Results from sub-GeV dark matter searches & high voltage breakdown studies in liquid argon and xenon

Lucie Tvrznikova Postdoctoral Researcher

CENPA seminar at UW February 7, 2019

Outline

I. Introduction to the LUX detector

Sub-GeV dark matter searches using 2013 LUX data

 Dielectric breakdown studies in liquid argon & liquid xenon with XeBrA

Evidence for DM comes from multiple sources

2019-02-07

Lucie Tvrznikova

LUX searched for many types of dark matter

The Large Underground Xenon experiment

24 institutions ~100 people

Lead, SD

2019-02-07

LUX detector was a two-phase TPC

<u>NIM A 704, 111-126 (2013)</u>

Particle interaction in a two phase time projection chamber

S2

S1

Distinguish between 2 types of particle recoil

2019-02-07

Tritium calibrates detector response to electron recoils

- Tritium β spectrum coincides with WIMP interaction energy
 - E> = 5.9 keV, Q = 18.6 keV
- Study detector response to electron recoils (ER band determination)
- T_{1/2} = 12.3 yr
 - Removed by purifying system (T_{1/2} \sim 6 h)
- Injected quarterly as CH₃T

Lucie Tvrznikova

LUX is more sensitive to lower energies of electron recoils

2019-02-07

Direct detection experiments consider elastic scattering

Elastic scattering

- Nuclear recoil signal
- Assumed in the standard WIMP search
- LUX searches for $m_{DM} \gtrsim 5 \text{GeV}$

But irreducible signals are present in DM-nucleus interactions

Elastic scattering

- Nuclear recoil signal
- Assumed in the standard WIMP search
- LUX searches for $m_{DM} \gtrsim 5 \text{GeV}$

Bremsstrahlung photon emission from polarized atom

- C. Kouvaris & J. Pradler
 PRL 118, 031803 (2017)
 - C. McCabe <u>PRD 96, 043010 (2017)</u>

LUX results from this work arXiv: 1811.1241

Electron emission caused by Migdal effect

- M. Ibe et al. <u>IHEP03 (2018) 194</u>
- M. J. Dolan et al. <u>PRL 121, 101801 (2018)</u>

LUX can detect sub-GeV DM via Bremsstrahlung

Bremsstrahlung

- Emission of a photon from a polarized xenon atom
- Nuclear interaction with electron recoil signal
- ER signal is much easier to detect at low energies!
- LUX can gain sensitivity to $\boldsymbol{O}(\text{MeV})$ DM
- Based on work by C. Kouvaris, J. Pradler & C. McCabe

Expected scattering rates in xenon for Bremsstrahlung

2019-02-07

LUX can detect sub-GeV DM via Migdal effect

- Nuclear interaction, with detectable ionization (electron recoil) signal for low mass DM
- Originally formulated in 1941 by A.B. Migdal assuming an impulsive force
- Reformulated this year by M. Ibe *et al.* using atomic energy eigenstates for their calculations instead, thereby avoiding the need to resolve the complex time evolution of the nucleus
- Based on work by M. Ibe et al. who have published the expected scattering rates & Dolan et al.

Figure from M. J. Dolan *et al.* <u>arXiv:1711.09906</u>

Expected scattering rates in xenon for Migdal effect

Expect higher event rates from Migdal compared to Brem

Example of a signal expected in LUX from $m_{\chi} = I \text{ GeV}$

Signal expected from Migdal effect in WS2013

Final WS2013 data after cuts

- 95 live-days
- 13,775 kg·day exposure
- 591 events

Electron recoil band

Nuclear recoil band for $m_y = 50 \text{ GeV}$

Black points: $r \le 18$ cm Grey points: 18 < r < 20 cm (edges of the fiducial volume boundary)

> Brem heavy scalar mediator Migdal heavy scalar mediator Migdal light vector mediator

LUX limit calculated using profile likelihood ratio

arXiv: 1811.11241

LUX limit assuming a light scalar mediator

Current state of the field

2019-02-07

Motivation for XeBrA

Problem

- Lack of data characterizing high voltage (HV) behavior in noble liquids needed for dark matter detector design
 - Larger detectors need more HV is there a threshold that will impede the scale up?

Solution

 I have acquired data characterizing HV in liquid argon (LAr) and liquid xenon (LXe)

XEBRA Xenon Br

Xenon Breakdown Apparatus

- Detector at LBNL developed by L.Tvrznikova, E. Bernard, K. O'Sullivan,
 W.Waldron, G. Richardson, S. Kravitz, Q. Riffard, J. Watson & D. McKinsey
 - Supported through the LBNL LDRD program

HV breakdown in LXe is not well understood

LAr & LHe data suggest breakdown depends on:

- Electrode stressed area
- Electrode volume
- Electrode material
- Surface finish
- Liquid purity
- Polarity
- Pressure & temperature
- And more ...

But there is very little data in LXe!

stressed area (500 cm²)

Only consider area within 90% of max E-field

"Stressed area"

Where sparks are most likely to happen

Rogowski electrodes provide large uniform area

 Electrodes designed to have the highest field near the center and maintain a nearly uniform field over a large area

Apparatus details

- Can be filled with either LXe or LAr with total experimental volume = 5.6 L
- Designed for HV up to -75 kV
- Max stressed electrode area = 58 cm^2
- Max electrode separation = 10 mm
- Ability to vary electrode separation remotely
- Continuous purification
- Monitoring of liquid purity
- Detection of both glow onset & breakdown
 - Current sensing, PMT & camera

XeBrA contains a purity monitor

- Directly connected to XeBrA detector
- Monitors LXe & LAr purity
- Purity calculated from electron lifetime τ
 - Electrons generated on the cathode / number of electrons not captured by impurities on their way to the anode
- Can be converted to oxygen-equivalent concentration:
 - ρ[ppb]~408/τ[μs] in LAr
 - ρ[ppb]~455/τ[μs] in LXe

See, for example: <u>A. Bettini, et al. NIM A 305.1 (1991)</u> <u>G. Carugno, et al. NIMA 292.3 (1990)</u> <u>Y. Li, et al. IINST 11 T06001 (2016)</u>

2019-02-07

Viewports in action

- 3 hours of bubbles in LXe: <u>https://www.youtube.com/watch?v=Zy9r8q1wmYc&t=179s</u>
- Selection of sparks in LXe
- Selection of sparks in LAr
- Xenon phase changes: <u>https://www.youtube.com/watch?v=vFYziAxh95w</u>

Spark at 5mm in LXe

Spark at 7mm separation in LAr

Let's look at data!

MATHESON

0 4 0 0

XEBRA

CRAFTSMAN

Breakdown field vs. electrode separation in LAr

- Pressure: 1.5 & 2 bara
- ~ | ppb (~300 µs) as measured by the purity monitor

Note: circles represent the mean breakdown field and error bars the standard deviation

2019-02-07

Breakdown field vs. stressed area in LAr

Breakdown field vs. stressed area and pressure in LAr

Breakdown field vs. stressed area in LXe

2019-02-07

Lucie Tvrznikova

Comparison of LAr and LXe data from XeBrA

Fit of I mm electrode separation to Weibull function in LXe

Leakage current

- No obvious dependence of leakage current on voltage
- LXe: leakage current < 5 fA
- LAr: leakage current < 50 fA 0.00</p>

2019-02-07

Conclusion

- Placed limits on sub-GeV DM using 2013 LUX data
 - This result extends the reach of liquid xenon detectors
 - Available at <u>arXiv: 1811.11241</u>
 - Recommended by reviewers for publication in the PRL
- Built & collected data with XeBrA at LBNL
 - Direct comparison of dielectric breakdown in liquid argon and xenon
 - Measurements with larger electrode areas than previously studied
 - Publication in preparation
 - Further data collection forthcoming
 - Study effects of varying electrode materials, finishes & coatings
 - Study effects of liquid purity & different impurities
 - · · · ·

2019-02-07

Lucie Tvrznikova CENPA seminar at UW, 7th of February 2019

Nerds searching for WIMPs LUX Dark Metter Detector

LUX is a xenon two phase TPC

TPC = Time Projection Chamber

LUX collected data from 2013-2016

2019-02-07

DD neutrons calibrate nuclear recoils

- Deuterium-Deuterium neutron generator (2.45 MeV)
 - Located outside of the water tank
 - Quarterly at different z
 - Double scatters used for Q_y analysis
 - 0.7 74 keV
 - Single scatters used for L_y analysis and NR band

2019-02-07

Lucie Tvrznikova

Calibrations help characterize detector response

PRD 97, 102008 (2018)

DD neutron generator <u>arXiv:1608.05381</u>

Characterization of nuclear recoils

Tritium PRD 93, 072009 (2016)

- Characterization of electron recoils
- ⁸³mKr <u>PRD 11.112009 (2017)</u>

And more...

Detector performance monitoring

Energy deposition in the detector \propto # of Work function $W = (13.7 \pm 0.2) \text{ eV/quanta}$ quanta produced by $f \propto$ heat interaction $E = fW(n_{\gamma} + ne)$ Number of photons Number of electrons detected detected $n_{v} = S1/g_{1}$ $n_{e} = S2/g_{2}$ The detector specific gains g_1 and g_2 are obtained from calibrations

2019-02-07

^{83m}Kr monitors detector performance

PRD 11.112009 (2017)

- ^{83m}Kr is injected regularly
- Mixes homogenously with LXe
- Used for:
 - Overall stability monitoring
 - Electron lifetime measurements
 - SI & S2 position corrections
 - Electric field modeling
- Monoenergetic for our standard analysis

Drift time 4 - 8 µs

Expected signal spectra from Migdal simulated by NEST2.0

Lucie Tvrznikova

Only a fraction of events have both SI & S2 signals

2019-02-07

Four different mediators were considered for Migdal effect

Lucie Tvrznikova

LUX limit for the Migdal effect assuming vector mediator

LUX limit for the Migdal effect assuming vector mediator

Lucie Tvrznikova

Limits from Bremsstrahlung – C. McCabe

 C. McCabe published his work inferring LUX sensitivity to the sub-GeV signal and calculated limits for LUX & LZ

Limits from Migdal – Dolan et al.

 M. J. Dolan, F. Kahlhoefer, and C. McCabe published limits for the Migdal effect assuming a heavy scalar mediator

2019-02-07

Lucie Tvrznikova

Larger detectors need higher cathode voltage

2019-02-07

Purity monitor measures electron lifetime

Electron velocity in LAr measured by the purity monitor

Purple line: <u>Walkowiak, W., NIM A 449,</u> <u>p288-294 (2000)</u> T = 87.3 K

Yellow line: He, Q. and McDonald, K. "Electron drift velocity in the uBooNE TPC." (2009) T = 85 K

The velocity also depends on temperature (~ linearly). Measurements done at T = 87.3 K

2019-02-07

Lucie Tvrznikova

XeBrA design carefully considers E-field effects

2019-02-07

XeBrA is designed to observe sparks in liquid nobles

Gas system built for multiple detectors

2019-02-07

PMT for electroluminescence studies

Hamamatsu R8520-06 MOD with platinum underlay

2019-02-07

Comparison of LAr and LXe for all available data

