;T 〉 represent the unperturbed states of pure isospin, and,

α2 + β2 = 1. The energy difference between the perturbed states is given by

E(i)− E(j) = ∆Eu

√

1 +
4〈Ψ;T = 2|HIM |Ψ;T 〉2

∆Eu
2 , (3.10)

where the indices i and j label the perturbed energy levels, ∆Eu is the energy

spacing between the unperturbed levels and the isospin-mixing matrix element is

〈Ψ;T = 2|HIM |Ψ;T 〉.

Such isospin mixing would allow an isospin forbidden ∆T = 2 E2 transition

from the T = 2 state to the first excited Jπ = 2+, T = 0 state at 2.2 MeV.

Although we do not observe such a transition, the mixing scenario cannot be ruled

out. Excellent agreement with the IMME in the A = 32 system, Q(χ2, ν) = 0.74,

would be obtained if the excitation energy of the T = 2 state in 32S were 2.5 keV

lower than our results. Two 0+ levels are known [32] to lie slightly below the

T = 2 state and are potential candidates for the admixed level. A 100 eV wide

Jπ, T = 0+, 0 state at Ex = 11930 keV lies 118 keV below the T = 2 state. An

isospin-mixing matrix element of ≈ 17 keV would shift the T = 2 state upward by
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2.5 keV, implying an isospin impurity with an intensity of 2.1%. This Jπ, T = 0+, 0

level would not affect the positions of the T = 2 states in 32P and 32Cl, which is

consistent with the data. A second Jπ = 0+ level (of unknown isospin) occurs at

Ex = 11869 keV. If this level were responsible for the 2.5 keV shift, it would need

a mixing matrix element of 21 keV and an isospin impurity with an intensity of

1.4%. Matrix elements of this size are not implausible.

We measured excitation functions around both the 11930 and 11869 keV res-

onances and found no resonant component to the γ1 yield on the first resonance

and a significant yield on the second. Assuming Γp/Γ = 1 in all cases, the T = 2,

11930 keV and 11869 keV states have γ1 widths of ≤ 7.3, ≤ 52 and 330(70) meV.

These results however do not provide enough information to exclude either of the

levels as the source of the isospin admixture.

3.7 Conclusions

This precision measurement of the mass of the lowest T = 2 state in 32S

(∆M/M ≈ 10−5) makes the A = 32 multiplet the most precisely measured T = 2

quintet and easily provides the most stringent test of the isobaric multiplet mass

equation. Such a test provides the best demonstration of the validity of the

approximations inherent in the IMME and its utility for predicting masses away

from the valley of stability. A significant violation of the isobaric multiplet mass

equation is observed. This violation could be explained by isospin-mixing with a

nearby 0+ level.
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CHAPTER 4

0+ → 0+ FERMI DECAYS: PROBES TO TEST THE STANDARD MODEL

In this chapter we introduce the motivation to measure the ft value for the

0+ → 0+ beta-decay of 32Ar. Such measurements are critical for Standard Model

tests in the quest for a more complete theory of fundamental interactions.

4.1 The standard electroweak model for quarks and leptons and CKM unitarity

The Standard Model of electroweak interactions provides a unified theory that

couples the electromagnetic and weak interactions. Both these interactions are

introduced as different components of a single gauge theory, based on the group

SU(2)×U(1). In the minimal Standard Model [39], the leptonic and the hadronic

fields can be decomposed into left-handed SU(2) doublets and right-handed sin-

glets in weak-isospin space. Gauge invariance under local SU(2) × U(1) trans-

formations requires the presence of the vector gauge fields W i
µ(x), i = 1, 2, 3 and

Bµ(x) for the SU(2) and U(1) sectors respectively, which couple to the fermionic

fields with their associated gauge coupling constants g and g′.

The framework of the Standard Model explained above can be classified in

a scheme with three generations of quarks and leptons as shown in Table 4.1.

Maximal parity violation indicates that the charged weak currents are purely

left-handed for quarks and leptons at low energies. The absence of right-handed
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TABLE 4.1

THE THREE GENERATION STANDARD MODEL OF

QUARKS AND LEPTONS

Leptons Charge T3
a

doublets:






νe

e






L






νµ

µ






L






ντ

τ






L

0

−1

1/2

−1/2

singlets: eR µR τR −1 0

Quarks Charge T3
a

doublets:






u

d






L






c

s






L






t

b






L

+2/3

−1/3

1/2

−1/2

singlets:
uR

dR

cR

sR

tR

bR

+2/3

−1/3

0

0

a Analogous to section 2.1, T3 is a component of weak isospin.
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currents is incorporated within the standard electroweak model in a SU(2)L×U(1)

gauge theory, such that the transformations act on only the left-handed doublets

in Table 4.1. It is however known that the quark doublets in Table 4.1 do not

participate as pure states in the weak interaction. Experimental comparison of

the strengths of strangeness-conserving decays to the strengths of strangeness-

changing processes validate this claim. Such compelling experimental evidence

prompted the Cabibbo hypothesis, which modifies the weak hadronic current in

terms of one parameter, θC , the Cabibbo angle [40]. The phenomenon of Cabibbo

mixing was later generalized for three quark families and parameterized using a 3×

3 matrix [41] called the Cabibbo-Kobayashi-Maskawa matrix (denoted henceforth

as the CKM matrix) that relates the weak eigenstates to the mass eigenstates via

a unitary transformation, such that the weak eigenstates can be expressed as a

linear combination of the mass eigenstates 3









d′

s′

b′








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







Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

















d

s

b









= VCKM









d

s

b









. (4.1)

The weak hadronic current is modified similarly

Jh
µ = ( ū c̄ t̄ ) γµ(1− γ5) VCKM









d

s

b









. (4.2)

Each element of the CKM matrix is experimentally determined from the weak

decays of the relevant quarks. In the recent past, considerable interest arose to

3In the lepton sector, similar mixing exists owning to non-zero neutrino masses.
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check the unitarity of this mixing matrix. This has prompted various experimental

programs to measure the matrix elements with high precision [42]. Any deviation

from unitarity would indicate the need for a modification of the theory and provide

experimental evidence of extensions to the minimal Standard Model. This could

indicate a variety of new scenarios, such as the existence of right-handed currents 4,

more than three generations of quarks and leptons [44] or mixing with exotic

fermions [45].

Currently, the most stringent experimental test of CKM unitarity is in the first

row such that

|Vud|2 + |Vus|2 + |Vub|2 = 1− δ , (4.3)

where a nonzero value of δ would violate the unitarity condition and indicate ‘new

physics’.

The largest matrix element in Eq. (4.3) is Vud, which makes its uncertainty

critical for unitarity tests. The value of Vud can be determined using three different

methods:

1. Nuclear superallowed Fermi beta-decays.

2. Decay of the free neutron.

3. Pion beta-decay.

In what follows below, we give a brief description of the methods and limita-

tions involved in extracting Vud from these three methods. In particular, we shall

focus on superallowed Fermi transitions in nuclei which currently provide the most

precise value of Vud.

4For example, as predicted by manifest left-right symmetric models [43].

47



4.2 Methods to extract the value of Vud

4.2.1 Superallowed Fermi decays

The transition probability per unit time for a beta-decay is given by Fermi’s

Golden Rule. If the beta particle is emitted with a momentum between ~ke and

~(ke + dke) and the neutrino is emitted with a momentum between ~kν and

~(kν + dkν), then the decay rate is given by:

dwfi =
2π

~
|Mfi|2

dke

(2π)3
dkν

(2π)3
δ(Eo − Ee − Eν) , (4.4)

E0 being the beta end-point energy. In a simpler form, the decay rate can be

expressed as

1

t
=

2π

~
|Mfi|2f , (4.5)

where Mfi is the matrix element responsible for the transition from a state |i〉 to

a state |f〉 and f is the phase space available for the decay. The V −A structure

of the weak interaction allows us to decompose the matrix element for allowed

beta-transitions into two components, the Gamow-Teller component (GT) and

the Fermi component (F). This matrix element can be expressed as

|Mfi|2 = GV
2|MF |2 +GA

2|MGT |2 , (4.6)

where GV and GA are the effective vector and axial-vector coupling constants

respectively. The vector and axial-vector matrix elements can be expresed in

terms of reduced matrix elements as

|MF |2 =
1

2Ji + 1

∑

f,i

|〈f‖
∑

k

τ (±)(k)‖i〉|2 , (4.7)
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and

|MGT |2 =
1

2Ji + 1

∑

f,i

|〈f‖
∑

k

τ (±)(k)σ(k)‖i〉|2 , (4.8)

where τ (±)(k) are the isospin raising and lowering operators introduced in §. 2.1,

the components of σ(k) are the three Pauli spin matrices and Ji is the total

angular momentum of the initial state i.

The nature of the transition matrix elements in Eqs. (4.7) and (4.8) imply that

for 0+ → 0+ nuclear beta-decays (also known as superallowed Fermi transitions),

the Gamow-Teller decay strength does not contribute to the lowest order and the

weak current is a purely vector interaction. The nuclear matrix element for such

transitions is given purely by the expectation value of the isospin ladder operator

in Eq. (4.7), which is a simple SU(2) Clebsch-Gordon coefficient. Since the parent

and the daughter states for such transitions are isobaric analogs of each other, the

decay is largely independent of nuclear structure effects, assuming that isospin

is an exact symmetry. Therefore, on substituting Eq. (4.6) into Eq. (4.5) with

|MGT | = 0, it is obvious that for all such transitions occurring between states

of the same isospin the ft value (the comprative half-life) should ideally be a

constant, i.e.

ft =
K

GV
2|MF |2

, (4.9)

K being a constant. The experimental data required to extract the ft value for a

given 0+ → 0+ decay are shown in Figure 4.1. TheQEC value is essential to extract

the phase space, f , available for the decay, while measurements of the superallowed

branch and the half-life give the partial half-life, t, for the superallowed transition.

The constancy of ft values predicted by Eq. (4.9) is, however, based on a few

important assumptions:
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0+ T = 1

0+ T = 1

QEC

t1/2

BR

Figure 4.1. The experimental data needed to measure the ft value for a
superallowed transition

• The vector coupling constant is not renormalized in the many-body nuclear

medium (the conserved vector current hypothesis).

• Isospin symmetry is not violated.

• There are no radiative corrections required.

It is well known that based on these assumptions, the ft values of various su-

perallowed transitions are constant only at the few percent level [46]. Precise

measurements of ft values of various T = 1 emitters indicate a breakdown of

such constancy, which, as we shall see, is restored once theoretical corrections

[47] accounting for the above assumptions are included. We now describe the

implications of these three assumptions and the corrections involved therein.

4.2.1.1 The CVC hypothesis

The conserved vector current hypothesis [48, 49] was postulated in analogy to

the conservation of the electromagnetic current. In the case of electromagnetism,
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the coupling constant (e) to the electromagnetic field is unaffected by the emis-

sion or absorption of virtual particles, such that the net charge of the system is

conserved. The electromagnetic current is a combination of only isoscalar and

isovector components. This current can be written in terms of these components

as

jEM
µ =

1

2
ψ̄[F S

1 (k
2)γµ + i

F S
2 (k

2)

2M
σµνkν + F S

3 (k
2)kµ]ψ

+ψ̄[F V
1 (k2)γµ + i

F V
2 (k2)

2M
σµνkν + F V

3 (k2)kµ]
1

2
τ3ψ , (4.10)

where kµ is the momentum transferred, and the isoscalar and isovector form factors

are defined in terms of the proton and neutron form factors by

F S
i (k

2) = F p
i (k

2) + F n
i (k

2)

F V
i (k2) = F p

i (k
2)− F n

i (k
2) (4.11)

for i = 1, 2, 3. In the zero momentum transfer limit, the first form factor F1 of the

isovector current is the charge of the nucleon in units of e. In other words, the

electromagnetic coupling constant is unaffected by strong interactions.

The weak vector current for the hadronic sector can be expressed as a Lorentz

invariant vector (neglecting recoil order effects) in a similar manner

V h
µ = ψ̄[gV (k

2)γµ + i
gM(k2)

2M
σµνkν + gS(k

2)kµ]τ
(±)ψ . (4.12)

Eqs. (4.10) and (4.12) indicate that the isovector component of the electromag-

netic current and the weak vector current are identical in structure. This similarity

leads us to the CVC hypothesis, which states that the weak hadronic vector cur-
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rent, its Hermitian conjugate and the isovector component of the electromagnetic

current form a single isospin triplet of conserved currents. It follows that, in the

zero momentum transfer limit

gV (k
2 → 0) = F V

1 (k2 → 0) = 1 . (4.13)

Thus, the vector coupling constant is always the same, independent of the nuclear

medium in which the decay occurs. In section 4.2.1.5 we show the remarkable

experimental success of the CVC hypothesis.

4.2.1.2 Isospin symmetry breaking corrections

For a superallowed Fermi decay, if the parent and the daughter states were

perfect analogs of each other, then the Fermi matrix element would be model

independent and given by

|MF |2 = [T (T + 1)− T3iT3f ]δif . (4.14)

However, analog symmetry is broken due to charge-dependent forces between the

nucleons. Such isospin symmetry breaking effects are of the order of 1% for T =

1→ T = 1 transitions and reflect small differences between the initial and the final

state wavefunctions (depending on the structure of the nucleus of interest). This

reduces the strength of the Fermi transition to the 0+ state, such that, the Fermi

matrix element requires a theoretically calculated charge-dependent correction δC

|MF |2 =⇒ |MF |2(1− δC) . (4.15)
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The isospin breaking correction, δC , is composed of two different components. One

arises due to configuration mixing with other 0+ states in both the parent and

the daughter nuclei (denoted by δCM), while the other arises due to differences in

the single-particle neutron and proton radial wavefunctions, which cause the radial

overlap integral between the parent and the daughter nucleus to be less than unity

(denoted by δRO). Over the years, there have been many independent theoretical

calculations of δC for superallowed Fermi emitters. Towner and Hardy [50] used

shell model calculations to determine δCM and Woods-Saxon radial wavefunctions

to obtain δRO. Ormand and Brown used a similar shell-model scheme as Ref. [50]

to obtain δCM and self-consistent Hartree-Fock calculations using Skyrme-type in-

teractions to calculate δRO for various nuclei [51]. Sagawa, Van Giai, and Suzuki

[52] have added RPA calculations to microscopic Hartree-Fock calculations to ob-

tain δC for various nuclei and Navrátil, Barrett, and Ormand [53] have calculated

δC for the 10C case using a large-basis shell model calculation. For all the cases

calculated so far, the radial overlap corrections (δRO) are known to be much larger

than the configuration mixing corrections (δCM) [50].

4.2.1.3 Radiative corrections

Additional radiative corrections are required for such weak processes because

of the possible emission and absorption of virtual photons by the charged par-

ticles involved in the weak decay. Such radiative corrections are composed of a

transition-dependent term δR and a transition-independent term ∆V
R. The tran-

sition dependent term is further divided into δ′R, which is independent of nuclear

structure, and δNS, which is structure dependent. The structure independent
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terms are written as

δ′R =
α

2π
[ḡ(E0) + δ2 + δ3] (4.16)

∆V
R =

α

2π
[4 ln(mZ/mp) + ln(mp/mA) + 2CBorn] + ... (4.17)

In the above equations, E0 is the beta end-point energy, mZ is the Z-boson mass,

mp is the proton mass, mA is the A1-meson mass, and δ2 and δ3 are higher-order

QED corrections. ḡ(E0) is the average of the energy dependent function derived

by Sirlin [54] and CBorn arises from axial-vector photonic contributions of the order

of the fine structure constant [50].

The nuclear structure dependent corrections, δNS, have been calculated for a

wide range of nuclei that decay via superallowed transitions using varying choices

of effective interactions and shell model spaces [50].

These radiative corrections are incorporated in Eq. (4.9) such that

GV
2 =⇒ GV

2(1 + ∆V
R) . (4.18)

f =⇒ f(1 + δR) , (4.19)

where

δR = δ′R + δNS. (4.20)

4.2.1.4 The corrected ft value

The arguments presented above lead us to define a corrected ft value for a

superallowed transition

Ft ≡ ft(1 + δ′R)(1 + δNS − δC) =
K

|MF |2GV
2(1 + ∆V

R)
. (4.21)
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Figure 4.2. Corrected ft values for the most precisely measured T = 1
superallowed beta emitters.

If the CVC were true, this corrected ft value should be a constant for all superal-

lowed transitions that occur between analog states of a given isospin T . The CVC

hypothesis can thus be tested stringently by accurate measurements of the ft val-

ues of various superallowed decays and precise determinations of the theoretical

corrections involved.

4.2.1.5 Experimental tests of the CVC hypothesis

The ft values of many T = 1 superallowed emitters have been measured

accurately over an extended period of time [55]. This provides a stringent test

of the CVC hypothesis. Figure 4.2 shows the phenomenal success of the CVC

hypothesis; the data provides experimental verification of the CVC hypothesis to

one part in 3× 10−4.
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4.2.1.6 Determination of Vud from superallowed Fermi decays

With a mutually consistent set of Ft values for various cases, their average

value can be used to determine the vector coupling constant GV . For the weak

decays of quarks, this vector coupling constant is related to the universal weak

interaction coupling constant GF by:

GV = GF Vud gV (k
2 → 0) (4.22)

where the Vud factor is included for a semi-leptonic decay due to Cabibbo mixing.

Since GF is very well known from the muon lifetime (GF = 1.16637(1) × 10−5

GeV−2 [42]), and gV (k
2 → 0) = 1, Vud can be obtained from the Ft value for the

known T = 1 cases

|Vud|2 =
K

2GF
2(1 + ∆V

R)Ft
. (4.23)

4.2.2 Neutron and pion decays

Vud can also be obtained from the decay of the free neutron and the pion. We

explain briefly the advantages and the limitations of these two methods to obtain

Vud.

Neutron beta decay has an advantage over nuclear beta decays because of the

structural simplicity of the neutron. There are no complicated nuclear structure

dependent corrections or renormalization effects of nuclear medium involved in

neutron decay. However, this has both vector and axial-vector contributions. Un-

like the vector current, the axial-vector current is only partially conserved (PCAC)

[56], which requires two measurements to obtain Vud. One is the neutron lifetime

and the other is λ, the ratio of the axial-vector and vector effective coupling con-
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stants,

λ = GA/GV =
GF Vud gA
GF Vud

, (4.24)

which can be obtained by a correlation measurement to separate the vector and

axial-vector components [57].

Pion beta decay has advantages over both neutron and nuclear beta decay

because there exist no structure dependent corrections like the neutron, however,

unlike the neutron, the interaction current is purely a vector current. Unfortu-

nately, the branch for the decay is extremely small (≈ 10−8) [58], which results in

severe experimental limitations.

4.3 Present status of CKM unitarity

Although the theoretically calculated corrections are small for pion and neu-

tron beta decays, they are limited by experimental uncertainties. The most precise

value for Vud is obtained from superallowed nuclear beta decays. Figure 4.3 shows

a comparison of the uncertanties involved presently in obtaining Vud using these

three methods. The uncertainty in Vud was further reduced by a recent precise

determination of the radiative correction factor by Marciano and Sirlin [59], such

that

|Vud| = 0.97377± 0.00027 . (4.25)

Previously, on using ft values of various superallowed beta transitions, there

were indications that CKM unitarity was violated at the 2.4σ level [60]. Two

recent measurements, the branching ratios of K+ → π0e+νe(K
+
e3) and KL →

π±e∓νe(K
0
e3) yield higher values for Vus than previously quoted [61, 62]. The
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Figure 4.3. Vud from the three different methods. The contribution of
the uncertainties are shown.
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Particle Data Group [42] adopts these recent values to obtain

|Vus| = 0.2257± 0.0021 . (4.26)

The value of Vub is the smallest in the first row of the CKM matrix and is obtained

from B decays. The particle data group quoted value [42] for Vub is

|Vub| = (4.31± 0.30)× 10−3 . (4.27)

The newly evaluated values shown in Eqs. (4.25), (4.26) and (4.27) restore

unitarity such that

|Vud|2 + |Vus|2 + |Vub|2 = 0.9992± 0.0011 . (4.28)

However, the development of novel radioactive ion trapping methods has in-

spired many research groups to investigate the previously determined QEC values

for various superallowed decays via direct mass measurements with high precision.

In a recent measurement of the QEC value for the case of 46Va, the measured

masses yielded a value ≈ 2 keV higher than the value quoted in previous compi-

lations [63]. If the QEC values of all the other precisely measured superallowed

cases were shifted by approximately the same amount, then the average Ft value

in Eq. (4.23) would be higher, which would resurrect the non-unitarity problem.

4.4 The beta decay of 32Ar

The superallowed beta decay of 32Ar is an interesting case to study. The

beta-decay is followed by isospin-forbidden delayed proton emission ≈ 93% of
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Figure 4.4. Predicted coulomb corrections for a number of superallowed
decays using the Hartree Fock calculations of Ref. [51]

the time, which makes the superallowed branch easier to determine with high

accuracy. Also, for the case of 32Ar, δC is calculated to be much larger than most

of the other superallowed beta emitters that have been experimentally studied

(δC = 2.0 ± 0.4%) [64]. These Coulomb corrections are larger for 32Ar because

of the loose binding of d3/2 and s1/2 proton states compared to the tight binding

of the corresponding neutron states. Thus, the tail of the radial wavefunction for

the protons extends further than that of the neutrons, which leads to a larger

δRO correction. Figure 4.4 compares the calculated δC values of a number of

superallowed decays to 32Ar.

The isospin-breaking correction for 32Ar can be decomposed into δCM = 0.6%

and δRO = 1.4% [64]. Since the corrections are large for this case, it is interesting

to check the calculated corrections by measuring the δC value for 32Ar superal-

lowed decay. In addition, it must also be noted that the δCM correction factor is
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highly model dependent; it is inversely proportional to the difference in excitation

energies as shown in Eq. (3.10). This model dependence is reduced by constraining

the strength of the charge dependent interaction to reproduce the b and c IMME

coefficients for the specific isobaric multiplet involved in the Fermi beta decay [50].

A previous measurement of the e+ − ν correlation in the 0+ → 0+ decay of

32Ar [14] through detailed analysis of the shape of the delayed-proton spectrum

provides information to measure δCM for this particular case. Isospin mixing with

non-analog 0+ states would reduce the Fermi strength to the analog state and

permit vector β branches to these non-analog states. There is work in progress

to determine δCM experimentally by identifying such transitions from the proton

spectrum and from knowledge of the e+ − ν correlation [65].

4.5 32Ar superallowed decay: What needs to be known?

The half-life for the 32Ar beta decay is already known to 0.2% [65], while a

precision measurement of the 32Ar mass [18] yields a QEC value known to ≈ 2.5

keV, or ≈ 0.04%. The absolute branch for the superallowed decay, however, is only

known to ≈ 13% [33]. An improved high precision measurement of the branch is

the only remaining requirement for a meaningful ft value determination for 32Ar

β decay.

Figure 4.5 shows a simplified decay scheme for 32Ar. The Jπ = 0+, T = 2 state

in the daughter 32Cl nucleus is mainly unbound to proton emission. However, ≈

7% of the time, the daughter state decays via γ emission. An accurate determi-

nation of the superallowed branch therefore requires precise measurements of the

delayed proton and γ branches respectively. For the γ-ray detection efficiencies,

an intrinsic calibration can be done using the subsequent beta decay of the 32Cl
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Figure 4.5. Simplified decay scheme of 32Ar. The delayed proton
emission and some of the levels that γ decay are shown.

daughter nucleus and known values of delayed γ yields from 32Cl β-decay. This

minimizes systematic uncertainties associated with the geometrical size and the

distribution of the source. In order to determine the γ branches with high preci-

sion to make a meaningful test of the calculated δC corrections, it is important to

know the delayed γ yields from 32Cl with accuracies of ≈ 1 − 2%. The following

two chapters explain the experimental procedure to measure the γ yields from

32Cl β-decay and the determination of the superallowed branch for 32Ar β-decay

to test the calculated isospin-symmetry breaking corrections.
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CHAPTER 5

DELAYED GAMMA YIELDS FROM 32Cl BETA DECAY

In this chapter we describe the experimental details and preliminary results

from an experiment at the Cyclotron Institute of Texas A&M University to obtain

the delayed γ yields from the β-decay of 32Cl.

5.1 Introduction

Prior to the work described in this chapter, the γ yields following the β-decay

of 32Cl were determined using the 32S(p, n) reaction and a rabbit system [66]. This

result was limited by the efficiency calibration of the γ-ray detector, and the yields

were known to . 10%. As explained previously (§ 4.5), an improved determination

of the γ yields from the decay of 32Cl is essential to make a meaningful test of

the calculated isospin-symmetry breaking corrections for the superallowed Fermi

decay of 32Ar. Figure 5.1 shows the decay scheme for 32Cl. The β-decay of 32Cl

feeds states in 32S, which subsequently de-excite via γ emission. Our measurement

reports revised determinations of the absolute β and γ yields from 32Cl decay. We

remeasured the γ intensities to ≤ 0.3% using a radioactive 32Cl beam, a fast

tape-transport system and an extremely well-characterized HPGe detector.
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Figure 5.1. Decay scheme of 32Cl. The beta branches are from Ref. [66].
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Figure 5.2. Schematic layout of the Cyclotron Institute laboratory.

5.2 Experimental details

5.2.1 The MARS spectrometer: Beam production

The measurement was carried out using the recoil spectrometer (MARS) at

the Cyclotron Institute at Texas A&M University. Figure 5.2 shows a schematic of

the facilities available at the site, and Figure 5.3 shows a schematic view of MARS.

A description of the spectrometer is explained in detail in Ref. [67]. A primary

beam of 32S was produced by an ECR ion source and injected into the K500

superconducting cyclotron. The ≈ 400 nA 32S beam exited the K500 cyclotron at

≈ 24.8 MeV/A and was directed towards the MARS recoil spectrometer. It was

passed through magnets SW1 and SW2 (shown in Figure 5.3) and impinged on a

liquid N2 cooled H2 gas target at 1.4 atm, where the entrance and exit windows

of the gas cell were made of ≈ 5µm Havar foil. The secondary beam of 32Cl was

produced in the gas cell via the inverse kinematic transfer reaction 1H(32S, n)32Cl.
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Figure 5.3. Schematic layout of the MARS recoil spectrometer.

Preliminary excitation function data indicated the reaction cross section to be ≈

3 mb for the aforementioned energy [68].

The reaction products were spatially separated in the following manner: First,

the beam was passed though the two quadrupole magnets Q1 and Q2 and then

dispersed horizontally using the dipole magnet D1, which in combination with Q3

and D2 produced an achromatic beam that was sent into a velocity filter (V1).

Then, the beam was dispersed vertically using the dipole D3, which together with

the quadrupoles Q4 and Q5 produced an M/Q focus at the extraction slits of the

MARS focal plane [69].

Contaminants in the beam were identified using a position-sensitive Si strip-

detector (∆E) and a 4-fold segmented Si detector (E) that were placed down-

stream from the MARS focal plane. The purity of the 32Cl beam (t1/2 = 298 ms)

was ≈ 88%, the only significant contaminants being 30S (t1/2 = 1.178 s) and 31S

(t1/2 = 2.572 s). Figure 5.4 shows a two-dimensional spectrum from the first detec-

tor as a function of position. During data acquisition most of the 31S contribution

was minimized using the slits SL5.
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Figure 5.4. Ion identification using the first strip detector. The only
significant contaminant is 30S.

5.2.2 The fast tape-transport system: Data acquisition

The fast tape-transport system used for the measurement is shown in Fig-

ure 5.5. The 32Cl beam from MARS, containing ≈ 2 × 105 atoms/s, exited the

vacuum system through a 50-µm-thick Kapton window and then passed through

a 0.3-mm-thick BC-404 scintillator and a series of degraders before finally stop-

ping in a 75-µm-thick aluminized Mylar tape that is a part of the tape-transport

system. Since the impurities in the beam had different ranges compared to 32Cl,

most of these impurities were not collected in the tape. The optimal set of de-

graders were later determined to consist of one 0.5 mils thick Al foil and a ‘dummy’

aluminized Mylar tape.

In a typical tape cycle, 32Cl was collected in the tape for 0.8 seconds after

which the accelerator beam was interrupted for a few µs by shifting the phase
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Figure 5.5. The fast tape-transport system at TAMU for precision
measurements.

of one of the cyclotron dees off resonance. The tape-transport system was then

triggered to move the radioactivity to a shielded counting station 90 cm away in ≈

180 ms where data were acquired for 1 second (see Figure 5.5). The radioactivity

in the tape was positioned between a 70% HPGe γ-ray detector and a 1-mm-thick

BC-404 plastic scintillator to detect β particles. The former was located 15.1

cm away from the sample, while the latter was positioned only 5 mm away. For

each tape cycle, the β − γ coincidence data were stored event-by-event. The β

and the γ-ray energies, the coincidence time between them and the time of the

event relative to the beginning of the cycle were recorded. Each cycle was clock

controlled and repeated continuously. The total number of beta singles events and

the total number of heavy ions from the MARS spectrometer (that were detected

by the first scintillator) for each cycle were determined from a scaler and recorded

on a run by run basis.
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Figure 5.6. Delayed γ-ray spectrum following 32Cl decay in coincidence
with β particles.

5.3 Data analysis

Figure 5.6 shows the γ-ray spectrum from the experiment. These data were

taken in coincidence with signals from the β counter to reduce room background.

Almost all the peaks are associated with 32Cl β-decay. We identified 8 new γ

transitions from 32Cl β-decay that were not previously reported. However, two

γ-rays that were previously reported [32] with weak branches at energies Eγ =

2833 keV and Eγ = 7115 keV were absent from the spectrum. The 677 keV peak

corresponds to a transition in 30P due to the β-decay of 30S contaminant nuclei.

We also observed weak γ-ray peaks at Eγ = 1266 keV and Eγ at 1779 keV which

indicate that small traces of 31S and 28P were present as additional impurities in
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the sample.

5.3.1 Efficiency Calibration

The γ-ray detection efficiency calibration was fundamental to our measure-

ment. The Ge detector used for this experiment was meticulously calibrated over

a period of 5 years using both radioactive sources and a Monte Carlo photon trans-

port code called CYLTRAN [70]. This was done through a series of steps: First,

the absolute and the relative efficiencies were determined over a range of γ-ray

energies using the high purity radioactive sources with extremely well-known ac-

tivities known to ≈ 3% or below. Then, the detector dimensions were determined

independently of the factory specifications using various radioactive sources5. The

measured parameters of the Ge detector were then used as inputs to the Monte

Carlo code to obtain the efficiencies from the simulation. Finally, the dead-layer

parameters of the detector were varied in the Monte Carlo simulation to obtain

agreement with the measured values. Table 5.1 shows the calculated efficiencies

for the detector over the energy range of interest, obtained using the method

explained above.

These calculated efficiencies were fitted to a polynomial of the form

ln ηi(Eγi) =
3∑

j=0

aj (ln Eγi)
j , (5.1)

to obtain the efficiencies at the γ-ray energies of interest. Figure 5.7 shows the fit

to the measured efficiencies.

5An independent x-ray scan of the detector revealed significant differences with the factory
quoted specifications.
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Figure 5.7. γ-ray detection efficiencies and the corresponding polynomial
fit.

TABLE 5.1

GAMMA-RAY DETECTION EFFICIENCIES AT 15.1 CM (FROM

REF. [70].)

Energy (keV) Efficiency (%)

511.0 0.38769(78)

583.03 0.35339(71)

1076.9 0.23130(46)

1279.9 0.20579(41)

1368.6 0.19634(39)

1548.0 0.17920(72)

1936.9 0.15111(60)
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TABLE 5.1

Continued

Energy (keV) Efficiency (%)

2230.3 0.13471(54)

2465.1 0.12369(49)

2754.0 0.11225(45)

3203.87 0.09770(39)

3318.8 0.09426(38)

3866.2 0.08117(81)

4281.5 0.07263(73)

4316.0 0.07223(72)

4695.4 0.06574(66)

4772.2 0.06471(65)

5392.7 0.05606(56)

5548.9 0.05427(54)

6000.0 0.0493(25)

6500.0 0.0445(22)

7069.5 0.0400(20)

7189.7 0.0390(19)

7930.9 0.0341(17)
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Figure 5.8. Decay scheme of the 30S contaminant.

5.3.2 Determination of the γ-yields

One important consideration that had to be accounted for before obtaining the

intensities from the data was the consistency of the position of the radioactivity in

each tape cycle. Although the tape-transport system was known to be consistent

in positioning the radioactivity to within ± 3 mm for each cycle, larger deviations

did occur for a number of cycles due to mechanical fluctuations. Such bad cycles

were identified by registering the number of heavy ions that were detected in the

first scintillator (located in front of the Aluminium degraders) and calculating the

ratio of heavy ions to β singles. Any anomalously high ratio indicated deviations

in tape position and a low ratio indicated fluctuations in the beam tune. Such

cycles were labelled as bad cycles and not used for data analysis. In addition,

tight timing cuts were made in each cycle (0.008 s ≤ t ≤ 0.9 s) to minimize

contributions from the long-lived contaminants.
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The γ-ray intensities following the β-decay of 32Cl were obtained using two

different methods. In the first method, the intensities were obtained as

Y (i) =
Nβγ(i)

η(i)Nβ(32Cl)
. (5.2)

In the above equation Nβγ represents the photo-peak area of a particular γ-ray,

Nβ(
32Cl) is the number of β-singles events from 32Cl decay and η(i) is the efficiency

of the Ge detector at that energy. This method of extracting the γ-ray intensi-

ties assumes negligible summing corrections (§ 5.5) and a constant β detection

efficiency over a range of β end-point energies.

The photo-peak areas of the γ-ray peaks were obtained using the lineshape fit

explained before (§ 3.4), with an additional high-energy tail to account for pile-up

effects.

The dominant source of uncertainties in obtaining the yields using Eq. (5.2)

comes from Nβ(
32Cl). This is because the total number of β-singles registered by

the scintillator were determined by a scaler to avoid significant dead-time effects.

This number had to be corrected for the vetoed cycles, the timing cuts within

each cycle and the betas from the contaminants. The contaminant betas could

be deduced using knowledge of the β and the γ branches of the contaminant nu-

cleus. For example, Figure 5.8 shows the decay scheme of 30S, which contributes

significantly to beam impurities. Since the β and γ branches for 30S decay were

reasonably well-known [33], the total number of 30S contaminant nuclei were ex-

tracted using the 677 keV photo-peak areas and a relation similar to Eq. (5.2).

We determined that ≈ 6% of our activity was contaminated by 30S nuclei.

In the second method, the photo-peak areas were determined using the same

fitting routine. For a given γ-ray with energy Eγ that corresponds to a transition
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Eγ = Ei − Ej, this photo-peak area is given by

Nβγ
ij =

Nβ(
32Cl)

∑

i

βiεi

︸ ︷︷ ︸

N

[

βiεi +
∑

k>i

βkεkγki

]

γijηij , (5.3)

where εi represents the beta-detection efficiency for a β particle associated with a

transition to the state labelled by i, and βi is the β branch to state i. ηij denotes

the γ detection efficiency for a γ-ray with energy Eγ, and γij is the γ branch for

the transition. The β detection efficiencies were obtained using a PENELOPE

Monte Carlo simulation. This simulation was done over a range of β-endpoint

energies assuming that the radial implantation profile of 32Cl in the tape was 1

cm in diameter. The depth profile was assumed to be a Gaussian distribution

extending up to the edges. The data were fit to Eq. (5.3) using the method of

least squares allowing an effective normalization (N), and the β and γ branches to

vary such that the photo-peak areas were reproduced. The ground state β branch

was fixed to β0 = 1.0+0.2
−0.5% from a previous measurement [71].

Once the β and γ branches were determined, the γ yields were obtained using

the relation

Yij =

[

βi +
∑

k>i

βkγki +
∑

i<n<k

βkγknγni

]

γij . (5.4)

5.4 Preliminary Results

The γ intensities obtained using the two methods explained previously agree

to within uncertainties. Table 5.2 shows the yields obtained by using the second

method. All the intensities agree with the values quoted by Détraz et al. with

much higher precision, except the 7188 keV γ-ray, which is lower by 2.5σ. The β
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branches are shown in Table 5.3.

TABLE 5.2

GAMMA-RAY INTENSITIES FROM THE BETA-DECAY OF 32Cl

Eγ Assignment Yij (%)

(keV) Ei → Ej Previous work [66] This work

1452 7001→ 5549 ... 0.27(2)

1548 3778→ 2231 3.6(6) 3.04(5)

1770 5549→ 3778 ... 0.13(2)

1970 6666→ 4695 ... 0.18(5)

2051 4282→ 2231 ... 0.39(4)

2230 2231→ 0 92.0(4.0) 89.6(3)

2305 7001→ 4695 ... 0.12(2)

2464 4695→ 2231 4.0(4) 4.11(4)

2719 7001→ 4282 ... 0.52(2)

2887 6666→ 3778 1.0(4) 0.96(3)

3222 7001→ 3778 ... 0.83(2)

3318 5549→ 2231 2.5(4) 2.39(3)

4281 4281→ 0 2.6(1) 2.50(6)

4434 6666→ 2231 0.8(2) 0.80(3)

4695 4695→ 0 2.8(6) 2.42(5)

4770 7001→ 2231 20.5(2.0) 20.22(22)

4884 7115→ 2231 0.45(20) 0.51(2)

76



TABLE 5.2

Continued

Eγ Assignment Yij (%)

(keV) Ei → Ej Previous work [66] This work

4958 7190→ 2231 ... 0.31(2)

5548 5549→ 0 1.6(3) 1.49(4)

7188 7190→ 0 0.41(10) 0.16(2)

5.5 Other systematic effects

Other systematic effects that could affect the measurement are coincidence

summing of the γ-rays6, the dependence of β detection efficiency on the β endpoint

energy and dead-time effects. These effects were not large for this experiment. The

coincidence summing corrections are estimated to be small because of the small

solid angle subtended by the Ge detector. Preliminary Monte Carlo simulations

using PENELOPE indicate no significant variation of the beta-detection efficiency

with the endpoint energy. Since the γ-ray rate varied from 1 kHz to 5 KHz

during the time data were acquired, dead-time corrections are currently being

investigated.

6Coincidence summing occurs if two γs from a cascade reach the detector simultaneously and
are recorded as a single γ-ray with the combined energy of both.
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TABLE 5.3

BETA BRANCHES FROM 32Cl DECAY

Daughter state β yield (%)

(keV) Previous work [66] This work

2230 60.0(4.0) 60.28(44)

3778 2.6(8) 1.07(6)

4282 3.1(4) 2.28(8)

4695 6.8(8) 6.2(1)

5549 4.1(5) 3.76(12)

6666 1.8(5) 2.03(7)

7001 20.5(2.0) 22.0(3)

7115 0.5(2) 0.57(3)

7190 0.9(1) 0.55(5)
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CHAPTER 6

SUPERALLOWED BRANCH FOR 32Ar BETA DECAY

We now describe the experimental procedure to obtain the branch for the

0+ → 0+ decay of 32Ar. The T = 2 state in the daughter 32Cl nucleus decays

predominantly via isospin-forbidden proton emission. However, the width of this

state is only ≈ 20 eV [14, 65], which implies that the γ decays of this state can-

not be neglected. The absolute superallowed branch was obtained by accurately

measuring the absolute proton and γ branches following 32Ar decay. Figure 6.1 is

the simplified decay scheme of 32Ar, shown previously in Chapter 4.

The measurement was done at the National Superconducting Cyclotron Lab-

oratory (NSCL) by implanting a known number of 32Ar ions in a silicon detector

and counting their subsequent decays. The absolute beta branch for the decay was

obtained by the ratio of the total number of decay products to the total number

of implanted parent ions.

6.1 Experimental Setup

32Ar ions were produced at NSCL at the rate of ≈ 20 s−1 by fragmenting a

100 MeV/u 36Ar+12 beam on a 470 mg/cm2 9Be target. The fragments passed

through the A1200 fragment separator [72] that separated 32Ar ions from other

nuclides created in the fragmentation process. The two dipoles of the A1200 were
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Figure 6.1. Simplified decay scheme of 32Ar.

set at 2.08112 and 1.89409 T-m, respectively. Additional fragment separation

was obtained using a 133-mg/cm2-Al-equivalent plastic wedge that was inserted

between the two dipoles. The separated 32Ar beam at ≈ 53 MeV/A left the A1200

fragment separator with a momentum spread of ∆p/p ≈ 1%, after which it was

passed through the Reaction Product Mass Separator (RPMS) Wien filter, which

further purified the beam.

The detector array used for the measurement is shown in Figure 6.2. It con-

sisted of a PIN silicon detector (D1) and a stack of 3 fully depleted 450 mm2-area,

500-µm-thick silicon surface barrier detectors (D2, D3 and D4) surrounded by 5

large-volume high-purity Ge detectors. A 310-µm-thick Aluminium foil, inserted

between D1 and D2 ensured that the incoming 32Ar ions stopped in the middle of

D3 (the implantation detector). Signals from D2, D3 and D4 were processed by

Canberra 2001 preamplifiers that had very low thresholds (≈ 20 keV) for detecting
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Figure 6.2. Top plus downstream views of the detector setup. The top
view does not show the top and bottom Ge detectors.
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βs as well as the much larger signals from the incoming heavy ions. D1 provided

energy loss and time-of-flight information that was used for identifying incoming

fragments. The energy loss in D2 in conjunction with the energy deposited in D3

gave an independent identification of the stopping ions that was used to determine

the actual number of ions implanted in D3. The implantation detector also served

as a delayed proton counter. D2 and D4 were used to reject fast light charged

particles and served also as β detectors. D4 also helped reject 32Ar ions that did

not stop in D3. The trigger consisted of any event in detectors D2, D3 or D4

resulting in a β detection efficiency of ≈ 98.6±1.4%. D4 was located at ≈ 1.0 mm

from D3, while D2 was located at ≈ 8.3 mm from D3. The array of high-purity

Ge detectors consisted of three 4-fold segmented clover detectors [73] G1, G2 and

G3, each with efficiencies of ≈ 120%, and 2 monolithic crystals, G4 and G5, with

efficiencies of 80% and 120%, respectively.

6.2 Determination of the number of implanted 32Ar ions

6.2.1 Ion identification

We separated events into incoming ions and decays. The former consisted of

events in which D1, D2 and D3 registered energies larger than ≈ 0.1 GeV, and

no energy was registered by D4. Decay events left between 40 keV and 15 MeV

in D2, D3 or D4 and deposited no energy in D1. Incoming ions were further

classified in 3 categories as shown in Figure 6.3. Good ions stopped in D3 and

were clearly identified as 32Ar ions in both the E1 vs. TOF1 (energy and time of

flight measured with D1) and in the E3 vs. E2 spectra. Ions not guaranteed to be

32Ar ions arrived in buffer regions in the particle identification spectra. The buffer

regions were defined such that these regions were large enough so that no 32Ar
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Figure 6.3. E1 vs. TOF1 spectrum from a single run. Top: 3d spectrum
where the 32Ar group has been truncated to show the other groups more
clearly. Bottom: vertical projection showing Region 3.1 (good region),
which contains the main 32Ar group, and Region 3.2 (buffer region),

which contained mostly ambiguous ions.
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Figure 6.4. E3 vs. E2 spectrum of events shown in Figure 6.3. Region
4.1 was defined to show that these events arise from a high-energy tail of
the beam (see text and Figure 6.6) and used to define Region 6.1; the
larger Region 4.2 is used in conjunction with Region 6.1 to ensure all

high-energy tail events are labelled ambiguous.

Figure 6.5. E3 vs. E2 showing only events on Region 3.1 in Figure 6.3.
Region 5.1 contains good 32Ar ions and contains 61 times more events
than Region 5.2. Region 5.2 is exclusive of Region 5.1 and contains

ambiguous ions.
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Figure 6.6. E1 versus TOF1 spectrum of events in Region 4.1 of
Figure 6.4. Once defined, events that were in both Region 6.1 and
Region 4.2 were labelled ambiguous to avoid high-energy tails in the

beam profile.

ion whose proton emissions could have been detected by D3 could lie outside the

union of the good and buffer regions. The ions in the buffer regions were labelled

as ambiguous ions. Contaminant ions were all those ions not contained in either of

the two regions. While counting the number of implanted ions and their decays,

all the ambiguous ions were rejected, and a 500 ms software dead-time (about five

32Ar half-lives) was imposed on counting either incoming ions or proton decays

following the implantation of an ambiguous ion. If a successive ambiguous ion

was detected within 500 ms of the previous ambiguous ion, the clock was reset

to impose the deadtime for another 500 ms. Incoming ions were identified with

the help of the code LISE [74]. Figure 6.3 shows the E1 vs. TOF1 spectrum; the

area labelled “Region 3.1” contained mainly 32Ar ions, not clearly separated from

contaminants. Region 3.2, which surrounds the main 32Ar group in Region 3.1,

mostly contained ambiguous ions. Figure 6.4 shows the E3 vs. E2 spectrum of all
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events in Figure 6.3. Figure 6.5 is similar to Figure 6.4 but contains only events

in Region 3.1 of Figure 6.3. Region 5.1 of Figure 6.5 contains the good 32Ar ions;

the remaining events are 32Ar ions that either reacted before reaching D3 or whose

full energy was not detected in D3.

Some features in the particle identification spectra are as follows:

• Saturation effects. In Figure 6.4 the horizontal line in the high E3 region and

vertical line in the high E2 region are due to saturation of the preamplifier

signals. To obtain the best possible energy resolution, a single preamplifier

was used on each detector; therefore the preamplifiers had to process an

unusually wide range of energies.

• Events in Region 4.1 of Figure 6.4. Figure 6.6 shows the E1 vs. TOF1

spectrum of events in Region 4.1, showing that these events originate due

to a high-energy tail in the beam profile. These ions deposited energy in D1

and D2 and more energy in D3 than the good 32Ar ions.

• Vertical line descending from the main 32Ar group in Figure 6.5. These

events are the combined results of 32Ar ions that landed near the edge of

D3 after scattering in D2 and those that reacted before coming to rest. This

was later confirmed by GEANT calculations [75].

6.2.2 Number of implanted ions

Good ions were tagged as ions that appeared in Region 3.1 of Figure 6.3 and

Region 5.1 of Figure 6.4 and did not deposit any energy in D4. Ambiguous ions

on the other had had to appear in either:

1. Region 3.2 of the E1 vs. TOF1 spectrum and either Region 5.1 or 5.2 of the
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E3 vs. E2 spectrum, or

2. Region 3.1 of the E1 vs. TOF1 spectrum and Region 5.2 of the E3 vs. E2

spectrum, or

3. Region 6.1 of the E1 vs. TOF1 spectrum (but not Region 3.1 or 3.2) and

Region 4.2 of the E3 vs. E2 spectrum, or

4. Region 3.1 of the E1 vs. TOF1 spectrum and Region 5.1 of the E3 vs. E2

spectrum (like a good ion) but also depositing energy in D4.

A total of NAr = 2.470 × 106 good 32Ar ions (not preceded by an ambiguous ion

in 500 ms) were implanted, along with Na = 0.130 × 106 ambiguous ions and

Nc ≈ 1.000× 106 contaminant ions.

If any of the ambiguous ions were 32Ar (t1/2 = 100.5(2) ms [65]), at most

3.18(2)% of their decays would occur after the end of 500 ms veto period and

would be indistinguishable from the decay products of good 32Ar ions. This effect

was corrected for by averaging two extreme cases: that all the ambiguous ions were

32Ar ions and that no ambiguous ions were 32Ar ions. This average was added to

NAr with a 100% uncertainty to obtain:

Nuncorr
Ar = (2.472± 0.002)× 106. (6.1)

Monte Carlo simulations using GEANT to check for fragmentation reactions

within D3 indicate a loss of (0.2 ± 0.2)% 32Ar ions due to nuclear fragmentation

[75]. This correction is incorporated to obtain a corrected number of implanted

32Ar ions

N corr
Ar = (2.467± 0.005)× 106. (6.2)
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Experimental investigation of the beam profile distribution was done using a 28Al

beam. The heavy ion count rates in D1, D2 and D3 were compared to the rates

when a collimator was placed upstream of D2 that blocked ≈ 40% of its active area.

This comparison indicated that the 32Ar beam was highly non-uniform. This data

was then used in conjunction with GEANT simulations and LISE calculations to

obtain the radial beam profile and the implantation depth for 32Ar ions in D3.

6.3 Beta-delayed proton branches

6.3.1 Delayed proton spectra

Figure 6.7 shows the energy spectrum of decay events in D3. The peaks cor-

respond to beta-delayed proton groups from 32Ar, with the prominent peak at

Ep ≈ 3500 keV being from the superallowed decay (see Figure 6.1 for a simplified

decay scheme). The proton lines had pronounced high-energy tails from the sum-

ming with the energy deposited by the escaping positrons. The structure below

E3 ≈ 2 MeV is dominated by β-decays not followed by protons (such as 32Ar

decays to particle-bound states of 32Cl, or implanted 31Cl ions that decay mainly

to the 31S ground state).

The areas under the delayed proton peaks were determined with the aid of a

previously obtained high-resolution (≈ 5 keV FWHM) proton spectrum obtained

at ISOLDE [14, 65] as shown in Figure 6.8.
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Figure 6.7. Left panel: singles delayed proton spectrum in D3

(histogram) along with the corresponding R-matrix fit (solid line). The
long high-energy tails are due to β summing. The filled curve

corresponds to proton emission following the superallowed transition and
the dashed is the β background. Right panel: same as the left, but gated

by Eγ = 1249 keV. In this case, proton emission following the
superallowed transition is peaked at ≈ 2.3 MeV.
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This spectrum was fitted using a R-matrix formalism for overlapping, interfer-

ing daughter states [76] that parameterized the intrinsic delayed proton spectrum

in terms of the transition matrix elements Mβ, energies and proton widths Γp of

19 daughter states (except for the Fermi transitions, all the allowed decays are to

1+ states that interfere with one another). This intrinsic shape was folded with a

detector response function consisting of a Gaussian folded with two exponentials

as described in Ref. [14] to fit the data in Figure 6.8. This yielded the relative

intensities, energies and intrinsic widths of the proton groups with energies up to

4 MeV. Next, R-matrix levels were added to reproduce the energies and inten-

sities of 9 weakly-fed states with Ep > 4 MeV. The widths of these levels were

assumed to be negligible and their total intensity relative to the total intensity

in the 2 − 4 MeV window is ≈ 1.9%. The data from the NCSL spectrum shown

in Figure 6.7 were fit using the relative areas and widths from the ISOLDE spec-

trum allowing only the electronic noise parameters and the relative normalizations

of backgrounds to vary freely. The overall normalization was fixed to equal the

number of counts in the data. The backgrounds consist of a 29S contamination

and the minimally-ionizing βs (described by a simple exponential). The intrinsic

proton shape from the ISOLDE data was input into a GEANT simulation which

tracked and summed the deposited energies of both the proton and β. The model

used in the fit was this simulated spectrum convoluted with Gaussian noise. The

same approach was used to simulate the 29S background. The resulting fit to the

singles delayed proton spectrum in D3 (shown in Figure 6.7) allowed to extract

the total number of delayed protons and, based on the R-matrix intensity ratios,

the number of decays for each of the groups.
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Figure 6.8. ISOLDE data and its corresponding R-matrix fit. This
spectrum was taken by implanting 60 keV 32Ar ions into a 20 µg/cm2

carbon foil and observing the beta-delayed proton groups with cooled
PIN diodes. The detection setup was immersed in a 3.5 Tesla magnetic
field that prevented the βs from reaching the detectors and summing

with protons.
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6.3.2 Delayed proton transitions feeding the 31S first excited state

We used the γ-ray spectra to identify several delayed proton transitions to the

Jπ = 3/2+, Ex = 1249 keV first excited state of 31S. The right panel of Figure 6.7

shows the E3 spectrum of events in coincidence with the 1249 keV γ-ray in any

of the 5 Ge detectors. Once the groups were identified, we used the ISOLDE

spectrum to obtain their relative intensities. This allowed us to infer the relative

intensities of these groups without depending on the γ-ray efficiency. Table 6.1

lists the intensities obtained from these proton groups relative to the intensity of

the superallowed proton group populating the 31S ground state.

6.3.3 Delayed proton branches following the superallowed decay

On fitting the NSCL singles spectrum, we obtain Np0 = (5.093± 0.013)× 105

protons from the 32Cl isobaric analog state (IAS) to the 31S ground state (filled

histogram). The uncertainty includes statistical fluctuations, the uncertainty in

the line shape and the signal-to-background ratio.

The Ep ≈ 2.3 MeV peak (filled histogram), clearly visible in the right panel of

Figure 6.7 corresponds to proton emission from the IAS to the 1249-keV level in

31S. This peak appears in the ISOLDE spectrum as a partially resolved shoulder on

the right of the structure at Ep ≈ 2.1 MeV. We obtained Np1/Np0 = (1.25±0.10)%

from the NSCL data which is in agreement with Np1/Np0 = (1.29± 0.04)% from

the ISOLDE data. We adopt Np1/Np0 = (1.28 ± 0.04)% obtained as a weighted

average but retain the smaller of the two uncertainties.

Furthermore, the ISOLDE spectrum was used to extract information for decays

to the states at Ex = 2235.6 keV (Jπ = 5/2+) and Ex = 3079 keV (Jπ = 1/2+),

such that Np2/Np0 = (0.12± 0.04)% and Np3/Np0 ≤ 0.14%.
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TABLE 6.1

PROTON GROUPS IN COINCIDENCE WITH A 1249

KEV GAMMA RAY

This work Previous work [77]

Ep (keV) Ex (keV) Ip (%)a Ep (keV) Ip (%)a

912(5) 3772(5) 0.07(4) −− −−

1218(5) 4087(5) 1.81(22) 1214(10) 1.8(2)

2145(5) 5046(5) 1.06(20) −− −−

2394(5) 5302(5) 0.62(11) −− −−

2515(5) 5427(5) 2.63(11) −− −−

3581(5) 6528(5) 0.37(4) 3592(10) 0.83(9)

3649(5) 6599(5) 0.30(3) 3643(10) 0.39(9)

3785(5) 6738(5) 0.12(5) −− −−

4386(5) 7361(5) 0.17(2) −− −−

4529(5) 7507(5) 0.03(1) 4521(10) 0.52(8)

4630(5) 7611(5) 0.14(5) 4621(10) 0.04(4)

4869(5) 7857(5) 0.18(3) 4858(10) 0.12(4)

a Relative to the superallowed proton group leaving 31S in its ground state.
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The total proton branch for the superallowed transition was then determined

to be

b βp
SA =

Np0

NAr

(

1 +
∑

i=1,3

Np,i

Np0

)

= (20.93± 0.08)% (6.3)

where the error includes both statistical and systematic uncertainties.

The total number of protons up to 6.5 MeV was extracted from the normalized

number of counts from the fit after the fit converged. The result, N tot
p = (8.818±

0.005)× 105, implies a total proton branch of:

b βp
tot =

N tot
p

NAr

= (35.74± 0.08)%. (6.4)

6.4 Beta-delayed γ branches

Figure 6.9 shows the summed γ-ray spectrum from the 5 Ge detectors in coin-

cidence with a decay event in D2, D3 or D4. To optimize statistics the ambiguous

ion electronic dead time was not imposed. Nevertheless, all of the visible peaks

correspond to 32Ar decays which shows the absence of any significant contamina-

tion. The trigger for the experiment was given by events that left energy above

threshold in any of the detectors D2, D3 or D4. The probability of detecting

a beta in any of these Si detectors was determined with a PENELOPE Monte

Carlo simulation. Using the measured energy thresholds this was found to be

εβ = 0.99(1), independent of β end-point energy to within uncertainty. Thus, the

γ-ray detection efficiency was largely independent of the β detection efficiency.

6.4.1 Gamma ray efficiencies

As explained previously, in order to determine the absolute γ branches from

32Ar β-decay, an accurate γ detection efficiency calibration can be obtained using
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Figure 6.9. Spectrum of γ-rays in coincidence with a β signal in D2, D3,
or D4. Lines from

32Ar decay are marked with a “?”. The remaining
labelled lines are from 32Cl decay.

the known delayed γ intensities from the decay of 32Cl.

For a given γ-ray from the decay of 32Cl, the γ-ray detection efficiency for

detector Gi, εγ(Gi), can be obtained from

NAr(1− bβp
tot) b

βγ(32Cl) =

[
Nγ(Gi)

ηsum(Gi)εγ(Gi)εβ

]

, (6.5)

where Nγ(Gi) and bβγ(32Cl) represent the photo-peak area of the gamma ray of

interest and the known gamma yield [66] from 32Cl decay respectively and the

factor εβ is the efficiency for detecting a β in the Si detectors. The factor ηsum(Gi)

is the summing correction factor which depends on the β and the γ branches

and the solid angle subtended by the detector. This summing correction factor

is defined such that the observed number of counts for a given peak, Nγ(Gi), is
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actually

Nγ(Gi) = ηsumN
true
γ (Gi), (6.6)

where N true
γ (Gi) is the “true” photo-peak area if there existed no coincidence

summing of the γ-rays.

Eq. (6.5) can be rewritten as

NAr εγ(Gi)εβ =

[
N true

γ (Gi)

(1− b βp
tot ) b

βγ(32Cl)

]

. (6.7)

It will be shown later (in Eq. 6.8) that the factor on the left side of Eq. 6.7 (rather

than εγ(Gi)) can be used to compute all of the γ branches following 32Ar superal-

lowed decay. This minimizes systematic uncertainties due to the geometrical size

and distribution of the source, and uncertainties from 32Ar ions that might have

escaped detection (i.e. ions that land outside the active area in D3 but whose γs

and βs could have been detected).

The γ-ray detection efficiency and the summing corrections were determined

using PENELOPE Monte Carlo simulations. Figure 6.10 shows the stack of Si

detectors used for the simulation. Figures 6.11 and 6.12 show the geometry of one

clover and the 120% Ge detector, and Figure 6.13 shows the complete geometry

file of the detector array that was used for the simulations.

The Monte Carlo simulations used the factory specified geometry of the crys-

tals, the distances from D3 and the implantation profile of the 32Ar beam in D3 to

obtain the detection efficiencies for the detectors at the relevant energies. Then,

the areas of the calibration peaks were determined independently using lineshape

fits explained previously. The summing corrections were obtained using two other

simulations. In one, for a given number of β-decays of 32Cl, the beta and gamma
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Figure 6.10. Stack of Si detectors.

8.0 cm

9.0 cm

Figure 6.11. Geometry file for one of the clovers.
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4.0 cm

10.4 cm

Figure 6.12. Geometry of the 120% detector.

branches from the TAMU measurement were used to feed states in 32S and gener-

ate the γ-rays from the subsequent transitions. This simulation also registered the

total number of photons originating from D3 for each γ-ray energy. The energies

deposited in each of the 5 detectors were then histogrammed and the photo-peak

areas from the simulation determined. In the other simulation, the peak areas

were obtained for the 5 detectors for a given number of photons originating from

D3, independent of the branches. The summing correction for each γ-ray in the

five detectors were obtained using ratios of the results from the two simulations.

Tables 6.2 and 6.3 show the simulation results for the 32Cl γ-rays in each detector.

The ratios of the photo-peak areas from the Monte Carlo simulations were found

to be in excellent agreement with the data.

For each detector, the data were fit using NAr in Eq. (6.7) as a normalization

factor that was the only free parameter, allowed to vary to obtain agreement with

the measured peak areas. Figure 6.14 shows the resulting efficiencies along with

the PENELOPE simulated efficiency curves for each detector.
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32
Ar beam

80% detector

120% detector

Figure 6.13. Geometry file of the detector array used for simulations.
The Si detectors are surrounded by the beamline. The aluminium

endcaps for two side clovers are not shown in the figure, but are used in
the simulations.
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TABLE 6.2

SUMMING CORRECTIONS AND SIMULATED EFFICIENCIES

Eγ (keV) 120% detector 80% detector Clover 1

εγ(×103) ηsum εγ(×103) ηsum εγ(×103) ηsum

5549 5.53(7) 1.032(20) 2.49(5) 1.033(30) 6.52(8) 1.027(19)

4771 6.44(8) 0.933(12) 2.89(5) 0.977(19) 7.47(9) 0.912(11)

4695 6.48(8) 1.020(16) 2.91(5) 1.007(24) 7.63(9) 1.029(15)

4435 6.92(8) 0.942(20) ... ... 8.25(9) 0.925(18)

4282 7.07(8) 1.005(16) 3.16(6) 1.008(24) 8.35(9) 1.001(15)

3319 8.80(9) 0.931(13) 4.06(6) 0.953(20) 10.52(10) 0.909(12)

2887 9.59(10) 0.910(16) 4.44(7) 0.933(24) 11.47(11) 0.837(14)

2465 11.22(11) 0.928(11) 4.96(7) 0.979(17) 13.13(12) 0.912(10)

2231 11.96(11) 0.975(9) 5.43(7) 0.976(13) 14.35(12) 0.956(8)

1548 15.26(12) 0.911(10) 6.78(8) 0.950(15) 17.98(13) 0.870(9)
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TABLE 6.3

SUMMING CORRECTIONS AND SIMULATED EFFICIENCIES

Eγ (keV) Clover 2 Clover 3

εγ(×103) ηsum εγ(×103) ηsum

5549 4.49(7) 1.028(23) 6.48(8) 1.019(19)

4771 5.23(7) 0.940(14) 7.58(9) 0.911(11)

4695 5.37(7) 1.010(18) 7.67(9) 1.056(16)

4435 5.70(8) 0.914(22) 8.09(9) 0.955(19)

4282 5.81(8) 1.012(18) 8.34(9) 1.008(15)

3319 7.29(9) 0.935(15) 10.45(10) 0.902(12)

2887 8.10(9) 0.855(16) 11.87(11) 0.799(13)

2465 9.07(10) 0.948(12) 13.40(12) 0.891(9)

2231 9.85(10) 0.978(10) 14.05(12) 0.977(8)

1548 12.56(11) 0.892(11) 18.02(13) 0.873(9)
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6.4.2 Gamma decays of the 32Cl isobaric analog state

The decays of the isobaric analog states in 32P and 32S lead us to expect

γ-decays to three 1+ levels (see Figure 6.1) in 32Cl.

The absolute γ branches for these decays can be computed as,

bβγ =

5∑

i=1

N true
γ (Gi)

NAr

5∑

i=1

εγ(Gi)εβ

, (6.8)

where the sum runs over all 5 Ge detectors; Nγ(Gi) is the summing-corrected area

of the particular γ-ray peak in detector Gi, and εγ(Gi) and εβ are the γ photo-peak

and β efficiencies respectively. We assume that εβ is independent of the energy

of the beta transition (a GEANT simulation indicated that the variations are

negligible compared to other uncertainties in our experiment). The denominator

on the right hand side of Eq. (6.8) comes from the calibration using lines from

32Cl decay, which makes the calculation of the branches rather independent of the

distribution of parent ions, as explained previously.

The β-γ coincidence spectrum in Figure 6.9 shows a peak at Eγ = 3877.5(3)

keV that is a candidate for the analog of the 32P 5072 keV→ 1149 keV transition

[32]. Figure 6.15 shows the spectrum of γ-rays in coincidence with a 3877-keV

γ-ray in the β − γ coincidence spectrum. The spectrum clearly shows the γ-rays

expected from de-excitation of the 1168.5(2) keV state, confirming that the decays

originate from the state at Ex = 5046.3(4) keV after correcting for nuclear recoil.

This verified the 3877 keV γ-ray to be the isobaric analog of the 5072 keV →

1149 keV transition in 32P.

The 32P T = 2 state also decays directly to the ground state, which implies
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Figure 6.15. Spectrum of γs in coincidence with 3878-keV γ-rays and a
β signal in D2, D3 or D4. All of the peaks except for the ones at

2230 keV and 511 keV correspond to the expected γ cascades following
the 3878-keV γ ray. Bottom panel: same as above, but with the

coincidence gate shifted down by 8 keV. This shows that the 2230-keV γ
comes mainly from coincidences with the Compton continuum of the

4770-keV γ ray in 32S.

that there ought to be a 5046-keV γ transition in 32Cl. Unfortunately, the first

escape peak of the 5549 keV γ-ray from 32Cl appears as a strong peak in the

region of interest in the spectrum. We however do not observe any significant

contribution from the 5046 keV γ-ray. Figure 6.16 shows data from the summed

spectrum of all the 5 detectors and the corresponding fit. The 5046 keV peak

was fitted with a fixed centroid and width, allowing only the background and area

parameters to vary to obtain the photo-peak areas from each detector.

The analog of the 5072 keV → 2230 keV γ transition in 32P [32] is observed

104



5

10

15

C
ou

nt
s/

ke
V

4970 4990 5010 5030 5050 5070 5090 5110
Eγ (keV)

-2
0
2

R
es

id
ua

l/σ

5549 - 511 keV 

5046 keV
(from 

32
S)

Figure 6.16. The region of interest where the γ ray corresponding to the
decay from the T = 2 state to the ground state should appear at

Eγ = 5046 keV. The main 5038-keV peak is the first escape from the
5550-keV γ ray from 32Cl.
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at Eγ = 2836(1) keV. This is observed close to another peak at 2839 keV. We

identified the 2836 keV peak as the one that arises from the analog transition

by observing the proton spectrum in coincidence with both these peaks indepen-

dently. As shown in Figure 6.18, protons at corresponding to energy 610(5) keV

are observed in coincidence with the 2836 keV γ-ray. No protons are observed

in coincidence with the 2839 keV γ-ray. The energy of the proton implies that

was emitted from a state at 2212(5) keV which when added to 2836(1) keV yields

Ex = 5048(5) keV, consistent with the energy of the T = 2 state in 32Cl.

The energy calibration for the above anaylsis was done by obtaining the peak

centroids for a few high statistics peaks corresponding to γ-rays following the

decay of 32Cl. These centroids were fit to a linear function of the form shown

previously in Eq. (3.3), using the known energies of states in 32S. Figure 6.17

shows the residuals from the fits for all five detectors.

The absolute intensities of the three γ-decays of the T = 2 state are listed in

Table 6.4. The total β-delayed γ branch for the superallowed transition is found

to be

bβγSA = (2.03± 0.10)%. (6.9)

The superallowed branch is obtained from the proton and gamma branches to

be

bβSA = (bβγSA + b βp
SA) = (22.96± 0.13)%. (6.10)

6.5 ft value of the superallowed decay

Using a recent determination of the mass of 32Ar [18] in addition to a recent

determination of the β−delayed proton energy [65] and the masses of 31S and the
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TABLE 6.4

ABSOLUTE βγ BRANCHES FROM THE LOWEST

T = 2 STATE IN 32Cl

Eγ (keV) bβγSA

3877 1.69(9)

2836 0.25(4)

5046 0.09(2)

proton the QEC value for the transition is found to be

QEC = 6091.3± 2.5 keV, (6.11)

which yields a statistical phase space factor of [78]

f = 3507.0± 8.2. (6.12)

The half-life of 32Ar is obtained from the ISOLDE measurement [65]

t1/2 = 100.5± 0.2 ms, (6.13)

from which the ft value of the superallowed decay to the IAS is determined to be

ft(32Ar) =

(

ft1/2

bβSA

)

= 1535± 10 s. (6.14)

The isospin breaking corrections and the nucleus dependent radiative corrections
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for the case of 32Ar have been calculated [64, 78], δC = (2.0 ± 0.4)% and δR =

(1.404 ± 0.038)%. These yield the corrected ft value for the superallowed decay

of 32Ar to be

Ft = 1525± 12 s. (6.15)

The isospin breaking correction is the determined experimentally from

Ft(T = 1)

2ft(32Ar)
= (1− δexp

C )(1 + δR) ,

(6.16)

where the factor of 2 corresponds to the ratio of squared matrix elements for T = 2

and T = 1 decays. The above equation yields

δexp
C = (1.3± 0.6)% . (6.17)

This result is in agreement with the theoretically calculated corrections from Or-

mand and Brown [64].

6.5.1 Widths and branches for γ-decays of the T = 2 state

Table. 6.5 compares the γ-ray branches of analogous decays of the lowest T =

2 states in the A = 32 multiplet. There is reasonable agreement with isospin

conservation, which predicts that the branches should be independent of T3. On

combining the value for the γ branch of the T = 2 state, and the superallowed beta

branch bβSA with the total width Γ = 20±5 eV obtained from the ISOLDE data [65]

the radiative width of the T = 2 state is found to be, Γγ = 1.8 ± 0.5 eV. The

shell-model prediction using the USD interaction [80] yields, Γγ ≈ 1.1± 0.1 eV.
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TABLE 6.5

RELATIVE γ BRANCHES FROM THE LOWEST

T = 2 STATES IN THE A = 32 MULTIPLET

Eγ (MeV) Relative γ branch

32Cl 32S [79] 32P [33]

3.9 84(2) 84.3(9) 85.7(8)

2.8 12(2) 9.4(7) 9.4(5)

5.1 4(1) 6.3(7) 4.7(6)
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, we have studied the effects of isospin symmetry breaking in

A = 32 nuclei via two high-precision measurements:

We remeasured the excitation energy of the lowest T = 2 state in 32S using the

31P(p, γ) reaction. This measurement made the A = 32 quintet the most precisely

measured multiplet to date. We observe a significant violation of the IMME for

this multiplet which could indicate either an erroneous mass measurement of a

member of the quintet or isospin mixing with other 0+ levels in 32S. The most

suspect member of the quintet is 32Si. Plans are underway to remeasure the

32Si mass using an ion-trap (LEBIT) at NSCL (Michigan State University). In

addition, investigations by B. A. Brown et al. [64] indicate that the d coeffcient

for the IMME is required due to isospin mixing in 32Cl. Both of these issues need

to be studied in detail before arriving at any conclusive evidence regarding the

status of the IMME.

The ft value for the 0+ → 0+ superallowed decay of 32Ar is the first such

measurement for a T = 2 nucleus. The measured ft value provides a check

of the calculated isospin-breaking corrections, which are important for tests of

the CVC hypothesis and CKM unitarity. Our measured value agrees well with

the theoretically calculated value. Analysis is ongoing to check and correct for

systematic effects that could affect our measurement. An independent calculation
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using the Woods-Saxon potential of Towner and Hardy will provide an additional

check on the charge dependent correction. In additon, the e+− ν correlation data

from ISOLDE can be used to determine the attenutation of the Fermi strength

due to configuration mixing with non-analog states. This will help extract the

δCM correction for 32Ar decay experimentally and can be compared to shell model

predictions.

Such measurements can be extended to other A = 4n, T = 2 nuclei whose

decays can be used as a systematic check of the isospin breaking corrections.

These T = 2 cases can be used to test the CVC hypothesis and place CKM

unitarity tests on a secure footing.
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APPENDIX A

DESCRIPTION OF THE LINESHAPE FUNCTION TO FIT GAMMA PEAKS

In the absence of statistical and electronic noise a γ peak will be a δ function

at the energy of interest. To account for charge-collection effects in the HPGe

detector, we add a low-energy exponential tail to this δ function such that the

peak shape is of the form: (for a peak centered at x = 0)

L(x) = T (x) + δ(x) , (A.1)

where T (x) is an exponential tail.

Since the convolution of two functions f(x) and g(x) is defined as:

∫ ∞

−∞
f(x)g(x′ − x)dx

For the functional form of the tail in the peak we want the convolution of an

exponential and a Gaussian that results in the following integral,

∫ ∞

−∞
ex/le

−(x′−x)2

2σ2 dx

For an exponentially decaying distribution below the peak centroid, we define

Θ(x), such that Θ(x) = 1 if x ≤ 0 and Θ(x) = 0 otherwise.
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This results in a convolution integral

T (x′) =

∫ ∞

−∞

1√
2πσ

ex/lexp

(−(x′ − x)2

2σ2

)

Θ(x)dx

=

∫ 0

−∞

1√
2πσ

ex/lexp

(−(x′2 + x2 − 2xx′)

2σ2

)

dx .

Where x can take only negative values here on account of the step function.

=
1√
2πσ

e−x′2/2σ2

∫ 0

−∞
e
−
[
x2

2σ2 −x
(
x′

σ2 + 1
l

)]

dx

On substituting x′

σ2+
1
l
= b

σ2 and then adding and subtracting b2

2σ2 in the parentheses

we get the expression

=
1√
2πσ

exp

(−(x′2 − b2)

2σ2

)∫ 0

−∞
exp

(−(x− b)2

2σ2

)

,

which, on substituting for b2 simplifies to

=
1√
2πσ

exp

(
σ2

2l2
+
x′

l

)∫ 0

−∞
exp

(−(x− b)2

2σ2

)

The integral is now trivial, we make the substitution t = x−b√
2σ

and change the

variables and limits to get

=
1√
2πσ

exp

(
σ2

2l2
+
x′

l

)∫ −b/
√

2σ

−∞
e−t2

√
2σdt
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Further using the definition that,

erfc z =
2√
π

∫ ∞

z

e−t2dt

and the following properties of the complementary error function,

∫ z

−∞
e−t2dt =

∫ ∞

−∞
e−t2dt−

∫ ∞

z

e−t2dt

erfc(−z) = 2− erfc(z)

we get

=
1√
2πσ

exp

(
σ2

2l2
+
x′

l

)√
2σ

[√
π − erfc

( −b√
2σ

) √
π

2

]

,

that results in a lineshape that has the generic form

T (x′) =
1

2
exp

(
σ2

2l2
+
x′

l

)

erfc

[
1√
2

(
x′

σ
+
σ

l

)]

. (A.2)

If we want to generalize this for a peak centered at µ, normalized to unit area,

the variable x′ becomes −(µ− x) (the negative sign is added to maintain the sign

of x′) and the form of the tail becomes

T (x) = N
1

2
exp

(
σ2

2l2
+

(x− µ)

l

)

erfc

[
1√
2

(
(x− µ)

σ
+
σ

l

)]

, (A.3)

where N is a normalization constant.

116



A.1 Normalization

We obtain the normalization factor for T (x), so that the function has unit

area, by integrating the function over all space. We define, ∆ = x− µ, then

∫ ∞

−∞
T (x)dx =

l

2

[

erf

(
∆√
2σ

)

+ exp

(
σ2

2l2
+

∆

l

)

erfc

{
1√
2

(
σ

l
+

∆

σ

)}]∞

−∞

On evaluating this integral, we get the normalization constant to be = 1/l,

such that the normalized T (x) is

T (x) =
1

2l
exp

(
σ2

2l2
+

(x− µ)

l

)

erfc

[
1√
2

(
(x− µ)

σ
+
σ

l

)]

(A.4)

A.2 General functional form

We add two tails to the δ function, such that

L(x;µ) = f1T1(x) + f2T2(x) +G(x) ,

where

G(x) =
1√
2πσ

exp

(−(x− µ)2

2σ2

)

.

G(x) is the direct result of folding the delta-function with a Gaussian spread.

T1(x) is the low energy exponential tail attributed to charge collection effects,

T2(x) is kept fixed for our data-analysis with a large decay-length. It represents

the multiple Compton plateau below the peak centroid in the form of a smooth

step-function.

Since Tj(x) is normalized to unit-area, fj provides the relative area under the

particular tail with respect to the pure Gaussian. L(x;µ) is then normalized to
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unit area in the following way;

L(x) =

(

1−
2∑

j=1

fj

)

G(x) +
2∑

j=1

fjTj(x) (A.5)

A.3 Binned Data

For binned data, if we are fitting the photopeak over a range of n bins, for a

given bin-width ∆E keV, where ∆E = Ehigh−Elow. We obtain the normalization

constant for the tails by integrating Eq. A.3 from x = 0 to x =∞, such that the

normalized tail is of the form

T (x) =

1
l
exp

(
σ2

2l2
+ (x−µ)

l

)

erfc
[

1√
2

(
(x−µ)

σ
+ σ

l

)]

[

1 + erf
(

µ√
2σ

)

− exp
(

σ2

2l2
− µ

l

)
erfc

(

(σ
2

l
)−µ√
2σ

)] . (A.6)

The fitting function (after adding additional background) is given by,

F (x) =

(

A

∫ Ehigh

Elow

L(x)dx+B + Cx+Dx2

)

(A.7)

The χ2 is defined as,

χ2 =
nbins∑

i=1

(
F (xi)− y(xi)

∆y(xi)

)2

, (A.8)

where y(xi) is the number of counts in channel xi and ∆y(xi) is the uncertainty

in y(xi).

The χ2 was minimized by varying the parameters A, B, C, D, lj, fj, σ and

µ using the Levenberg-Marquardt routine [81].
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